12th December 2018

Stochastics II

9. Tutorial

- **Exercise 1** (7 **Points**) We consider the following game: Player A enters the game with an initial capital of *a* Euro, Player B with *b* Euro $(a, b \in \mathbb{N})$. In each round of the game a fair coin is tossed. If the coin shows 'heads', Player A receives one Euro from Player B. Otherwise Player B gets one Euro from Player A. The game ends when one of the players runs out of money. The random time, at which the game ends is denoted by τ .
 - (i) Show that $E[\tau] < \infty$.
 - (ii) Derive the probability that Player A wins the game.
 - (iii) Compute $E[\tau]$.

Hint: Consider a Bernoulli(1/2) random walk $(X_n)_{n \in \mathbb{N}_0}$ as introduced in Example 2.5 and show that $M_n = X_n^2 - n$ is a martingale.

- **Exercise 2** (1+2+2 **Points)** Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space.
 - (i) Show that every constant and non-negative real random variable is a stopping time.
 - (ii) Let σ , τ be stopping times. Show that $\sigma + \tau$ is a stopping time.
 - (iii) Let $\sigma > 0$ be a stopping time and τ be a optional time. Show that $\sigma + \tau$ is a stopping time.
- **Exercise 3** (4+2 Points) Let $(\Omega, \mathcal{F}, \mathbb{F} = (\mathcal{F}_t)_{t \in [0,\infty)}, P)$ be the underlying filtered probability space and let $(\tau_n)_{n \in \mathbb{N}}$ be a sequence of optional times.
 - (i) Show that

 $\sup_{n \in \mathbb{N}} \tau_n, \quad \inf_{n \in \mathbb{N}} \tau_n, \quad \limsup_{n \in \mathbb{N}} \tau_n, \quad \liminf_{n \in \mathbb{N}} \tau_n$

are optional times.

(ii) Show that $\sup_{n \in \mathbb{N}} \tau_n$ and $\tau_1 \wedge \tau_2$ are stopping times, if every τ_n , $n \in \mathbb{N}$, is a stopping time.