Fachrichtung Mathematik Fakultät für Mathematik und Informatik Universität des Saarlandes Prof. Dr. Michael Bildhauer M.Sc. Nils Gutheil

05.02.2020

Höhere Mathematik für (Naturwiss. und) Ingenieure I Bachelor plus MINT Präsenzübung, Blatt 24

Aufgabe 1.

- i) Berechnen Sie die folgenden Grenzwerte oder begründen Sie, dass der Grenzwert nicht existiert.
- (a) $\lim_{n \to \infty} \frac{6n^3 + 2}{\frac{5}{8}n^3 3n}$ (b) $\lim_{n \to \infty} \frac{n^2 4}{n 2}$ (c) $\lim_{n \to \infty} \sqrt[8]{n^2 + 1} \sqrt[4]{n + 1}$
- ii) Betrachten Sie die durch

$$a_n = \frac{n}{5n - 4}$$

gegebene Folge $\{a_n\}_{n\in\mathbb{N}}$. Finden Sie ein $a\in\mathbb{R}$ und zu gegebenem $\varepsilon>0$ ein $N=N(\varepsilon)$ derart, dass $|a_n - a| < \varepsilon$ für alle $n > N(\varepsilon)$.

iii) Zeigen Sie, dass die durch

$$a_1 = 0$$
, $a_{n+1} = \sqrt{2 + a_n}$, $n \ge 2$,

rekursiv definierte Folge $\{a_n\}_{n\in\mathbb{N}}$ konvergiert und bestimmen Sie den Grenzwert.

Aufgabe 2.

- i) Konvergieren die folgenden Reihen?
 - (a) $\sum_{1}^{\infty} \frac{n^2}{n^5 1}$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cos(\cosh(n))}{n^2}$$

- (b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \left(\frac{2}{n\sqrt{n}} \frac{3}{\sqrt{n}} \right)$
- ii) Für welche $x \in \mathbb{R}$ konvergieren die folgenden Potenzreihen?

(a)
$$\sum_{n=1}^{\infty} n(2x-6)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1} (x - 2)^n$$

Aufgabe 3.

i) Es seien

$$\underline{\mathbf{v}}^{(1)} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad \underline{\mathbf{v}}^{(2)} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \underline{\mathbf{v}}^{(3)} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}.$$

- (a) Bilden die Vektoren $\underline{\mathbf{v}}^{(1)}$, $\underline{\mathbf{v}}^{(2)}$ und $\underline{\mathbf{v}}^{(3)}$ eine Basis des \mathbb{R}^3 ?
- (b) Bestimmen Sie eine Orthonormalbasis von Spann $(\underline{\mathbf{v}}^{(1)},\underline{\mathbf{v}}^{(2)},\underline{\mathbf{v}}^{(3)})$.
- ii) Es sei

$$U = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$

Bestimmen Sie U^{\perp} .

iii) Für welche Werte von $a \in \mathbb{R}$ beträgt der Winkel zwischen den Vektoren

$$\underline{\mathbf{v}}^{(1)} = \begin{pmatrix} 1 \\ a^2 \\ \frac{1}{16} \end{pmatrix}, \quad \underline{\mathbf{v}}^{(2)} = \begin{pmatrix} a \\ 2 \\ 1 \end{pmatrix}$$

genau 90°?

iv) Gegeben seien die Punkte

$$\underline{\mathbf{a}} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}, \quad \underline{\mathbf{b}} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \quad \underline{\mathbf{c}} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Bestimmen Sie eine Parameterdarstellung sowie die Hessesche Normalform der durch ${\bf a},\,{\bf b}$ und ${\bf c}$ verlaufenden Ebene E.

Aufgabe 4. Ist die Menge

$$U = \{\underline{\mathbf{x}} \in \mathbb{R}^2 \colon x_2 > 0, x_1^2 + x_2^2 \le 1\}$$

offen? Ist sie kompakt?