

Elementare Zahlentheorie

Übungsblatt 7

Aufgabe 1 (4 Punkte)

Es sei $k \ge 1$ eine natürliche Zahl. Wann ist die Summe von k aufeinanderfolgenden natürlichen Zahlen durch k teilbar?

Aufgabe 2 (4 Punkte)

Es seien $d, e \in \mathbb{N}$ mit $d \mid e$. Zeigen Sie, dass $2^d - 1$ ein Teiler von $2^e - 1$ ist. Folgern Sie, dass $2^e - 1$ nur dann eine Primzahl sein kann, wenn e eine Primzahl ist.

Eine Primzahl von der Form $2^e - 1$ heißt Mersenne-Primzahl.

Aufgabe 3 (4 Punkte)

Für $n \in \mathbb{N}$ sei $F_n = 2^{2^n} + 1$.

- (a) Zeigen Sie, dass $F_n = (F_{n-1} 1)^2 + 1$ für alle $n \ge 1$.
- (b) Zeigen Sie, dass $F_n = 2 + \prod_{0 \le i < n} F_i$ für alle $n \ge 1$.

Für die Spitzfindigen: Warum stimmt die Gleichung auch für n = 0?

(c) Zeigen Sie, dass F_n und F_m für verschiedene m und n teilerfremd sind und folgern Sie, dass es unendlich viele Primzahlen gibt.

Aufgabe 4 (4 + 1 Punkte)

Wir definieren durch

$$\sigma(n) = \sum_{\substack{d \in \mathbb{N} \\ d \mid n}} d$$

eine Funktion $\sigma \colon \mathbb{N} \to \mathbb{N}$.

- (a) Berechnen Sie $\sigma(p)$ für eine Primzahl p.
- (b) Berechnen Sie $\sigma(2^n)$.
- (c) Zeigen Sie, dass $\sigma(mn) = \sigma(m)\sigma(n)$ für teilerfremde Zahlen $n, m \in \mathbb{N}$.
- (d) Sei nun $2^k 1$ eine Mersenne-Primzahl und $n = 2^{k-1} \cdot (2^k 1)$. Zeigen Sie, dass $\sigma(n) = 2n$.
- (e) Zeigen Sie, dass jede gerade Zahl $n \in \mathbb{N}$ mit $\sigma(n) = 2n$ von der Gestalt $n = 2^{k-1} \cdot (2^k 1)$ für eine Mersenne-Primzahl $2^k 1$ ist.

Abgabe bis spätestens Montag, den 27.05.2019, um 12:00 Uhr. Werfen Sie Ihre Lösungsvorschläge in die dafür vorgesehenen Einwurfkästen vor dem Zeichensaal in Gebäude E 2 5. Abgabe zu zweit ist möglich. Bitte geben Sie Ihren Namen, Ihre Matrikelnummer und Ihre Übungsgruppe an!