UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK JUN. PROF. DR. S. BRANDHORST MSC. P. KATTLER

Algebraische Zahlentheorie I Sommersemester 2020 Blatt 12

- 1. Sei p eine Primzahl. Dann ist p kein Quadrat in \mathbb{Q}_p . Sei w die eindeutige Fortsetzung der diskreten Exponentialbewertung ν_p von \mathbb{Q}_p auf $\mathbb{Q}(\sqrt{p})$. Zeigen Sie, dass $w(\sqrt{p}) = \frac{1}{2}$. (5 Punkte)
- 2. Betrachten Sie einen p-adischen Zahlkörper $K|\mathbb{Q}_p$. Seien $1+x\in U^{(1)},\ z\in\mathbb{Z}_p$ und $(z_k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{N} mit $\lim_{n\to\infty}z_n=z$. Dann ist

$$(1+x)^z := \lim_{n \to \infty} (1+x)^{z_n}$$

wohldefiniert (Das müssen Sie nicht zeigen). Zeigen Sie, dass

$$(1+x)^z = \sum_{k=0}^{\infty} {z \choose k} x^k,$$

falls zusätzlich $x \in K$ mit $\nu_p(x) > \frac{e}{p-1}$ gilt. Dabei ist

(5 Punkte)

3. Seien K ein p-adischer Zahlkörper, $x \in K$ mit $\nu_p(x) > \frac{e}{p-1}$ und $z \in \mathbb{Z}_p$. Zeigen Sie

$$\log ((1+x)^z) = z \log(1+x)$$
 und $(1+x)^z = \exp(z \log(1+x))$.

(5 Punkte)

- 4. Seien p eine Primzahl und $k \in \mathbb{N}$.
 - (a) Sei $(z_n)_{n\in\mathbb{N}}$ eine Folge die gegen $z\in\mathbb{Z}_p$ konvergiert. Zeigen Sie, dass $\binom{z_n}{k}$ gegen $\binom{z}{k}$ konvergiert.
 - (b) Sei $z \in \mathbb{Z}_p \setminus \{0\}$. Zeigen Sie, dass

$$\nu_p\left(\begin{pmatrix} z \\ p^{\nu_p(z)} \end{pmatrix} \right) = 0.$$

(c) Seien $a, b \in \mathbb{N}, a > b$. Zeigen Sie, dass

$$\nu_p\left(\binom{p^a}{p^b}\right) = a - b.$$

(d) Geben Sie eine Folge $(a_n)_{n\in\mathbb{N}\subseteq\mathbb{Z}_p}$ an, sodass $\nu_p(a_n)$ beschränkt, aber $\nu_p\left(\binom{a_n}{k}\right)$ unbeschränkt ist.

(5 Punkte)

Abgabe bis spätestens **Mittwoch** den 08.07.2020 um **10:00 Uhr** per Mail an **kattler@math.uni-sb.de**