Algebraic Geometry and Commutative Algebra. Summer term 2024 Prof. Dr. S. Brandhorst

Exercise Sheet 2

Exercise 1

- (a) Show that a ring R is Noetherian if and only if every non-empty set of ideals of R contains a maximal element.
- (b) Let R be a Noetherian ring. Show that every ideal I of R is finitely generated, i.e. there exist $r_1, \ldots r_n \in R$ with $I = (r_1, \ldots r_n)$.
- (c) Let R be a ring such that every ideal of R is finitely generated. Show that R is Noetherian.

Exercise 2

- (a) Let R be a Noetherian ring and let $I \subseteq R$ be an ideal. Show that the quotient ring R/I is also Noetherian.
- (b) If R is a Noetherian ring and if $f: R \to S$ is a surjective homomorphism onto a ring S, show that S is also Noetherian.
- **Exercise 3** (a) Let $f: X \to Y$ be a continuous map and $V \subseteq X$ an irreducible subset. Show that f(V) is irreducible. Hint: First reduce to the case that V = X and f is surjective.
- (b) Let X be an irreducible topological space and $U \subseteq X$ be a non-empty open subset. Show that U is dense in X and U is irreducible in its induced topology.
- (c) Let $Y \subseteq X$ be a subset which is irreducible in the induced topology. Show that its closure \overline{Y} is irreducible.

Exercise 4 Let X_1 and X_2 be two topological spaces. The product topology on $X_1 \times X_2$ is it is the coarsest topology such that the projections $X_1 \times X_2 \to X_i$, i = 1, 2 are continuous. The open subsets of the form $U_1 \times U_2$ for U_i open in X_i , i = 1, 2 form a basis for the product topology.

Identify $\mathbb{A}^1 \times \mathbb{A}^1$ with \mathbb{A}^2 in the natural way. Show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topology on the two copies of \mathbb{A}^1 . Hint: Consider the diagonal $\Delta = \{(x, x) \in \mathbb{A}^2 \mid x \in \mathbb{A}^1\}$.

Exercise 5 A topological space X is said to be disconnected if there are two disjoint open subsets $U_1, U_2 \subseteq X$ with $X = U_1 \cup U_2$. Suppose now that X, U_1 and U_2 are affine varieties. Show that $A(X) = A(U_1) \times A(U_2)$.