Algebraic Geometry and Commutative Algebra. Summer term 2024 Prof. Dr. S. Brandhorst

Exercise Sheet 5

Exercise 1 Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if m, n are coprime. Here $\otimes_{\mathbb{Z}}$ means that we take their tensor product as \mathbb{Z} -modules.

Exercise 2 Let R be a ring.

- (a) Let $f: M' \to M$ be an *R*-module homomorphism and *N* an *R*-module. Show that $f^*: \operatorname{Hom}(M, N) \to \operatorname{Hom}(M', N), f^*(g) = g \circ f$ is an *R*-module homomorphism.
- (b) Let

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \to 0$$

be a sequence of R modules and homomorphisms. Then this sequence is exact if and only if for all R-modules N the sequence

$$0 \to \operatorname{Hom}(M'', N) \xrightarrow{v^*} \operatorname{Hom}(M, N) \xrightarrow{u^*} \operatorname{Hom}(M', N)$$

is exact.

(c) Let $u: M' \to M$ be injective. Show that u^* is not necessarily surjective.

Exercise 3 Let R be a ring, J an ideal contained in the Jacobson radical of R and M an R-module and N a finitely generated R-module, and let $u: M \to N$ be a homomorphism. If the induced homomorphism $M/JM \to N/JN$ is surjective, then u is surjective.

Exercise 4 Let $f: X \to Y$ be a morphism of affine varieties and $f^*: A(Y) \to A(X)$ the corresponding pullback on coordinate rings. Are the following true or false?

- (a) f is surjective if and only if f^* is injective
- (b) f is injective if and only if f^* is surjective
- (c) If $f: A^1 \to A^1$ is an isomorphism then f is affine linear, i.e. of the form f(x) = ax + b for some $a, b \in K$
- (d) If $f: A^2 \to A^2$ is an isomorphism then f is affine linear, i.e. of the form f(x) = Ax + b for some $A \in K^{2 \times 2}$ and $b \in K^2$.