Fachrichtung Mathematik Fakultät für Mathematik und Informatik Universität des Saarlandes Prof. Dr. Michael Bildhauer M.Sc. Nils Gutheil

Saarbrücken, 05.12.2019

Übungsblatt 7 zur Vorlesung **Höhere Mathematik für (Naturwiss. und) Ingenieure I** Wintersemester 2019/2020

Aufgabe 1. (Definition des Grenzwertes, 2+2 Punkte) Betrachten Sie die folgenden reellen Zahlenfolgen $\{a_n\}$ und finden Sie jeweils ein $a \in \mathbb{R}$ und wie in Definition 8.2 gefordert zu beliebigem $\varepsilon > 0$ ein $N = N(\varepsilon)$ derart, dass $|a_n - a| < \varepsilon$ für alle $n > N(\varepsilon)$.

i)
$$a_n = \frac{2\sqrt{n}+1}{\sqrt{n}}$$
 für alle $n \in \mathbb{N}$;

$$ii) \ a_n = \frac{n + \frac{1}{2}\sqrt{n}}{n - \frac{1}{2}\sqrt{n}} \quad \text{ für alle } n \in \mathbb{N} \ .$$

Aufgabe 2. (Berechnung von Grenzwerten, 4.5+1.5 Punkte)

i) Existieren die folgenden Grenzwerte? Falls ja, so berechnen Sie diese:

(a)
$$\lim_{n\to\infty} \frac{n^2 - \frac{1}{n^2} - \sqrt{n}}{n^{5/2} - n^2}$$
,

(b)
$$\lim_{n \to \infty} \left[\frac{n}{n+1} + \frac{\frac{1}{2}n^4 + \frac{1}{\sqrt{n}} - n^2}{n^3 + 2n^4} \right]$$
,

(c)
$$\lim_{n \to \infty} \frac{n^4 + 1}{\frac{n^3 + 1}{n}}.$$

ii) Welche der Folgen ist beschränkt, welche unbeschränkt?

Aufgabe 3. (Berechnung von Grenzwerten, 5 Punkte) Betrachten Sie zwei Folgen $\{a_n\}$ und $\{b_n\}$, $0 \le b_n < a_n$ für alle $n \in \mathbb{N}$, sowie die Folge $\{c_n\}$,

$$c_n = \sqrt{a_n} - \sqrt{b_n}$$
 für alle $n \in \mathbb{N}$.

Bitte wenden.

Berechnen Sie, falls existent, $\lim_{n\to\infty} c_n$ für

i)
$$a_n = n + 1$$
, $b_n = n$ für alle $n \in \mathbb{N}$;

$$ii)$$
 $a_n = n^2 + 1$, $b_n = n$ für alle $n \in \mathbb{N}$.

Hinweis. Erweitern Sie mit $\sqrt{a_n} + \sqrt{b_n}$.

Aufgabe 4. (Rekursive Folgen, (1+1.5)+2.5 Punkte)

i) Betrachten Sie die rekursiv definierte Folge $\{a_n\}$ mit

$$a_1 := 1$$
, $a_{n+1} := \frac{1+a_n}{2+a_n}$.

(a) Zeigen Sie für alle $n \in \mathbb{N}$:

$$a_{n+1} > \frac{\sqrt{5} - 1}{2} \quad \Leftrightarrow \quad a_n > \frac{\sqrt{5} - 1}{2} .$$

- (b) Ist die Folge nach unten beschränkt? Ist die Folge monoton fallend? Konvergiert die Folge? Falls ja, bestimmen Sie den Grenzwert.
- ii) Es sei $c \ge 0$ fixiert, es seien $a_1 := c$ und $a_{n+1} := a_n^2$ für alle $n \in \mathbb{N}$. Untersuchen Sie die Folge auf Konvergenz.

Abgabe. Bis Do., 12.12.2019, 14.00 Uhr, Briefkasten U.G., Geb. E2 5.

Bonuspunkte für die Klausur.

1 Bonuspunkt: Mehr als 12 Aufgabenpunkte; 1/2 Bonuspunkt: 7-12 Aufgabenpunkte.

Besprechung. In den Übungsgruppen vom Mo., 16.12.2019, bis zum Fr., 20.12.2019.

Die Übungsblätter finden Sie auch im Netz unter

https://www.math.uni-sb.de/ag/bildhauer/HMI1/hmi1.html