UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Sebastian Langendörfer

Übungen zur Vorlesung Analysis II

Sommersemester 2019

Blatt 4

Abgabetermin: 8.05.2019, vor der Vorlesung

Sei (X,d) ein metrischer Raum. Für $\emptyset \neq M \subseteq X$ und $x \in X$ sei der Abstand von x zu M definiert durch $d(x,M) = \inf\{d(x,y); y \in M\}$.

Aufgabe 14 (2+3=5 Punkte)

Sei (X,d) ein metrischer Raum und seien $M,A,B\subset X$ nichtleere Teilmengen. Zeigen Sie:

- (a) $\overline{M} = \{ x \in X \mid d(x, M) = 0 \}.$
- (b) Sind A, B abgeschlossen in X und ist $A \cap B = \emptyset$, so existiert eine stetige Funktion $f: X \to [0, 1]$ so, dass für alle $x \in X$ gilt:

$$f(x) = 0 \Leftrightarrow x \in A \text{ und } f(x) = 1 \Leftrightarrow x \in B.$$

(Hinweis: Beispiel 2.15 aus der Vorlesung.)

Aufgabe 15

(1+1+1+1=4 Punkte)

Seien $K, L \subset \mathbb{R}^n$ kompakt. Zeigen Sie, dass die folgenden Mengen kompakt sind:

- (i) $K \cap L$,
- (ii) $K \cup L$,
- (iii) $K \times L := \{(x, y) \in \mathbb{R}^{2n} \mid x \in K, y \in L\},\$
- (iv) $K + L := \{x + y \mid x \in K, y \in L\}.$

Aufgabe 16 (1+3=4 Punkte)

Seien (X, d_1) und (Y, d_2) metrische Räume und sei $f: X \to Y$ eine Abbildung. Zeigen Sie:

- (a) f ist stetig genau dann, wenn $f^{-1}(A) \subset X$ abgeschlossen ist für jede abgeschlossene Menge $A \subset Y$.
- (b) Ist X kompakt und ist $f: X \to Y$ bijektiv und stetig, so ist auch $f^{-1}: Y \to X$ stetig.

(bitte wenden)

Aufgabe 17 (4 Punkte)

Sei $U \subseteq \mathbb{R}^n$ eine nichtleere, offene Menge. Zeigen Sie, dass eine Folge $(K_j)_{j \ge 1}$ kompakter Mengen $K_j \subseteq \mathbb{R}^n$ existiert mit $K_j \subseteq \operatorname{Int}(K_{j+1})$ für alle $j \ge 1$ und

$$U = \bigcup_{j=1}^{\infty} K_j.$$

(Hinweis: Benutzen Sie Mengen der Form $\{x \in \mathbb{R}^n; d(x, U^c) \geq \frac{1}{i}\}.$)

Aufgabe 18* (1*+1*+2*=4* Punkte)

Sei (X,d) ein metrischer Raum und sei $\emptyset \neq Y \subset X$ versehen mit der Relativmetrik d_Y (Beispiel 1.3 aus der Vorlesung). Zeigen Sie:

- (a) Eine Teilmenge $U \subset Y$ ist genau dann offen in (Y, d_Y) , wenn eine in (X, d) offene Teilmenge V existiert mit $U = V \cap Y$.
- (b) Eine Teilmenge $A \subset Y$ ist genau dann abgeschlossen in (Y, d_Y) , wenn eine in (X, d) abgeschlossene Teilmenge B existiert mit $A = B \cap Y$.
- (c) Eine Teilmenge $K \subset Y$ ist genau dann kompakt in (Y, d_Y) , wenn sie kompakt in (X, d) ist.