Prof. Dr. S. Brandhorst

Exercise Sheet 5

Exercise 1 Show that $(\mathbb{Z} / m \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z})=0$ if m, n are coprime. Here $\otimes_{\mathbb{Z}}$ means that we take their tensor product as \mathbb{Z}-modules.

Exercise 2 Let R be a ring.
(a) Let $f: M^{\prime} \rightarrow M$ be an R-module homomorphism and N an R-module. Show that $f^{*}: \operatorname{Hom}(M, N) \rightarrow \operatorname{Hom}\left(M^{\prime}, N\right), f^{*}(g)=g \circ f$ is an R-module homomorphism.
(b) Let

$$
M^{\prime} \xrightarrow{u} M \xrightarrow{v} M^{\prime \prime} \rightarrow 0
$$

be a sequence of R modules and homomorphisms. Then this sequence is exact if and only if for all R-modules N the sequence

$$
0 \rightarrow \operatorname{Hom}\left(M^{\prime \prime}, N\right) \xrightarrow{v^{*}} \operatorname{Hom}(M, N) \xrightarrow{u^{*}} \operatorname{Hom}\left(M^{\prime}, N\right)
$$

is exact.
(c) Let $u: M^{\prime} \rightarrow M$ be injective. Show that u^{*} is not necessarily surjective.

Exercise 3 Let R be a ring, J an ideal contained in the Jacobson radical of R and M an R-module and N a finitely generated R-module, and let $u: M \rightarrow N$ be a homomorphism. If the induced homomorphism $M / J M \rightarrow N / J N$ is surjective, then u is surjective.

Exercise 4 Let $f: X \rightarrow Y$ be a morphism of affine varieties and $f^{*}: A(Y) \rightarrow A(X)$ the corresponding pullback on coordinate rings. Are the following true or false?
(a) f is surjective if and only if f^{*} is injective
(b) f is injective if and only if f^{*} is surjective
(c) If $f: \AA^{1} \rightarrow \AA^{1}$ is an isomorphism then f is affine linear, i.e. of the form $f(x)=a x+b$ for some $a, b \in K$
(d) If $f: \AA^{2} \rightarrow \AA^{2}$ is an isomorphism then f is affine linear, i.e. of the form $f(x)=A x+b$ for some $A \in K^{2 \times 2}$ and $b \in K^{2}$.

