Fachrichtung Mathematik
Fakultät für Mathematik und Informatik
Universität des Saarlandes
Prof. Dr. Michael Bildhauer
M.Sc. Nils Gutheil

28.01.2020

Höhere Mathematik für (Naturwiss. und) Ingenieure I Bachelor plus MINT Präsenzübung, Blatt 21

Aufgabe 1.

- i) Berechnen Sie die Hessesche Normalform der Ebene E_1 , die durch die drei Punkte (-1,1,1), (2,1,0) und (0,0,2) verläuft.
- ii) Berechnen Sie die Schnittgerade der Ebene E_1 mit der Ebene

$$E_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \colon x_3 = 0 \right\}.$$

Aufgabe 2.

i) Beweisen Sie Satz 10.3 aus der Vorlesung:

Es seien
$$\underline{\mathbf{x}}^{(k)} = \begin{pmatrix} x_1^{(k)} \\ \vdots \\ x_n^{(k)} \end{pmatrix} \in \mathbb{R}^n$$
 für alle $k \in \mathbb{N}$ und $\underline{\mathbf{x}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$.

Die Folge $\{\underline{\mathbf{x}}^{(k)}\}_{k\in\mathbb{N}}$ ist genau dann konvergent gegen $\underline{\mathbf{x}}$, falls

$$\lim_{k \to \infty} x_i^{(k)} = x_i$$

für alle $i \in \{1, \dots, n\}$.

ii) Es sei $\{\underline{\mathbf{x}}^{(k)}\}_{k\in\mathbb{N}}$ eine konvergente Folge in \mathbb{R}^n . Zeigen Sie, dass die Folge $\{\|\underline{\mathbf{x}}^{(k)}\|\}_{k\in\mathbb{N}}$ eine konvergente reelle Zahlenfolge ist. Gilt die Umkehrung?

Aufgabe 3.

- i) Es seien $U_1, U_2 \subset \mathbb{R}^n$ offen. Zeigen Sie, dass die Mengen $U_1 \cap U_2$ und $U_1 \cup U_2$ offen sind.
- ii) Es seien $A_1, A_2 \subset \mathbb{R}^n$ abgeschlossen. Zeigen Sie, dass die Mengen $A_1 \cap A_2$ und $A_1 \cup A_2$ abgeschlossen sind.
- iii) Finden Sie abgeschlossene Teilmengen A_1, A_2, A_3, \ldots von \mathbb{R} mit der Eigenschaft, dass $\bigcup_{k=1}^{\infty} A_k \subset \mathbb{R}$ offen ist.