Algebraic Geometry and Commutative Algebra. Summer term 2024 Prof. Dr. S. Brandhorst

Exercise Sheet 4

Exercise 1 Let R be a ring $I \leq R$ an ideal and $S \subseteq R$ a multiplicatively closed subset.

- (a) Show that the equivalence relation used to define the localisation of R at S is indeed transitive.
- (b) Show that $S^{-1}R$ is the zero ring if and only if $0 \in S$.
- (c) Show that the ring homomorphism $i: R \to S^{-1}R$, $x \mapsto x/1$ is injective if and only if S does not contain any zero divisors
- (d) Reprove that the radical of an ideal I is the intersection of the prime ideals containing it. To do so consider R/I and suitable localisations of it, use the fact that every nonzero ring contains a prime ideal.
- (e) Recall the definition of an *R*-module *M*. Generalise the concept of localisation to R-modules and define the $S^{-1}R$ -module $S^{-1}M$.
- (f) Show that $S^{-1}(R/I) \cong S^{-1}R/S^{-1}I$.

Exercise 2 Let $X \subseteq \mathbb{A}^n$ be an affine variety and let $a \in X$. Show that $\mathcal{O}_{X,a} \cong \mathcal{O}_{\mathbb{A}^n,a}/I(X)\mathcal{O}_{\mathbb{A}^n,a}$ where $I(X)\mathcal{O}_{\mathbb{A}^n,a}$ denotes the ideal in $I(X)\mathcal{O}_{\mathbb{A}^n,a}$ generated by all quotients f/1 for $f \in I(X)$.

Exercise 3 Let $I, J, K, I_{\lambda}, J_{\lambda} \leq R, \lambda \in \Lambda$ be ideals. The ideal quotient of I by J is

$$(I:J) = \{x \in R \mid xJ \subseteq I\}$$

Show the following

- (a) $I \subseteq (I : J)$ (b) ((I : J) : K) = (I : (JK)) = ((I : K) : J)(c) $((\bigcap_{\lambda} I_{\lambda}) : J) = \bigcap_{\lambda} (I_{\lambda} : J)$
- (d) $(I: \sum_{\lambda} J_{\lambda}) = \bigcap_{\lambda} (I: J_{\lambda})$

Exercise 4 Let $Y, Z \subseteq X$ be subvarieties of the affine variety X. Show that

$$\overline{Z \setminus Y} = V(I(Z) : I(Y)).$$