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Complex numbers

Field of complex numbers

Complex numbers: C=R?={(ab);abcR}
Field with respect to the algebraic operations

(a,b) + (c,d) =(a+c,b+d), (a,b) - (c,d) = (ac — bd, ad + bc)
Real numbers become a subfield via: R =R x {0} C C
Introducing the complex notation i = (0, 1) one obtains the rules 2 = —1 and
° (a,b) = (a,0) +(0,b) = (a,0) + (0,1)(b,0) = a+ b,
@ (a+ib)(c+ id) = (ac — bd, ad + bc) = (ac — bd) + i(ad + bc),
]

1 _ a—ib a_ _ g b
atib = (atib)(a—b) ~ P+b2 @42

Definition

Forz = x + iy (x,y € R) we define
@ Rez=x, Imz=y
@ Z=x—1ly
o |z| = (x2 +y?)/2




Complex numbers

Absolute value in C

Lemma

For z,w € C, we have:
0 2z=2P, |z = 2|, |zw| = |z|lw|, (@) =z,

ez+tw=z+w, zw=2z-w, (1/z2)=1/Zforz#0,
z—Z

z+z
@ Rez = #£2, Imz:T,

2

° )|z| — |w|‘ <|z+w| < |z|+ |w| (triangle inequality).

Idea Triangle inequality:

|z+w]? = (z+w)(Z+W) = |z* +|w|? +2Re(2W) < |2? +|w[? +2|2W| = (|2 +|w])>.

Lemma (Absolute value as a norm)

Forz,w € C, we have:
@ |z] >0,
@ |zl =0ifandonlyifz =0,
o ||zl — |w| < |z+w| < |z + |wl.




Complex numbers

Polar coordinates and arguments

Theorem (Polar coordinates)

Forz € C* = C\ {0}, there are real numbersr > 0, p € R with
z = r(cos ¢ + isinp).

In this case r = |z|

Idea Setx =Rez,y =1Imz. Because of
Xl Iyl <1zl #0
and the intermediate value theorem there is a ¢ € [0, 7] with x = |z|cos 1. Show that

z=r(cosp+isinp) withp=1vyorp=—v¢

Corollary (Arguments)

Forz € C* and 0y € R, there is a unige 6 € [0y, 0o + 2w [ with

z = |z|(cos 0 + isinB).

Idea The existence follows from the preceding theorem and 2x-periodicity of
cos, sin, uniqueness from the functional equations for cos, sin.



Complex numbers

Arguments and Euler’s formula

Definition
(a) Forz € C* and 6y € R, the unique number 0 € [0y, 0o + 2| with
Z = |z|(cos 0 + isinh)
is called the argument of z relative to 6 (written: argy, (2)).

(b) For o € R, we define €'¢ = cos ¢ + isin .

Using the defintion of the product in C and the functional equations for cos, sin one
obtains:

For ¢, € R, we have

elletd) — giv gty




Complex numbers

Convergence in C

Let (zn)n>0 be a sequence in C and let z € C.

Definition

@ (Zn)n>0 converges to Z (written: liMp— 00 Zn = 2)
1< Ve > 03ng € Nsuch that |z, — 2| < eVn > my
@ (Zn)n>0 is a Cauchy sequence

& Ve > 0 3ng € Nsuch that |zp — Zm| < €Vn,m > ng

Using the estimates
max(|Rezp —Re z|,|[Imzp — Im z|) < |zp — z| < |[Rezp — Re z| + |Im zp — Im Z|

one obtains:

Q@ liMpso0Zn =2 & limpooRezp =Rez andlimp—y oo Imz, = Im Z,

@ (zn)n>0 is a Cauchy sequence in C < (Re Zn)p>0 and (Im zp) >0 are Cauchy
sequences in R.




Complex numbers

Sequences and series

Using the previous theorem and the completeness of R one obtains:
Each Cauchy sequence in C converges (In short: C is complete).
Exactly as in R one proves:

Theorem (Limit theorems)

Suppose that limp—s o0 Zn = z and limp_,oc Wy = w in C. Then
0 limpsoo(zn+wn) =z+w, liMpsoo(2awn) = zw
o Ifw # 0 then there is an ny € N with wp # 0Vn > ng. In this case

N

(ﬁ) noz
wy "= T W

Since C is complete, the Cauchy criterion for series remains true:

oo q
>~ cnconverges in C < Ve > 03ng € Nwith | Y cn| < evg > p > np.
n=0 n=p

With exactly the same proof as in R one concludes that

@ Each absolutely convergent series in C converges
@ The comparison test and the ratio test remain true for series in C.




Complex numbers

C as a metric space

C = R? is a metric space relative to the Euclidean metric:
d:CxC—R, dz,w)=|z—w|
Open and closed d-balls of radius r € [0, co]:

Di(a)={z€C;|z—al<r}, Dia)y={z€C;lz—al<r}.

Definition

LetA,U C C.
@ Uisopen< Va e Ude > 0 with De(a) C U
@ Aisclosed< C\ Ais open
@ A C Cis compactifV(U;)ic) open cover of A iy, ..., Ir € | with

AC U,'1U...UU,',.




Complex numbers

Closure, interior, boundary

Definition
@ A={z€C;Ve>0: D(z)NA#0D}
o Int(A) = {z € C;3e > 0 mit D.(z) C A}
0 OA={z€C;Ve>0: D(2)NA# D # Dc(z) NA°}

Lemma

@ UcCisopen < U=Int(U)

@ ACCisclosed= A=A

Int(A) = U(U C C open; U C A) = An (0A)¢ C C is open

A=\(F CCclosed F > A) = {z € C; 3 sequence A > z, > z} is closed
9A = A\ Int(A) C C is closed

A C C is compact < A is closed and bounded < V sequence (Zn)p>o in A

3 convergent subsequence (zp, ) KzeA.




Complex numbers

Paths in C

Let M C C. A path in M is a continuous map
v:[la,b] - C (abeRmita<b)
with v([a, b]) C M. A path ~ : [a, b] — C is closed if v(a) = v(b).

@ Line connecting z,w € C:  ~:[0,1] = C,~(t) = z+ t(w — 2)
@ Positively oriented circle:  ~: [0,27] — C, ~(t) = a+ re'

@ Given paths v; : [a;, bj] — C (j = 1,2) with 1 (by) = ~2(a2) define
Y1 A2 : [ay, by + (b2 — a2)] — C as the composed path

B (t), telar,b]
71 A2(t) = { o (t + (331— b)), te [1;1,1;1 + (b2 — a)]

@ Forzy,...,zr € C: [z9,z1] AN [z1,22] A ... AN[2Z—1,2] (poOlygon)
@ Forapath~ : [a,b] — C, we define the reversed path

—v:[ab] = C, ()(t) =~(a+b-1)




Complex numbers

Connected sets

For M C C,aset V C Mis called open in M if 3U C C open with V = MnN U.

Definition

@ M C Cis path connected :< Vz, w € M3 path vy in M from z to w.

@ M C Cis connected : <> there are no disjoint non-empty open sets V4, Vo in M with
M=V;U V..

Can show: each path connected set in C is connected, but not vice versa!

For an open set G C C, the following are equivalent:
(i) G is connected
(il) G is path connected
(iii) Any two points z, w € G can be joined in G by a polygon.

Idea for (i) = (iii). Fix a € G. Show that

U = {z € G; z, acan be joined by a polygon in G} and G\ U are both open in G.



Continuous and differentiable functions

Continuous functions

Let f : D — C be a function on D C C arbitrary. For a € D, ¢ € C, define
lim f(z) = c:< lim f(zx) = c whenever D 5 z X a
z—a k— o0

Wecall f: D — Ccontinuousatae D < limz_,4f(z) = f(a).

Lemma (Analysis II)
@ f: D — C continuous ata € D < Ve > 036 > 0 with f(Ds(a) N D) C Dc(f(a))

—1
@ f is continuous on allof D < f (V) is openin DVV C C open

A

Lemma (Analysis II)

Iff,g: D — C are continuous ata € D and )\ € C, then
e f+g,f-g, \f are continuous at a
° é :{z € D;g(z) # 0} — C is continuous at a ifg(a) # 0

@ Compositions of continuous functions are continuous.

N




Continuous and differentiable functions

Complex differentiable functions

A function f : U — C (U C C open) is complex differentiable at a € U

fla+h) —f(a) _

C.
h

3 f(a):=1li
(@) PRl

Iff,g : U — C are complex differentiable at a € U then:

@ f s continuous at a.
e f+ g, f- g are complex differentiable at a and

(f+9)(a)=1"(a) +d'(a), (fg)'(a) = f'(a)g(a) + f(a)g'(a).

Ifg(a) # 0, then é is complex differentiable at a and

v Pa)aa) - f&)d (@)
(g)@= o '

e Ifh: V — C complex differentiable at f(a), soisho f: U — C ata and

(ho f)(a) = N (f(a))f'(a)-




Continuous and differentiable functions

Examples - Nothing new or?

ef=c = f(z)=0VzeC
o f(z2)=z = F(2) = limp_o EN=E 1 vzeC
e f(z) =2z"(neN) = f(2)=nz"""VvzeC

f(2)=2"(n€Zso) = f(2)=nz"""VvzecC*

@ p(z)=anz"+...+ta1z+a = p(2)=nanz"'+...+2az+a VzeC

@ Rational functions g (p, g polynomials) are complex differentiable on {q(z) # 0}

v

Counterexample: f(z) = Z as a function on R?
f: RZ — R27 f(X,y) = (X7 _y)

is C* in the real sense, but nowhere complex differentiable

f(z+h)ff(z)_z+h72_ﬁ_{ 1, heR
—1=

h - h -1, heiR



Continuous and differentiable functions

Cauchy-Riemann equations

Complex differentiability is much stronger than real differentiability! Precisely:

For a function (x, y) — (u(x, y), v(x, y)) € IR? of two real variables, define

ou ou
Ux = —, Uy = — (same for v).
ox ay

Theorem (Cauchy-Riemann)

LetU Cc Cbeopen, f=u+iv:U — C afunction, zy = Xy + iyp € U.
Equivalent are:

@ f is complex differentiable at z;.
o f = (u,v) is totally differentiable in the real sense at (xg, o) and

ux(Xo0, ¥o) = vy(X0, ¥0), Uy(Xo, ¥o) = —Vx(Xo, Yo) (Cauchy-Riemann eq’s).

In this case:

(20) = (X0, Yo) + ivx(%0, 30)s  det(Jyu,v) (30, 0) ) = I7'(20) 2.




Continuous and differentiable functions

How to check complex differentiability?

@ f = u+ iv complex differentiable at zy = u, v partially differentiable with

() ux(20) = vy(20), uy(20) = —vx(20)

@ Iff =u+ivis C' near zy with (x) = f is complex differentiable at zg

R

o f(z) = |z| = /X? + y?) is nowhere complex differentiable, since vx = v, = 0, but

ux(x,y) = 27&0()(7&0)7”}’()(7}/):

X
T 5 #0(y #0).

__y
(x2 + y2)1/

andlimp_,o =" _ jim, o 1 does not exist.
—0 h —0

o f(x + iy) = |xy|'/? is partially differentiable at (0,0) with

UX(Ovo):OZ v}’(070)7 UY(O7O):0:7VX(070)7

not complex differentiable: limp_.q % = limp_so %Jr, % does not exist.




Continuous and differentiable functions

If f and f are holomorphic, then . ..

@ Aset G C Cis called a domain if G C C is open and connected.

@ A function f: U — C (U C C open) is called holomorphic if it is complex differentiable
at every point z € U.

Theorem

| \

Letf: G — C be holomorphic on a domain G C C. Then f is constant under each of
the following conditions:

e f=0,

@ Ref = const,

@ Im f = const,

@ f (= Ref — ilmf) is holomorphic,
@ |f| is holomorphic.

A\

idea: Under any of the first three conditions ux = uy = vx = vy = 0.



Continuous and differentiable functions

Which functions are real parts of holomorphic functions?

Recall that a C2-function u : U — C is said to be harmonic if
Au(=uxx +Uy)=00nU.

Real and imaginary parts of holomorphic functions are harmonic. Precisely:

@ f: U — C holomorphic = u = Ref,v = Imf are harmonic on U

@ u: Dr(c) — R harmonic = 3 (unique up to real constants) v : Dr(c) — R such
that f = u + iv is holomorphic on D;(c).

Idea: If f = u + iv is holomorphic, then we shall see later that u, v are C*°.
= (CRDE’s and Schwarz lemma) uxx + Uyy = (vy)x — (vx)y = 0.

In the second part the unique solution with v(0) = 0 is

v(x,y) = (/01 —uy(tx, ty)dt)x + (/01 ux(tx, ty)dt)y.



Power series

Sequences and series of functions

Let (an)n>0 be a sequence in C.

Aim:  Study functions given by a power series f(z) = -2, an(z — a)".

Definition

Letfy: D — C (n € N), f : D — C be functions. Then (fn)s>q converges to f on D
@ uniformly :& Vedny € N with |fp(2) — f(2)| < eVn > npVz € D

@ uniformly on compact subsets:< VK C D cpet (fn)n>0 converges to f uniformly on K

Continuity is preserved under uniform convergence on compact subsets.

Definition

Let f : D — C (n € N) be functions and sy = LO fn (N € N). Define
@ > 20 fn = (SN)N>0

@ >, fn converges pointwise, uniformly (on compact subsets) if (Sy)n>0o does




Power series

Power series

How to test uniform convergence?

Theorem (W-M Test)

Letf, : D — C (n € N) be functions, ¢, € R with
o |fa(z)] < cpVneNandvVze D
® > g Cn <0

Then y_°  fa converges uniformly on D.

Theorem (Power series)

Let (an)n>0 be a sequence inC, ac C and r > 0.
@ (anr")n>o bounded = Y 7°, an(z — a)" converges absolutely ¥z € Dr(a).
@ R =sup{p > 0; (anp™)n>0 bounded} (€ [0,c]) = > 72, an(z — a)" converges
uniformly on all compact subsets of Dg(a) and diverges Vz ¢ Dpg(a)

A\




Power series

Radius of convergence

Definition

The unique number R € [0, co] with the property

oo
Z an(z — a)" converges Vz € Dg(a) and diverges Vz ¢ Dg(a)
n=0

is called the radius of convergence of the power series > an(z — a)".

How can one calculate the radius of convergence?

Theorem (Cauchy-Hadamard)

The radius of convergence of the power series >, an(z — a)" is given by

R =1/lmnseolan|'/"  (¢/0 =00 andc/oco =0 forc > 0).

v

@a,=n" = R=1/m|n""/"=0
@a,=nf = R=1/me|n'/" =1
@a,=n" = R=1/M|n""/"=c




Power series

Analytic functions

Functions f(z) = >-72 an(z — a)" representable by a power series are called analytic.
Analytic functions are complex differentiable, even much better:

Theorem (Termwise differentiation)
Iff(z) = >_72 an(z — a)" has positive radius of convergence R €]0, o], then
o f: Dg(a) — C is complex differentiable with

#(2) = S (04 1ans(z— )" Vz € Da(a)
n=0

@ the differentiated power series has radius of convergence R.

Iff(z) = 3720 an(z — a)" has positive radius of convergence R €]0, ], then
f : Dg(a) — C is infinitely often complex differentiable with

o fK(z) =322, n(n—1)---(n—k +1)an(z — a)"k vz € Dg(a)

(k)
o a= @ yken.




Elementary functions

Exponential and trigonometric functions

The complex exponential function, cosine and sine are defined by exp, cos, sin : C — C,

> n €2 n 2n n Z2n+1
exp(z):zﬁ, cosz=> (1) (2n)l’ smz_Z( i
n=0 n=0

v
Theorem

(i) exp,cos,sin are holomorphic on C with exp’ = exp, cos’ = — sin, sin’ = cos.
exp(iz)+exp(—iz) exp(iz) —exp(—iz)
2 ’ 2] ’

(i) cosz = sinz =
(zeC).

(i) exp(0) =1, exp(i5) =1, exp(ir)=—1, exp(igﬂ-) = —i, exp(2ri) = 1.

exp(iz) = cosz +isinz

Notation: For z € C we also write e := exp(z). The unit circle is given by

T:={zeC;lz| =1} ={e'; te R} = {e"; t € [0y, 00 + 2x[} (6 € R).



Elementary functions

Properties of exp, cos, sin

Theorem (Functional equations)

Forz,w e C,neN,
0 &fe% = &7tV efe? = 0 =1
@ sin(z+ w) =sinzcosw + cos zsinw, cos(z+ w) = cos zcos w — sinzsin w
@ (cosz + isinz)" = cos(nz) + isin(nz)
@ sin?z+cos?z = 1.

N,

Theorem (Typical values)

Forz € C,
0 &7 =eRe?, g7 =7
e =1 & ze2rniZ (={2rik;k € Z})
@sinz=0 & zenZ
0cosz=0 & z€ 5 +7Z




Elementary functions

Branches of the logarithm

Forz € C*, 0 € Rand u € C, we have e = z < uis of the form

u = log |z| + i(argy, (2) + 27k) (K € Z).

Definition

Let G C C be a domain. A branch of the logarithm (Zweig) on G is a continuous function
f: G — C with
exp(f(z)) =z forallz € G.

Each branch of the logarithm f : G — C is holomorphic and satisfies Vz € G

fz+h—-f2) _ ( e/z+h) — ¢f2) )—1 _ 1 1
h ) e

o
Fi(z) = jim, o \fz 1 h) —f(z @ -z



Elementary functions

Standard complex logarithms

For 6 € R define

Co={zeC*; argy(z) €10,0 +2x[} =C\ {re"’; r e [0,0)} (0 € R).

Theorem (k-th branch of the logarithm on Cy)

For0 e Randk € Z
logy  : Cg — C, 2+ log|z| + i(argy + 27k)

is holomorphic such thatVz € Cy
° eIOQO,k(Z) =z

o & (logy,(2)) =1
The mapping logy  : Co — R X |0 + 27k, 0 + 2m(k + 1)[ is bijective.

Definition

| A\

The principal branch of the logarithm (Hauptzweig) is defined as

log=1l0g_,o:Cr=C\(-00,0] = C, z+log|z|+ iarg_,(2)




Elementary functions

Powers and roots

As in the real case exp and log can be used to define powers of complex numbers with
complex exponents.

Theorem

Givend e R,k € Z and o € C,

Cy — C, z > 20K = exp (a Ioge,k(z)) = |z|*el(ago(2)+27k)

defines a holomorphic function such that for o, 8 € C und z € Cy,
0 Z(@0.k) 7(8,0.k) — F(atB,0,k)

o ‘f—z(z("‘ﬁ’k)) — az(a=1.0k),

N

Definition (Principal branch of the complex powers)

Forze€ C_, =C\ (—o0,0] and o € C, we simply write

20 = plo=m0) _ galoglzltim n(2) — |70 giowr (2).




Elementary functions

n'h roots

Lemma (n-th roots)

Forw € C* and n € N*, the equation

has exactly n distinct solutions. If w € Cgy, then the n solutions are given by

zk—w(n’ K (k=0,...,n—1).

For w = 1 one obtains the n-th roots of unity (Einheitswurzeln):

The n distinct solutions of the equation z" = 1 are given by

zx=¢€"n  (k=0,...,n—1)




Contour integrals

C-valued Riemann integrals

A function f : [a, b] — C is called
@ Riemann integrable if Re f and Im f are Riemann integrable. In this case

b b b

/fdt::/ RefdtJri/ Im fdt.

a a a
pause

@ continuously differentiable if Re f and Im f are.

@ piecewise continuously differentiable :«< J partitiona=t) <ty <...<th=b
such that f|;_, 4 is continuously differentiable Vi = 1,..., n.

Let | = [a, b] be a compact interval and f : | — C a function.
o RI(/,C) — C, f v [ fdt is C-linear
S fat] < [2 |flat

e f and |f| Riemann integrable =

o f continuously differentiable = [, ab f'dt = f(b) — f(a).




Contour integrals

Contour integrals

@ A contour (Integrationsweg) in M is a piecewise continuously differentiable function
v : [a, b] — C with y([a, b]) C M. We call ~y closed if y(&) = v(b).

@ If y is a contour with ., ) continuously differentiable Vi, we set

b n o
f(z)dz = fo~(t)~(t)dt = fo~(t)~'(t)dt.
A(z)z / () () ;/t V() (1)

i

The definition does not depend on the choice of the partitona=1t < ... < t, = b.
The set Sp(v) = v([a, b]) is called the trace (Spur) of ~.

Let~,~1,v2 be contours in M C C and letf,g : M — C be continuous. Then:
o [(af +Bg)dz=qa [ fdz+ B [ gdz
@ endpoint of vy = starting point of v, =

AT fdz = fm fdz + fve fdz




Contour integrals

Parameter transformations

Using the chain rule one obtains:

Let~ : [a, b] — C be a contour, f : Sp(v) — C continuous.
o [ fdz=— [ fdz

@ ¢ :[c,d] — [a,b] C'-function with ¢’ (t) > 0 for t € [c,d] and (c) = a, p(d) = b
=4 =+vo0¢:|[cd] — Cis a contour with

/fdz:/fdz.
o 0l

| A\

Definition

The length of a contour v : [a, b] — C is defined as

b
L(w):/ |~/(t)|dt Z/ (D)t if g, 4 are C‘w)
a

The length of contours is preserved when replacing v by —~ or by v o ¢ with a
C'-invertible parameter transformation ¢ with ¢’ > 0.



Contour integrals

Fundamental estimate for contours

If f: D — Cis a function, then for M C D, we define

Il = sup )| (& [0,001).

Theorem (Fundamental estimate)

Ifv : [a,b] — C is a contour and f : Sp(~y) — C is continuous, then

‘/ de‘ < L) 1 fllsper)-
.

As a consequence one can exchange limits and path integrals provided the integrands
converge uniformly.

Let~ : [a, b] — C be a contour and fn, f : Sp() — C continuous functions such that
(fa)n>0 converges uniformly on Sp(~) to f. Then

lim /fndz:/fdz.
n—oo ~ ~




Contour integrals

Fundamental theorem for contour integrals

We write [5p () fdz = [ fdzwith 7(t) = a+ re't (t € [0, 2x]).

Forae C,r >0andallne Z

27 . . o )
/ (Z _ a)ndz — / (relt)nn-e/tdt — / I-rn+1 el(n+1)tdt
dDr(a) 0 0

_ 0, n#-1
- 2mwi, n=—1

A\

Theorem (Fundamental theorem for contour integrals)

Iff: U— C (U C C open) is continuous and F : U — C holomorphic with F' = f, then

/ fdz = F(v(b)) — F(~(a)) VY contours~ : [a,b] — U.




Contour integrals

Existence of primitives

Let f : U — C (U C C open) be continuous. A function F : U — C is called a primitive
(Stammfunktion) for f if F is holomorphic with F/ = f.

”
Examples

@ If f: U — C has a primitive and + is a closed contour in U, then f7 fdz = 0.

© In particular: [5 ,(z — a)"dz =0 forall n € Z with n 7 —1.

° faD,(a) ﬁdz =2mi#0 = ﬁ has no primitive on C \ {a}.

A

Theorem (6.5)

Let G C C be a domain and f : G — C continuous. Then equivalent are:
(i) f has a primitive on G.
(ii) fw fdz = 0 for each closed contour ~ in G.

N,

Idea for (ii) = (i): For fixed a € G define a primitive of f by

F(z) = / f(€)d¢, if ~ is a contour in G with A(y) = a, E(y) = z,
~



Contour integrals

Goursat’'s lemma

Theorem (6.6)
If G C C is open and convex, then (i) and (ii) are equivalent to
(iii) [5 fdz = 0 for each triangle 5 = [a, b] A [b, c] A [c, &] in G.

For a, b, c € C we denote the smallest convex set A > a, b, ¢ (closed triangle) by
A =A(ab,c)={tha+ bbb+ tc, 0<ty,b,tz <1undty +tb+t3=1} CC

and write [, fdz = f[a,b]A[b,c]A[c,a] fdz.

Theorem (Goursat’s lemma)

Letf: U— C (U C C open) be holomorphic, A = A(a, b, c) C U a closed triangle

= fdz = 0.
oA

Idea: Subdivide A by connecting the midpoints of the edges

4
fdz| = / fdz| < 4 max ‘/ fdz
|/6A | l; aal | 1<i<4l Joni }
=l



Contour integrals

Goursat’'s lemma

and continue like this forever:

A \ N

a B b

One obtains the estimates (with {zo} = (1,51 An)

(e 1)+ (2= 2 ()it / | (e 202z
=0
<4 (%)" LOAY s |2 -5 0

2€Dgiam(ap)(20)

Man benutzt dabei, dass ~ diam(An) < L(9AR) = (%)nL(BA).



Contour integrals

Cauchy’s integral theorem and formula

Corollary (Cauchy’s integral thm for convex domains)
Let G C C be a convex domain and let f : G — C be holomorphic

= / fdz=0 for each closed contour -y in G.
Y

A

Corollary (Cauchy’s integral thm for circles)

Letf: U — C (U C C open) be holomorphic and let D;(a) C U be a closed disc.

= fdz = 0.
9Dr(a)

N

Theorem (Cauchy’s integral formula for circles)

Letf: U — C (U c C open) be holomorphic (+ f' continuous) and let Dr(a) C U

_ 1 f(€)
= f(z)= o /ao,(a) g_—zdg for all z € Dr(a).

\




Contour integrals

Taylor’s formula

Theorem (6.13)

Letf: U — C (U C C open) be holomorphic (+ f' continuous) and let Dr(a) C U.
Then f is infinitely often complex differentiable and

° f(2) = T, @ (z— )" forall z € D(a),
o f(M(a) =

2 Jo,(a) = a)n+1 d§ for0 <r < RandneN.

A\

Corollary (6.14)

f: U— C (U C C open) holomorphic = f infinitely often complex differentiable.
In particular f" is automatically continuous.

Proof. May suppose that U is convex.
= (Goursat) fdz =0V closed triangles A C U
oA

Thus f has a primitive F. But then F and f = F’ are infinitely often complex
differentiable.



Contour integrals

CIF for derivatives and Taylor expansion

Theorem (Cauchy’s integral formula for derivatives)

Letf: U — C (U C C open) be holomorphic and D;(a) c U

)y M f(§)
= w=55 /@ma) (& = w)ntt 5 TR=E SR

Corollary (6.16)

Letf: U — C (U C C open) be holomorphic and leta € U.
Then f admits a representation as a power series

f(z) = i an(z —a)" vz e Di(a)
n=0

on each disc Dr(a) C U with uniquely determined coefficients

(N (a)

an = VneN.




Contour integrals

Theorems of Morera and Weierstral3

Theorem (Morera’s theorem)
Let U C C open andlet f: U — C be continuous with
fdz =0 for each closed triangle A C U.
aA

Then f is holomorphic.

Idea: Theorem 6.6 = f has a primitive F on each disc D;(a) C U

= f = F’isinfinitely often complex differentiable

Theorem (Weierstraf3’ theorem)

If (fn) Dot uniformly on all compact subsets of U C C open and all f, are holomorphic,
then f is holomorphic and Yk € N

(Y 25 K uniformly on all compact subsets of U.

Morera’s theorem =- f holomorphic. The rest follows with CIF for the derivatives.



Applications

Liouville

Wir schreiben:  O(U) = {f; f: U — Cist holomorph}.
Die Funktionen f € O(C) heiBBen ganze Funktionen.

Theorem (Satz von Liouville)

Jede beschrénkte ganze Funktion f € O(C) ist konstant.

Idee: Sei M = ||f||c. Dann gilt fir alle r > 0und n > 1

‘f(n)(O)’:‘i/ (&) d ‘<M m M (=)
n 2mi Jop,(0) €™ on i m

Also ist f(z) = 320, 1200 n = (o).

n=0 " n!

Theorem (Cauchysche Ungleichungen)
Sei f € O(Dg(a)). Dann gilt fir0 < r < R

n!
1f")(a)| < r7||f||aD,(a) (neN).

Folgerung: f € O(C) mit |f(z)| < ¢|z|N fur|z| > R = f Polynom mit deg f < N.



Applications

Vielfachheit von Nullstellen

Seif € O(U), a € U und f in keiner Umgebung von a identisch 0 = 3IN € N mit

Jg € O(U) mitg(a) # 0 und f(z) = (z — a)Ng(z) Vz e U.

Man nennt
@ N die Vielfachheit der Nullstelle a von f
@ aNullstelle unendlicher Vielfachheit, wenn (") (a) = 0¥n € N.

Theorem (Fundamentalsatz der Algebra)

Seip(z) = anz" + ap_12"' 4+ ...+ ay € C[z] mitn > 1 und a, # 0. Dann hat
@ p mindestens eine Nullstelle in C und ist von der Form
@ p(z) = an[[[L4(z — c;) mit geeigneten cy, ..., cy € C.

Idee: Hatte p keine Nullstelle in C, so wére 1/p wegen

lim |p(z)] = oo
|z] =00

eine beschrankte ganze Funktion und daher 1/p = 0.



Applications

Riemannscher Hebbarkeitssatz und Identitdtssatz

Theorem (Riemannscher Hebbarkeitssatz)

Istf € O(U\ {a}) (a € U C C offen) beschrénkt auf D;(a) \ {a} C U fireinr > 0,
dann

3ge€OW) mitf= g|U\{a}~

ldee: Zeige, dass

F.UC, F(z):{ (g—a)zf(Z), 2#3

holomorph ist mit F(a) = F’(a) =0 = (7.5) F € (z — a)?0O(U).

Theorem (Identitétssatz)

Sei G C C ein Gebiet, A C G nicht diskret (d.h. A besitze einen Haufungspkt in G).
Dann gilt
f,ge O(G)mitf =gaufA = f=g aufganzG.

Beispiel: Sind f,g € O(D1(0)) mit f(1/n) = g(1/n) fur fast alle n, soist f = g.



Applications

Maximumprinzip

Theorem (Maximumprinzip)
Sei G C C ein Gebiet und f € O(G), g € C(G) mitg|g € O(G).
@ Hat |f| in einem a € G ein lokales Maximum, so ist f = const.
@ Ist G beschrénkt und g|g nicht konstant, so gilt |9(z)| < ||9llagVZ € G.

Idee: Sei|f| < |f(a)lauf Dr(a) CG = YO<r<R

2w
fa——/ d¢| = af—/ f(a+ re')dt
CRE =1 B ] = | [ farret)

|ff/ fa+ rehjat = / @)~ i@+ "] dt > 0

>0 stetlg int

C/F

= |f| = |f(a)| auf Dr(a) =X’ f = f(a) auf Dp(a)

= (ldentitatssatz) f = f(a) auf G



Applications

Minimumprinzip und Gebietstreue

Theorem (Minimumprinzip = 7.13)

Sei G C C ein Gebietund f € O(G), g € C(G) mitg|g € O(G).
@ Hat |f| in einem a € G ein lokales Minimum, so ist f(a) = 0 oder f = const.
@ st G beschrénkt und g|g nicht konstant, so hat g eine Nullstelle in G oder

l9(2)| > min{|g(w)|; w € 0G}V z € G.

N

Theorem (Satz von der Gebietstreue = 7.14)
Sei G C C ein Gebiet und f € O(G) nicht konstant = f(G) ist ein Gebiet und

f ist offen, d.h. f(U) C C ist offen YU C G offen.




Global Cauchy thm

Connected components

Let U C C be open. An equivalence relation on U is defined by
z~w & thereis apath v fromzto win U.

The equivalence classes are called path components of U or simply components of U.

Lemma (8.2)

LetU C Cbeopenandz e U.

(a) The equivalence class C(z) of z in U is open and connected.

(b) U is the disjoint union of its components.

(c) M C U connected or path connected with M N C(z) #0 = M C C(2).

\

Examples (8.3)

K C C compact =- 3! unbounded component C, in C \ K. We have

{z€C; |z]| > sup |w|} C Co.
weK

A\




Global Cauchy thm
A Cauchy-type integral

Lemma (8.4)
Let~ be a contour in C, ¢, : Sp(v) — C continuous and U = C \ ¢(Sp(v). Then

f: U—C, f(z):/ m;g_)zdg
Yy

is holomorphic with lim ;| _, o f(z) = 0. Forallz € U and n € N,

")(2) 7nl/md§

Idee: Forz e Dr(a) C U=C\ ¢(Sp(v) , the series

e(§) -z @ -l - 5% = a)”*‘

converges uniformly for & € Sp(~) by the WM-test. Hence

fz)=>" (/ %dg} (z—a)".

n=0 v

¢(§) _ '¢'(§) Z ( _ a)n



Global Cauchy thm

Winding number

Theorem (8.5)
Let~ be a closed contour in C. Then

ind,(2) := ZL / L
i )y §E—2Z

is constant on each component and vanishes on the unbounded component.

Idee:  Show that exp (f —) =1forallz € C\ Sp(y).

Definition (8.6)

The winding number (Umlaufzahl) or index of  relative to Z is defined as the integer

1
dy(2) = —
ind (z) 2

Examples (8.7)

For~:[0,2n] — C,y(t) = a+ reé™ (ac C,m € Z),

m, Zeg& Dr(a),

indy (2) = { 0, z¢Dia).




Global Cauchy thm

Integrals along cycles

A cycle (Zyklus) in M C Cis atuple ' = (v, ...,~n) of closed contours in M.
Forcycles T = (v1,...,vn) and A = (81, ...,dm) in C, we define

@ Sp(I) = Sp(v1) V... USp(7n)
°_r:(_717---»_7n)
or+A:(717"'7’)/”7617"'75”’)

o [rfdz=371, [ fdziff:Sp(I) — Cis continuous

® indr(2) = 5 J; 255 = Syindy,(2)  (z2€C\Sp(N)

Definition

Let I be a cycle or a single contour in C. We define the interior of I as the set

Int(F) = {z € C\ Sp(T); indr(z) # 0}.

Since indr(-) : C\ Sp(I') — Cis continuous, Int(I") C C is open.
We identify a single contour ~ with the cycle I' = (7).



Global Cauchy thm

Global Cauchy theorem

Letl = (v1,...,vn) be acyclein C. Then
@ Int(lN) C {z € C; |z| < sup,egyry W]} and Int(I") U Sp(I") is compact
@ indr(+) is constant on each component of C \ Sp(I') and 0 on Cwo.

Theorem (The global Cauchy theorem = 8.10)

Letf € O(U) (U C C open). LetT be a cycle in U withInt(I') C U. Then
a) [ fdz=0,

(b) indr(2) £(2) = 5 fr e 1) d§ vz e U\ Sp(r),

¢) indr(z) 0 27” fr = zK+1 d¢ Vze U\Sp(r)andk € N.
(d) IfTy and T, are cycles in U with
indr, (2) = indr,(2) VzeC\ U,

then

fdz = fdz.
I P




Global Cauchy thm

Global Cauchy thm: An application

Examples (8.11)

Let U = Dy(a) N Ds(a)° for0 < s < t < oo and f € O(U).
For § < r < t, define yr : [0,27] — C,t > a+ rell. Thenfors < r < rp, < t

ind, (2) = ind,, (2) forallz € C\ U

and
ind(y, -, )(z) = indy,, (2) —indy, (2) =1 forallry <|z| < ro.
—— ——
=1 =0
Therefore:

Q fw fdz does not depend on r € (s, t)
Q (2) = 5 (fW -/, HOT )for allry < |z| < rp

© The integrals in (2) define analytic functions fy € O(Dy(a)), f-o € O(Ds(a)°) with

f=1fy— feoonU.




Global Cauchy thm

Simply connected domains

Definition (8.12)
@ A domain G C C is simply connected if Int(y) C GV closed contours v in G.
@ A holomorphic logarithm of f € O(U) is a function g € O(U) with e9 = f.

A\

Theorem (8.13)
Let G C C be a domain. Equivalent are:
(i) G is simply connected.
(ii) f7 fdz = 0V closed contours v in G and f € O(G).
(i) Each function f € O(G) has a primitive.
(iv) Each function f € O(G) with 0 ¢ f(G) has a holomorphic logarithm.

\

Some ideas: (i) = (ii) < (iii). Global Cauchy thm and Theorem 6.5.
(iii) = (iv). Aufgabe 20
(iv) = (i). f1/(z—a)=¢€9,then1/(z—a)=—-(1/z—a)'/1/(z—a) = —¢'.



Global Cauchy thm

Criteria for simple connectedness

Theorem (8.14)

Let G C C be a domain.
@ G not simply connected = 3 () # A; compact and A, closed with

C\G=A1UA2, Ay N A =0.

@ C\ G unbounded and connected = G is simply connected.

A\

Examples (8.15)

@ Convex domains are simply connected by Cauchy’s integral theorem for convex domains.
@ C_, =C\ (—o0,0] is simply connected by Theorem 8.14 (but not convex).

@ G={z€eC; |Imz| < 1} issimply connected (but C \ G is not connected).




Global Cauchy thm

Isolated singularities: Definition

Definition (9.1)

An isolated singularity for f € O(U) is a point @ € C \ U with D(a) C U for some r > 0.
An isolated singularity a for f is called

@ removable if 3 g € O(U U {a} with f = g|y,

@ pole if limz— 4 |f(2)] = oo,

@ essential if & is neither removable nor a pole.

Examples (9.2)

0 is an isolated singularity for the functions

sin Z

f(z) = e

(removable), g(z) = %(n € N*) (pole), h(z) = ¥ (essential).

If AC Uis discrete and f € O(U \ A), then A consists of isolated singularities for f.



Isolated singularities: Characterizations

Theorem (9.4)

Forfe O(U\ {a}) (a € U), exactly one of the following cases holds:
(i) ais removable for f,
(i) Im € N*, ¢y,...,cm € C with cm # 0 such that a is removable for

m Cx
U\{a} = C, z— f(2) — —_—
g (z— a)k

(iiiy Yw € C 3(2n)n>0 in U\ {a} with limp— o0 2n = a and limnp— o f(2n) = w.
f possesses a pole in a in case (ii) and an essential singularity in case (jii).

In case (ii) the numbers m € N* ¢y, ..., cm are uniquely determined.

Definition (9.6)

In the setting of case (ii) one calls
@ m the order of the pole a,
o Y1, (zfika)k the principal part (Hauptteil) of f in a,
@ res (f, a) = ¢y the residuum of f in a.

We say that f has a simple pole at aif m = 1.




Laurent separation

Lemma (9.7)

Letf € O(U\ {a}) (a € U). Then equivalent are:
@ f has a pole of order m in a,

e 3 g e O) with g(a) # 0 and f(z) = (zgj;;m forallz € U\ {a},

@ lim,_o(z — a)"f(z) € C* exists.

m—1
In this case: res (f,a) = gim_zgf). Ifm=1, then

res (f,a) = g(a) = ZIi_r)na(z — a)f(z).

We return to Example 8.11. Forae€ C,0 < s < t < oo, set

Ksi(a) ={z€C; s<|z—al < t}.

Theorem (Laurent separation = 9.8)
Letf € O(Ks,1(a)). Then3! fy € O(Dy(a)), fo € O(C \ Ds(a)) with

f=fo+ foo 0N Ks t(a), lim fo(z)=0.

|z| o0
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Beweis von Satz 9.8
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Laurent expansion

Expanding f; (Nebenteil) and f-, (Hauptteil) into series

= ian(z —-a)" (lz—a <t), fo(z)= f: a_n(z—a)™" (jz—al >s)
= n=1

one obtains:

Theorem (Laurent-Entwicklung = 9.9)

For f € O(Ks,t(a)) there are unique coefficients an (n € Z) with

[e’e]

f(z) = Z an(z — a)" for all z € Ks 4(a).

n=—oo

The coefficients an are given by

/ (g_f(i)nﬁ d¢ (nez,s<r<t).

aD,(a

The series Y2 an(z — a)" and >-2 1 a_n(z — a)~" converge uniformly on compact
subsets of Dy(a) and C \ Ds(a), respectively.




Theorem 9.9: Proof

D1/S(O) —C, z— fxu(a+ %) extends to Foo € O(D;5(0)) with Taylor series

oo
Fe(2)=>_a nz" (Riemansscher Hebbarkeitssatz)
n=1

1 > n
foo(z):FOO( _a):;a_n(zfa) for|z—a| > s
f(2) = i an(z—2a)"+ i an(z—a) "= > an(z—a)"
n=0 n=1 nez

If f(z) = 3",z bn(z — a)" for z € K ¢(a), then the radius of convergence of

ibn(z—a)” is >t (ib,nz” is 21/3).
n=0 n=1

Hence the series ., bn(z — a)" converges uniformly on cpct subsets of K ;(a) and

f .
/ ﬁdf =D bn / (z—a)""N'de = 2ri by.
aDy(a) N€Z  pp,(a)



Laurent series

Let f € O(Ks,t(a)) with 0 < s < t < oco. The series expansion

f(z)=>_an(z—a)"
nez
is called the Laurent series of f. We call
@ Y 2ian(z—a)"=>,°°, an(z — a)" the principal part of f
@ > 2, an(z — a)" the Nebenteil of
ores(f,a)=a 1 =5- [ F(€)dE(s<r < t)the residuum of f.

2ri

Dr(a)
Let f(z) = Z(JT)Z Then expanding f into its Laurent series yields
° ()= &(75) =1 TR 2" =1 (n+2)27 on Ko (0)
° f(2) = i ma=m = Tm—a(=1)"(2 = 1) on Ko (1).

A




How to recognize the singularity type from the Laurent series

Letf € O(U\ {a}) (a € U C C open) with Laurent expansion

f(z)=> an(z—a)" neara
nez
Then
@ aisremovable < ap=0Vn<0
@ aisapoleoforderm < a-m#0andap,=0Vn< —m
@ aisessential < ap # 0 for infinitely many n < 0.

Some ideas: If f extends to g € O(U), then
1 9(¢)

an = oni (€ — a)nt
oD(a)

If f(z) — S c_k(z — @)~ K extends to g € O(U), then

d¢=0vn<0.

—1

()= S alz—a)+ Zg @, g

k=—m

is the Laurent series of f at a. The third case follows by excluding the first two.



Residue theorem

Letf € O(U\ A) (A C U discrete). IfT is acyclein U\ A withInt(I') C U, then

o ,/fdzfaEZAmdr(a) res(f,a) (the sum is finite!).

I[dea: ThesetM = {a€ A; indr(a) # 0} C Int(I') U Sp(I) is finite, say
M= {ay,... a0}
Let gi(z) = >-p21 ain(z — a;)~" be the principal part of f in a;.
Thenf—(gy +...+ qgx) extendstog e O(V)on V= (U\ A)u{ay,...,ax} and

k

K
/f dz = / <Z q,-> dz = Z a,,,/ - = (2ni) indr(a;) res(f, ;).
T rooNi=t

i=1 n=1 i=1

First equality: CIS (8.10 (a)). Last equality: CIF for the derivatives (8.10 (c)).



Zeroes and poles

Let f € O(U) and let a be a zero point or a pole for f. Then the order of f at a is

da(f) n, if ais a zero of multiplicity n
or =
@ —n, if ais a pole of order n

=1
We write orda(f) = 0 if @ € U is no zero of f and define Ny = f ({0}).

| A\

Examples

Let f € O(U). If ais a zero of finite multiplicity or a pole for f, then

f! f!
7 has a simple pole at & with res( 7 a) = orda(f).

Indeed, if f(Z) = (z — a)"g(z) (n € Z*) with g(a) # 0, then on Dr(a) C U

f(z2) _n(z-a)""g(z) (z2-a)"¢(2) e
f(2) (z—a)"9(2) (z—a)g(2)  z-

- +0(D(a)).




Argument principle

Simple facts:  Let M, N C Cand f € O(U) be given.
@ aaccumulation pt. (Haufungspkt) of M
e Vr>0: D(@nM#£0 & IMn{a)°>2 =3 a
@ aaccumulation pt. of MU N :< M accumulation pt. of M or N

@ f not identically zero on any component of U 954tz N; C U discrete

Theorem (Argument principle = 10.3)

Letf € O(U\ A) (A C U discrete) such that Ny C U\ A is discrete and A consists of
poles for f.

IfT is acycle in U\ (AU Ny) withInt(I') C U, then

1 [f(2)
2ri ) f(2)
r

dz = Z indr(a) orda(f) (the sum is finite!).
acNsUA

If A= 0, then the formula holds without A for each f € O(U) with Ny C U discrete and
each cycle I'in U\ Ny with Int(I') C U.



Arguement principle: Proof

Idea: Apply the residue theorem to % € O(U\ (AUNy))
Assume that there is an accumulation point a of AU Ny in U.
Then ais an accumulation point of Ny in U\ (U \ A) = A.

)

= 3IN32 "2 ac A

which is not possible, since a would be a pole for f.

Thus 7 € O(U\ (AU Ny)) and AU N; C U is discrete.
) 1 f .
= (Resiude theorem) — [ —dz = E indr(a)orda(f)
2mi r f
aeN;UA

foreachcycle I'in U\ (AU Ny) with Int(I') C U.



Counting zeroes and poles

If in addition indr (&) = 1 Va € Int(I"), then

1 f'(z)
i J 12) dz = Z orda(f) + Z orda(f)

aeNyNInt(T) acAnint(l)

is the difference of the number of zeroes and poles in Int(I") counted with multplicity and order.
v

Theorem (Rouché = 10.8)

Iff,g € O(U) are not zero on any component of U, T is a cycle in U with
1f(2) — 9(2) < |f(2)| V z € Sp(T')
andInt(I') C U, then

> indr(a)orda(f) = > indr(a)orda(g) (both sums are finitel).
aeN; acNg




Rouché’s theorem: Proof

By the argument principle with A =

!
Z indr (a)orda(f i ffdz Z indr(a)orda(g9) = /

ae Ny aeNg T

WithTT = (y1,...,yn)and f(I) = (fo~yq,...,fovn)

d*Z/

’(r ot = Z/ fdz—(zm) indy(r)(0).

T

Hence it suffices to show that
mdm—)(O) = mdg(r)(O)
This equality follows from the hypothesis that (Lemma 10.7)

1f(vi(1)) = g(vi(O)] < (v Vi=1,...,n, t € [a;,b].



Examples

(a) If indr (@) = 1 for all a € Int(I") in Rouché’s theorem then,
> aen;nim(r) ©Mda(f) = 2 ae gy 0rda(9)-
(b) For g(2) = 28 — 2% 4 5z — 2 and f(2) = 52,
19(2) — (2)] = 128 — 22 — 2| < 4 < 5 = |K()| on DD (0).

Hence g has exactly as many zeroes in D; (0) as f, this means one.

Theorem (10.12)

Letf € O(G) (G C C domain). If f — wy has a zero of order k € N* at zy € G, then
Vr > 03 open neighbourhoods U C D(zy) of zg, W C C of wy with

#({z € Uif(z) = w}) =k Ywe W\ {w} and f(U)=W.

Identity thm. = 3r > 0: wy ¢ f(D;(20) \ {20}) and 0 ¢ f'(Dr(20) \ {z0})

For |w — wp| < s small enough:  |(f — w) — (f — wp)| < |f — wg| on 8D(z)

(Argument principle) = #({z € Dr(z9); f(z) = w}) =k VYw e Ds(wp).



Local invertibility

Theorem (10.14)
Letf € O(U)and zy € U with f'(z) # 0.

= 3 open ngh.hoods V C U of zy, W of f(zy) such that f : V — W is biholomorphic.

Proof. May suppose that U is connected (Replace U by the component of zj).
Set Wy = f(Zo).

= f— wp has a zero of order 1 at z;.
= Jopen ngh.hoods V C U of z5, W of f(z5) such that f : V — W is bijective.

= (Satzv. d. Gebietstreue) g = (f: V — W)~ is continuous

gw+h —gw)  gw+h —gw) (=0 1

h flow+h) —flgw)  F(gw)

Corollary (10.15)

Letf € O(U) be injective. Then f(U) C C is open and f: U — f(U) is biholomorphic.




Applications to improper real integrals

Aim:  Use the residue theorem to calculate real integrals of the form

7p X) p(x p(x
/s et / sln (ax)ax, / coe (ax)dx (p,q € C[2],0 ¢ q(R),a> 0)

Strategy:  Calculate
/ p(Z) eiazdz
rarg 9(2)

with T{(x) = x (-R < x < R) and M'g(x) = Re* (0 < x < ). If
lim /@e’azdz: 0,
R—ooJ q(2)
TR

then the residue theorem implies that with f(z) = qg; e%z

0o R

/ p(x) e dyx — lim Me/axdx =27i Z res (f, w)
q(x) R—oo J q(x) weN,

oo —-R g

Im w>0

provided the improper Riemann integral on the left-hand side exists.



deg(q) > deg(p) +2

Recall:  For f, g : R — C continuous,

@ by definition [ _ fdx exists if limg_, o fOR fdx and limg_, oo fER fdx both exist or,
equivalently, if Ve > 03r. > O such thatVr,s € Rwithre < r < s.

—r

J fdx

—S

o if [%° \g(x)|dx exists and |f(x)| < c|g(x)|V|x| > R, then [*°_ fdx exists.

< eund < € (Cauchy criterion).

Theorem (11.2)

For p, g € C[z] with deg(q) > deg(p) + 2 and 0 ¢ q(R),

iG] T res(®

dx = 2mi res (=, w).
q(x) wele q

- Im w>0

Idea: Show that 3Ry, ¢ > 0 such that ||p/qllsyrq) < ¢/R?YR > Ro. Then

(R—oo
| Jr, p/adz| < L(TR) [1/qllsyrmy < (xR) c/R2 2570,



Example 11.3

Examples

‘We calculate

The only poles of
2 9>

@ =972 = he)

in the upper half plane are simple poles at wy = €% and wo = €'

res(f, w;) = = —
By Theorem 11.2

I = 2mi(res(f, wy) + res(f, wa)) = gei% (6% +

™ with (Aufgabe 33(b))




deg(q) > deg(p) + 1

Theorem (11.5)
Ifp,q € C[z] withdeg (q) > deg (p) + 1,0 ¢ q(R) and a > 0, then
Meiax dx = 2mi Z res (@eiaz, W) .
— o G() = q(2)
N—_—— q

£(x) Im w>0

Ideas: Choose ry, r2, 8 > 0 with {w € Ng;Im w > 0} C ] — r1,[x]0, s[. Fixe > 0.

Y2 is

Using the residue theorem and choosing suitable ry, r» > 0 and then s > 0 one obtains

r2
]/ Fodx —2mi S res (1,w)| :‘_/ H2)dz| < e+ e+
—n weN, Y1AY2AY3
Im w>0



Theorem 11.5: Proof

° |1(2)] = | 2 &=

< e aImZ( < gauffyg)
~—~
|z|= R,

S

071(f):f2+l'5f (0§t§1)

1
’f fdz‘ = ‘fo (4 (t)) eliarz—ast) ISdi‘ %ri/ e ®lasdt < &

0
—_—

=1—e—a5<1

o |/, foz

‘ — ar
° ’fw fdz‘ < L(1) fllsp(rg) < (11 +12) S < e fors > s(r1,1o,€)

Hence
n
’/ f(x)ax —2mi > res (f, W)‘ <8¢ forr,mn > r(e).
_n

weNg
Im w>0



Example 11.6

We calculate

[o%) X3 .
I:/1+X4 sin (ax)dx (a > 0).

The only poles of f(z) = 2e _ 9(2)

=57 = D in the upper half plane are simple poles at
wy = el 147 Wo = g™ ol
= = S Wo = =
V2 V2

with residues (Aufgabe 33(b))

gwi) 1,
f,w;) = = -,
res (59 = 3wy
Theorem 11.5 yields
e 2 [ 1+i 14i
g1+l jg—1+! __a
/ fax = = (e’aﬁ 1% ) — rie V2 cos (i)
4 V2
— 00

and hence /| = Im (foo de) = ﬂeiﬁcos




Automorphism groups

Biholomorphic maps f : U — V (U, V C C open) are also called conformal mappings.

Definition

Let U C C be open. The automorphism group of U is (with composition as group operation)

Aut(U) = {f; f: U — U biholomorphic}.

Examples

@ f:Hy ={zeC; Imz >0} — D;(0), f(z) = Z= is biholomorphic with inverse
g: Di(0) = Hi,g(2) = 11‘“

@ The Moebius transformation (gebrochen lineare Transformation)

b a b
z > 228, ( c d ) € GL(2,C)

defines a biholomorphic mapping
(i) f:C > Cifc=0
(i) F:C\{-9} > C\{2}ifc#0
with inverse given (up to the determinant) by the inverse matrix z 7:212




Automorphism group of C

Forae C*,b e C, define f5,: C = C,z+— az + b.

Aut(C) = {fyp;@a € C* and b € C}.

Idea: Let f € Aut(C). Then 0 cannot be an essential singularity for

g:C* = C,g(2) :f(%) .
since otherwise the open mapping principle (7.14) and Theorem 9.4 would imply that
f(C\ D1(0)) N f(D1(0)) = g(D1(0)) N f(D1(0)) # 0.
By Theorem 9.4 3Im >1,cy,...,cm € C such that 0 is a removable singularity for
f(1) - &
= C — C,zw f(z) — Sp_4 ckz¥ is bounded, hence constant by Liouville.

= Since f’ € C[z] has no zero (chain rule), f is a polynomial with deg(f) = 1.



Schwarz lemma

Obvious biholomorphic maps of the unit disc D = D;(0) are:

@ rotations f(z) = €9z (§ € R)

@ Moebius transformations Ta(z) = #=2

1—az

—1
_z+a 1 —a _ 1 1 a
rao- (1) (e 7

z—a

(z—a)z

(a € D) with inverse

Note that: |Ta(z)| =

=1for|z| =1 = Max. principle T(D) C D.

Theorem (Schwarz lemma = 12.4)

Let f : D — D be holomorphic with f(0) = 0. Then
° [F(0) <1
e |f(z)| <|z|VzeD.
If|f'(0)| = 1 or |f(2)| = |z| for some z € D\ {0} , then f(z) = €z for some 6 € R.




Automorphism group of D

Corollary (12.5)

Aut(D) consists precisely of the mappings f(z) = e® f_ia (aeD,6 € R).

az

Idea:  For f € Aut(D), set a= f—1(0).

= g= Tao0f1 € Aut (D) with g(0) =0

= (Schwarz lemma for gand g=') |g(2)| < |z| = |9~ "(9(2))| < |g(2)| for all z
= 39 c Rwith f(2) = e 0g(f(2)) = e ¥ Ta(z) VZ € D.

Corollary (12.6)

Letf € O(D) be given with f(D) C D. Then:
@ |f/(0)] <1 with equality < 36 € R : f(z) =e%z2vzeD.

o Ifa,bc D with f(a) = b, then |f'(a)] < ‘=182 with equality

\a|2

& J0eR: f(2) = T_p(e9Ta(2)) Vz e D.

Note: The automorphisms f of D with f(0) = 0 are precisely the rotations f(z) = € z.



Riemannian sphere

Define € = C U {oc} (Riemannsche Zahlenkugel). The system
t={U; U c Copen}uU{C\ K;K c C compact}
defines a topology on € (or: turns X into a topological space), that is,
0 g,Cet,
e U Vet = UnVet
@ (Ui)igs arbitrary family in t = J;, U; € t.
The sets in t are called the open subsets of C.

Definition (12.7)
A map f : X — Y between topopological spaces X and Y is called
@ continuous at X € X < Vopenset V 5 f(x) 3 anopen set U 5 x such that f(U) C V

=il
@ continuous <> f is continuous at every X € X (< f (V) C XisopenVV C Y open)
@ homeomorphism (Homémorphismus) <> f is bijective and f and f~" are continuous.

A topological space X is called compact :< Each open cover of X contains a finite subcover.
By definition limp 00 2n = zin € :< VU > zopen IN € Nwith z, € UV n > N.




Beweis von Satz 9.8

S?={(z,s) e CxR;|z2+s>=1} CR®*=C xR (unit sphere)
is a compact metric (in particular, topological) space. Let N = (0,1) € S? be the
north pole. One can define a homeomorphism ¢ : 2 — C by setting ¢(N) = oo and

o(2,8) = N+ 1((2,8) — N) = (2,1 + t(s — 1)) with { = 1%5

(intersection of the line through N and (z, s) with C = C x {0} C R®).




Simple facts

Lemma

o C is a compact toplogical space (one-point compactificationof C)

o C c C is open and dense
@ UcCCisopen< 3V c CopenwithU=VnC

o C—C, zw 1 (with} = oo andL = 0) is a homeomorphism.

@ Forzn,zeC: liMpsoozn=2inC & liMp_oeo zn =z inC
@ Forzy € C: liMpsoo Zn =0 inC & liMp_seo |20| = o0
v
€ — €, z+ 1 isahomeomorphism, since inv : C* — C* — C is continuous and

%(06(0)) C @\5%(0), 12(@\5%(0)) C Dc(0).



Function theory on C

Definition

Let U, V C € be open. A mapping f : U — C is called holomorphic at a € U if
@ a € Cand f|ync is holomorphic at a or

@ a=ooandinv(U) — C, z — f(1/2) is holomorphic at 0.
A continuous map f : U — V/is called holomorphic if f = oo or
o f~1({oo}) C Uisdiscreteand f : U\ f~'({c0}) — C is holomorphic

and biholomorphic if f is bijective and f : U — V, =1 : V — U are holomorphic.

For f € O(U) (U C C open) we call co a pole for f

& ds>0with{zeC;|z| >s} Cc Uand | lim |f(2)| = oco.
z

| =00

Then oo £ f: U — € (U c C open) is holomorphic < A = f~1({oo}) C U is discrete
and
f:(U\ A)NC — Cis holomorphic with poles at each a € A.



e If p,q € C[z] with g # 0 and r(z) = & gforze(C\Nq,then

R { r(z) 1z € C\ Ny

C—oCz— : !
mI/”—TJz r(w); z € {oo} U Ng

defines a holomorphic map.

@ For A= ( i 3 € GL(2, C), the Moebius transformation Ty : € — C, i.e., the
unique continuous maps with
az+b
Ta(z) = forze Cwithcz+d #0
A(2) z+d #
is biholomorphic with (T4) ™" = T,_+.

T :GL(2,C) — Aut(C), A — T, is a surjective group homomorphism with

«( 1 0
Ker T=C (O 1 )




Riemann mapping theorem

Which domains in C are conformally equivalent to (= biholomorphic image of) D?
Necessary condition: Let f : D — G be biholomorphic and g : G — C* holomorphic.
= (D simply connected) I he OD)withgof=e" = g=exp(hof 1)

= (Theorem 8.13) G is a simply connected domain.

Theorem (Riemann mapping theorem = 13.2)

Each simply connected domain C # G C C is conformally equivalent to the unit disc D.

G C C domain, O(G) > fa (n290) uniformly on compact subsets. Then:
If all f, are injective, then f is injective or constant.

Idea: If f # const, a,b € G,a# b = (Identity thm.)3r > 0: f(a) ¢ f(Dr(b) \ {b})
= (fa = fa(a)) — (f = f(a)llap,(b) < MiNzeap,(p) |f(2) — f(a)| for n> N
= (Rouché) f — f(a) has no zero in D,(b).



Definition

Let U C C open. A subset F C O(U) is called
@ equicontinuous at @ € U if Ve > 0 3 § > 0 with f(Ds(a)) C D.(f(a)) Vf € F
@ bounded if sup{||f||x; f € F} < oo VK C U compact

@ normal if each sequence in F has a locally uniformly convergent subsequence.

Each bounded set F C O(U) is equicontinuous at each a € U.

Idea: If Dr(a) c Uand M = sup{||fll5,(z): f € F}.thenV f € Fand |z —a| <r/2

ar) 1 Q) - 1&)
@@ Ly [ e

_lz—al f(€)
2r Jop,(a) (£ —2)(§—a)

2
d¢| < 7M|Z— al



If K C U is compact and F C O(U) is equicontinuous at each a € K.
= Ve>035 >0suchthatV fe F: |f(z) — f(w)| < evz,w € K with |z — w| < J.

Idea: Otherwise for some e > 0 sequences (zn), (wn) in K, (fa) in F with
|zn — wa| <1/n and |f(zn) — f(wn)| > € VneN.
For suitable subsequences lim z, = limwp, = z € K exists and by equicontinuity at z

€ < fa(zn) — Fo(Wn)| < |a(2n) — Fa(2)] + 1fa(2) — fa(wn)| > O

If{fp; n € N} C O(U) is bounded and limp_. fn(2) existsVz € M C U dense

= (fn)nen converges uniformly on all cpct. subsets of U to a function f € O(U).

Idea: Use 13.5 and 13.6 to show that the sequences (f:(2))ncn satisfy the Cauchy
condition uniformly for z in each compact subset K C U.



Beschrankte Familien sind normal

Theorem (Montel’s theor:

Each bdd.sequence (fn)nen in O(U) has a locally uniformly convergent subsequence.

Idea: Let M = {ax; k € N*} C U be dense. Choose subsequences
(f1,n)nen YON (fa)nen St. (fa(@1))nen converges
(f2,n)new von (fi n)nen st (f2,n(82))nen cOnverges
and continue recursively. Then the diagonal sequence
(gn)nen = (fa,n)nen converges pointwise on M
and defines a locally uniformly convergent subsequence of (fp)nen by Lemma 13.7.

Alternatively one can prove Montel’s theorem using the equicontinuity of bounded
subsets F C O(U) and Arzela-Ascoli’s theorem from topology.



Riemann mapping theorem: Proof

Let C # G C C be a simply connected domain. Show successively:
(1) £ := {f € O(G); fis injective with f(G) C D} # 0.
(2) For each g € ¥ with g(G) # Dand each ac G3 f € X with |f'(a)| > |g'(a)|-

(3) Fix a € G. Choose a sequence (gn)nen in X with

o o
Sim_gn(a)l = s := sup{lg’(a)l; g € =}

May suppose (Montel’'s theorem) (gn)nen '—3 g € O(G) uniformly on cpct. subsets
= (WeierstraB3’ theorem) |g’(a)| = limp— oo |gh(a)| = s € (0, 0)

= g is injective with g(G) c D

= (Maximum principle) g € X and by Step 2 g is surjective.

= (Holomorhic invertibility) g : G — D is biholomorphic.



Wichtiges fur die Klausur

@ CRDG’en, harmonische Fkt'en, Bedingungen fiir Konstanz (Satz 2.19.)
@ Potenzreihen, Konvergenzradius, Taylorentwicklung

@ Existenz von Stammfunktionen

@ Cauchyscher Integralsatz und Formel fir Kreise, konvexe Gebiete

@ Grundprinzipien: Liouville, Nullstellen (Vielfachheit), Identitatssatz,
Maximumprinzip, Riemannscher Hebbarkeitssatz, Gebietstreue

@ Allgemeiner CIS und CIF, einfacher Zusammenhang, holomorphe Logarithmen

@ Isolierte Singularitaten: Charakterisierungen, Ordnung von Polstellen,
Berechnung von Residuen (Lemma 9.7 + Aufg.33(b)) und Laurentreihen

@ Residuensatz, Berechnung von Integralen (komplexe und reelle), Rouché

@ Konforme Abbildungen von C, D, Schwarzsches Lemma, Moebiustransform.en

Schutzmasken mitbringen! Corona-Regeln fir die Klausur beachten (Homepage)!

Viel Gltck!!!
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