UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Sebastian Langendörfer

Übungen zur Vorlesung Analysis II

Sommersemester 2019

Blatt 8 Abgabetermin: 5.06.2019, vor der Vorlesung

Aufgabe 32 (4 Punkte)

Seien $U \subset \mathbb{R}^n$ offen, $x_0 \in U$ und $f, g: U \to \mathbb{R}$ Funktionen. Zeigen Sie: Ist f stetig in x_0 und ist g total differenzierbar in x_0 mit $g(x_0) = 0$, so ist $fg: U \to \mathbb{R}$ total differenzierbar in x_0 mit

$$D(fg)(x_0) = f(x_0)Dg(x_0).$$

Sei $\alpha > 0$. Eine Funktion $f : \mathbb{R}^n \to \mathbb{R}$ heißt homogen vom Grad α , falls $f(\lambda x) = \lambda^{\alpha} f(x)$ für alle $x \in \mathbb{R}^n$ und alle $\lambda \in \mathbb{R}, \lambda \geq 0$ gilt.

Aufgabe 33 (3+2=5 Punkte)

- (a) Sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und sei $\alpha > 0$. Zeigen Sie, dass f genau dann homogen vom Grad α ist, wenn $\langle \operatorname{grad} f(x), x \rangle = \alpha f(x)$ für alle $x \in \mathbb{R}^n$ gilt. (Hinweis: Betrachten Sie für ein festes $x \in \mathbb{R}^n$ die Funktion $g_x: (0, \infty) \to \mathbb{R}$, $t \mapsto t^{-\alpha} f(tx)$.)
- (b) Sei $f: \mathbb{R}^n \to \mathbb{R}$ im Punkt 0 differenzierbar und homogen vom Grad 1. Zeigen Sie, dass f linear ist. (Hinweis: Zeigen Sie f = f'(0).)

Aufgabe 34 (3 Punkte)

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$ stetig partiell differenzierbar. Zeigen Sie: Ist U konvex und gilt

$$\sup\{\|J_f(x)\| ; x \in U\} < \infty,$$

so ist f gleichmäßig stetig auf U.

Aufgabe 35 (4 Punkte)

Bestimmen Sie die Taylor-Entwicklung der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = e^{xy}$$

im Punkt (0,0) bis einschließlich den Gliedern 2. Ordnung und geben Sie das Restglied 3. Ordnung explizit an.