Funktionentheorie

Jörg Eschmeier

Saarland University

Sommersemester 2020

Field of complex numbers

Complex numbers: $\mathbb{C} = \mathbb{R}^2 = \{(a, b); a, b \in \mathbb{R}\}$ Field with respect to the algebraic operations

(a,b) + (c,d) = (a+c,b+d), $(a,b) \cdot (c,d) = (ac - bd, ad + bc)$

Real numbers become a subfield via: $\mathbb{R} = \mathbb{R} \times \{0\} \subset \mathbb{C}$ Introducing the complex notation i = (0, 1) one obtains the rules $i^2 = -1$ and

•
$$(a,b) = (a,0) + (0,b) = (a,0) + (0,1)(b,0) = a + ib$$
,

•
$$(a+ib)(c+id) = (ac-bd, ad+bc) = (ac-bd) + i(ad+bc),$$

•
$$\frac{1}{a+ib} = \frac{a-ib}{(a+ib)(a-ib)} = \frac{a}{a^2+b^2} - i\frac{b}{a^2+b^2}$$

Definition

For z = x + iy $(x, y \in \mathbb{R})$ we define • Re z = x, Im z = y• $\overline{z} = x - iy$ • $|z| = (x^2 + y^2)^{1/2}$

Absolute value in C

Lemma

For $z, w \in \mathbb{C}$, we have: • $z\overline{z} = |z|^2$, $|z| = |\overline{z}|$, |zw| = |z||w|, $\overline{(\overline{z})} = z$, • $\overline{z+w} = \overline{z} + \overline{w}$, $\overline{zw} = \overline{z} \cdot \overline{w}$, $\overline{(1/z)} = 1/\overline{z}$ for $z \neq 0$, • $\operatorname{Re} z = \frac{z+\overline{z}}{2}$, $\operatorname{Im} z = \frac{z-\overline{z}}{2i}$, • $\left||z| - |w|\right| \le |z+w| \le |z| + |w|$ (triangle inequality).

Idea Triangle inequality:

$$|z+w|^{2} = (z+w)(\overline{z}+\overline{w}) = |z|^{2} + |w|^{2} + 2\operatorname{Re}(z\overline{w}) \leq |z|^{2} + |w|^{2} + 2|z\overline{w}| = (|z|+|w|)^{2}.$$

Lemma (Absolute value as a norm)

For $z, w \in \mathbb{C}$, we have:

•
$$|z| = 0$$
 if and only if $z = 0$,

•
$$||z| - |w|| \le |z + w| \le |z| + |w|.$$

Polar coordinates and arguments

Theorem (Polar coordinates)

For $z \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$, there are real numbers $r > 0, \varphi \in \mathbb{R}$ with

$$z = r(\cos\varphi + i\sin\varphi).$$

In this case r = |z|

Idea Set $x = \operatorname{Re} z, y = \operatorname{Im} z$. Because of

 $|x|,|y|\leq |z|\neq 0$

and the intermediate value theorem there is a $\psi \in [0, \pi]$ with $x = |z| \cos \psi$. Show that

 $z = r(\cos \varphi + i \sin \varphi)$ with $\varphi = \psi$ or $\varphi = -\psi$

Corollary (Arguments)

For $z \in \mathbb{C}^*$ and $\theta_0 \in \mathbb{R}$, there is a uniqe $\theta \in [\theta_0, \theta_0 + 2\pi[$ with

 $z = |z|(\cos \theta + i \sin \theta).$

Idea The existence follows from the preceding theorem and 2π -periodicity of cos, sin, uniqueness from the functional equations for cos, sin.

Arguments and Euler's formula

Definition

(a) For $z \in \mathbb{C}^*$ and $\theta_0 \in \mathbb{R}$, the unique number $\theta \in [\theta_0, \theta_0 + 2\pi[$ with

 $z = |z|(\cos \theta + i \sin \theta)$

is called the argument of z relative to θ_0 (written: $\arg_{\theta_0}(z)$).

(b) For
$$\varphi \in \mathbb{R}$$
, we define $e^{i\varphi} = \cos \varphi + i \sin \varphi$.

Using the defintion of the product in $\ensuremath{\mathbb{C}}$ and the functional equations for cos, sin one obtains:

Lemma

For $\varphi, \psi \in \mathbb{R}$, we have

$$e^{i(\varphi+\psi)}=e^{i\varphi}e^{i\psi}.$$

Convergence in \mathbb{C}

Let $(z_n)_{n>0}$ be a sequence in \mathbb{C} and let $z \in \mathbb{C}$.

Definition

• $(z_n)_{n\geq 0}$ converges to z (written: $\lim_{n\to\infty} z_n = z$)

 $:\Leftrightarrow \forall \epsilon > 0 \; \exists n_0 \in \mathbb{N} \text{ such that } |z_n - z| < \epsilon \; \forall n \ge n_0$

• $(Z_n)_{n>0}$ is a Cauchy sequence

 $\Rightarrow \forall \epsilon > 0 \ \exists n_0 \in \mathbb{N} \text{ such that } |z_n - z_m| < \epsilon \forall n, m \ge n_0$

Using the estimates

$$\max(|\operatorname{Re} z_n - \operatorname{Re} z|, |\operatorname{Im} z_n - \operatorname{Im} z|) \le |z_n - z| \le |\operatorname{Re} z_n - \operatorname{Re} z| + |\operatorname{Im} z_n - \operatorname{Im} z|$$

one obtains:

Theorem

- $\lim_{n\to\infty} z_n = z \iff \lim_{n\to\infty} \operatorname{Re} z_n = \operatorname{Re} z$ and $\lim_{n\to\infty} \operatorname{Im} z_n = \operatorname{Im} z_n$
- $(z_n)_{n\geq 0}$ is a Cauchy sequence in $\mathbb{C} \Leftrightarrow (\operatorname{Re} z_n)_{n\geq 0}$ and $(\operatorname{Im} z_n)_{n\geq 0}$ are Cauchy sequences in \mathbb{R} .

Complex numbers Continuous and differentiable functions Power series Elementary functions Contour integrals Applications Global Cauchy thm Isolat

Sequences and series

Using the previous theorem and the completeness of $\ensuremath{\mathbb{R}}$ one obtains:

Each Cauchy sequence in \mathbb{C} converges (In short: \mathbb{C} is complete).

Exactly as in ${\mathbb R}$ one proves:

Theorem (Limit theorems)

Suppose that $\lim_{n\to\infty} z_n = z$ and $\lim_{n\to\infty} w_n = w$ in \mathbb{C} . Then

- $\lim_{n\to\infty}(z_n+w_n)=z+w$, $\lim_{n\to\infty}(z_nw_n)=zw$
- If $w \neq 0$ then there is an $n_0 \in \mathbb{N}$ with $w_n \neq 0 \forall n \ge n_0$. In this case

$$(\frac{z_n}{w_n})_{n\geq n_0} \xrightarrow{n} \frac{z}{w}.$$

Since \mathbb{C} is complete, the Cauchy criterion for series remains true:

$$\sum_{n=0}^{\infty} c_n \text{ converges in } \mathbb{C} \ \Leftrightarrow \ \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \text{ with } |\sum_{n=p}^{q} c_n| < \epsilon \forall q \geq p \geq n_0.$$

With exactly the same proof as in $\ensuremath{\mathbb{R}}$ one concludes that

Lemma

- Each absolutely convergent series in C converges
- The comparison test and the ratio test remain true for series in C.

\mathbb{C} as a metric space

 $\mathbb{C}=\mathbb{R}^2$ is a metric space relative to the Euclidean metric:

$$d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}, \quad d(z, w) = |z - w|$$

Open and closed *d*-balls of radius $r \in [0, \infty]$:

 $D_r(a) = \{z \in \mathbb{C}; |z-a| < r\}, \qquad \overline{D}_r(a) = \{z \in \mathbb{C}; |z-a| \le r\}.$

Definition

Let $A, U \subset \mathbb{C}$.

- U is open $\Leftrightarrow \forall a \in U \exists \epsilon > 0$ with $D_{\epsilon}(a) \subset U$
- A is closed $\Leftrightarrow \mathbb{C} \setminus A$ is open
- $A \subset \mathbb{C}$ is compact if $\forall (U_i)_{i \in I}$ open cover of $A \exists i_1, \ldots, i_r \in I$ with

 $A \subset U_{i_1} \cup \ldots \cup U_{i_r}$.

Closure, interior, boundary

Definition

- $\overline{A} = \{z \in \mathbb{C}; \forall \epsilon > 0 : D_{\epsilon}(z) \cap A \neq \emptyset\}$
- $Int(A) = \{z \in \mathbb{C}; \exists \epsilon > 0 \text{ mit } D_{\epsilon}(z) \subset A\}$
- $\partial A = \{z \in \mathbb{C}; \forall \epsilon > 0: D_{\epsilon}(z) \cap A \neq \emptyset \neq D_{\epsilon}(z) \cap A^{c}\}$

Lemma

- $U \subset \mathbb{C}$ is open $\Leftrightarrow U = Int(U)$
- $A \subset \mathbb{C}$ is closed $\Leftrightarrow A = \overline{A}$
- Int(A) = $\bigcup (U \subset \mathbb{C} \text{ open}; U \subset A) = A \cap (\partial A)^c \subset \mathbb{C} \text{ is open}$
- $\overline{A} = \bigcap (F \subset \mathbb{C} \text{ closed}; F \supset A) = \{z \in \mathbb{C}; \exists \text{ sequence } A \ni z_n \stackrel{n}{\to} z\} \text{ is closed}$
- $\partial A = \overline{A} \setminus \operatorname{Int}(A) \subset \mathbb{C}$ is closed
- A ⊂ C is compact ⇔ A is closed and bounded ⇔ ∀ sequence (z_n)_{n≥0} in A
 ∃ convergent subsequence (z_{nk}) ^k→ z ∈ A.

Paths in \mathbb{C}

Let $M \subset \mathbb{C}$. A path in *M* is a continuous map

 $\gamma: [a, b] \rightarrow \mathbb{C}$ $(a, b \in \mathbb{R} \text{ mit } a \leq b)$

with $\gamma([a, b]) \subset M$. A path $\gamma : [a, b] \to \mathbb{C}$ is closed if $\gamma(a) = \gamma(b)$.

Examples

- Line connecting $z, w \in \mathbb{C}$: $\gamma : [0, 1] \rightarrow \mathbb{C}, \gamma(t) = z + t(w z)$
- Positively oriented circle: $\gamma: [0, 2\pi] \to \mathbb{C}, \quad \gamma(t) = a + re^{it}$
- Given paths $\gamma_j : [a_j, b_j] \to \mathbb{C}$ (j = 1, 2) with $\gamma_1(b_1) = \gamma_2(a_2)$ define $\gamma_1 \land \gamma_2 : [a_1, b_1 + (b_2 a_2)] \to \mathbb{C}$ as the composed path

$$\gamma_1 \wedge \gamma_2(t) = \begin{cases} \gamma_1(t), & t \in [a_1, b_1] \\ \gamma_2(t + (a_2 - b_1)), & t \in [b_1, b_1 + (b_2 - a_2)] \end{cases}$$

- For $z_0, \ldots, z_r \in \mathbb{C}$: $[z_0, z_1] \land [z_1, z_2] \land \ldots \land [z_{r-1}, z_r]$ (polygon)
- For a path $\gamma : [a, b] \to \mathbb{C}$, we define the reversed path

$$-\gamma: [a,b] \to \mathbb{C}, \ (-\gamma)(t) = \gamma(a+b-t)$$

Connected sets

For $M \subset \mathbb{C}$, a set $V \subset M$ is called open in M if $\exists U \subset \mathbb{C}$ open with $V = M \cap U$.

Definition

- $M \subset \mathbb{C}$ is path connected : $\Leftrightarrow \forall z, w \in M \exists$ path γ in M from z to w.
- $M \subset \mathbb{C}$ is connected : \Leftrightarrow there are no disjoint non-empty open sets V_1 , V_2 in M with $M = V_1 \cup V_2$.

Can show: each path connected set in \mathbb{C} is connected, but not vice versa!

Theorem

For an open set $G \subset \mathbb{C}$, the following are equivalent:

- (i) G is connected
- (ii) G is path connected
- (iii) Any two points $z, w \in G$ can be joined in G by a polygon.

Idea for $(i) \Rightarrow (iii)$. Fix $a \in G$. Show that

 $U = \{z \in G; z, a \text{ can be joined by a polygon in } G\}$ and $G \setminus U$ are both open in G.

Continuous functions

Let $f : D \to \mathbb{C}$ be a function on $D \subset \mathbb{C}$ arbitrary. For $a \in \overline{D}, c \in \mathbb{C}$, define

$$\lim_{z \to a} f(z) = c :\Leftrightarrow \lim_{k \to \infty} f(z_k) = c \text{ whenever } D \ni z_k \stackrel{k}{\to} a$$

We call $f : D \to \mathbb{C}$ continuous at $a \in D \iff \lim_{z \to a} f(z) = f(a)$.

Lemma (Analysis II)

- $f: D \to \mathbb{C}$ continuous at $a \in D \Leftrightarrow \forall \epsilon > 0 \exists \delta > 0$ with $f(D_{\delta}(a) \cap D) \subset D_{\epsilon}(f(a))$
- *f* is continuous on all of $D \Leftrightarrow f^{-1}(V)$ is open in $D \forall V \subset \mathbb{C}$ open

Lemma (Analysis II)

If $f, g : D \to \mathbb{C}$ are continuous at $a \in D$ and $\lambda \in \mathbb{C}$, then

- f + g, $f \cdot g$, λf are continuous at a
- $\frac{f}{g}$: { $z \in D$; $g(z) \neq 0$ } $\rightarrow \mathbb{C}$ is continuous at a if $g(a) \neq 0$
- Compositions of continuous functions are continuous.

Complex differentiable functions

A function $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) is complex differentiable at $a \in U$

$$\exists f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{C}.$$

Theorem

If $f, g: U \to \mathbb{C}$ are complex differentiable at $a \in U$ then:

• f is continuous at a.

• $f + g, f \cdot g$ are complex differentiable at a and

 $(f+g)'(a) = f'(a) + g'(a), \ (fg)'(a) = f'(a)g(a) + f(a)g'(a).$

If $g(a) \neq 0$, then $\frac{f}{a}$ is complex differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

If h: V → C complex differentiable at f(a), so is h ∘ f : U → C at a and

 $(h \circ f)'(a) = h'(f(a))f'(a).$

Examples - Nothing new or?

Examples	
● <i>f</i> ≡ <i>c</i>	$\Rightarrow f'(z) = 0 \forall z \in \mathbb{C}$
• $f(z) = z$	$\Rightarrow f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = 1 \forall z \in \mathbb{C}$
• $f(z) = z^n \ (n \in \mathbb{N})$	$\Rightarrow f'(z) = nz^{n-1} \forall z \in \mathbb{C}$
• $f(z) = z^n \ (n \in \mathbb{Z}_{<0})$	$\Rightarrow f'(z) = nz^{n-1} \forall z \in \mathbb{C}^*$
• $p(z) = a_n z^n + \ldots + a_n z^n + \ldots + a_n z^n$	$a_1z + a_0 \Rightarrow p'(z) = na_n z^{n-1} + \ldots + 2a_2 z + a_1 \forall z \in \mathbb{C}$
• Rational functions $\frac{p}{q}$ (p, q polynomials) are complex differentiable on $\{q(z) \neq 0\}$	

Counterexample: $f(z) = \overline{z}$ as a function on \mathbb{R}^2

$$f: \mathbb{R}^2 \to \mathbb{R}^2, f(x, y) = (x, -y).$$

is C^{∞} in the real sense, but nowhere complex differentiable

$$\frac{f(z+h)-f(z)}{h} = \frac{\overline{z+h}-\overline{z}}{h} = \frac{\overline{h}}{h} = \begin{cases} 1, h \in \mathbb{R} \\ -1, h \in i\mathbb{R} \end{cases}$$

Cauchy-Riemann equations

Complex differentiability is much stronger than real differentiability! Precisely:

For a function $(x, y) \mapsto (u(x, y), v(x, y)) \in \mathbb{R}^2$ of two real variables, define

$$u_x = \frac{\partial u}{\partial x}, \ u_y = \frac{\partial u}{\partial y}$$
 (same for v).

Theorem (Cauchy-Riemann)

Let $U \subset \mathbb{C}$ be open, $f = u + iv : U \to \mathbb{C}$ a function, $z_0 = x_0 + iy_0 \in U$. Equivalent are:

- f is complex differentiable at z_0 .
- f = (u, v) is totally differentiable in the real sense at (x_0, y_0) and

 $u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0)$ (Cauchy-Riemann eq's).

In this case:

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0), \quad \det \Big(J_{(u,v)}(x_0, y_0) \Big) = |f'(z_0)|^2.$$

How to check complex differentiability?

Corollary

• f = u + iv complex differentiable at $z_0 \Rightarrow u, v$ partially differentiable with

$$(*) \quad u_{x}(z_{0}) = v_{y}(z_{0}), u_{y}(z_{0}) = -v_{x}(z_{0})$$

• If f = u + iv is C^1 near z_0 with $(*) \Rightarrow f$ is complex differentiable at z_0

Examples

• $f(z) = |z| = \sqrt{x^2 + y^2}$ is nowhere complex differentiable, since $v_x = v_y = 0$, but

$$u_x(x,y) = \frac{x}{(x^2 + y^2)^{1/2}} \neq 0 \ (x \neq 0), u_y(x,y) = \frac{y}{(x^2 + y^2)^{1/2}} \neq 0 \ (y \neq 0).$$

and $\lim_{h\to 0} \frac{f(h)-f(0)}{h} = \lim_{h\to 0} \frac{|h|}{h}$ does not exist.

• $f(x + iy) = |xy|^{1/2}$ is partially differentiable at (0,0) with

$$u_x(0,0) = 0 = v_y(0,0), \qquad u_y(0,0) = 0 = -v_x(0,0),$$

not complex differentiable: $\lim_{h\to 0} \frac{f(h,h)-f(0,0)}{h+ih} = \lim_{h\to 0} \frac{1}{1+i} \frac{|h|}{h}$ does not exist.

If f and \overline{f} are holomorphic, then ...

Definition

- A set $G \subset \mathbb{C}$ is called a domain if $G \subset \mathbb{C}$ is open and connected.
- A function *f* : *U* → C (*U* ⊂ C open) is called holomorphic if it is complex differentiable at every point *z* ∈ *U*.

Theorem

Let $f : G \to \mathbb{C}$ be holomorphic on a domain $G \subset \mathbb{C}$. Then f is constant under each of the following conditions:

- $f' \equiv 0$,
- Re $f \equiv \text{const}$,
- Im $f \equiv \text{const}$,
- \overline{f} (= Re f iIm f) is holomorphic,
- |f| is holomorphic.

idea: Under any of the first three conditions $u_x = u_y = v_x = v_y \equiv 0$.

Which functions are real parts of holomorphic functions?

Recall that a C^2 -function $u: U \to \mathbb{C}$ is said to be harmonic if

$$\Delta u \ (= u_{xx} + u_{yy}) \equiv 0 \text{ on } U.$$

Real and imaginary parts of holomorphic functions are harmonic. Precisely:

Theorem

- $f: U \to \mathbb{C}$ holomorphic $\Rightarrow u = \operatorname{Re} f, v = \operatorname{Im} f$ are harmonic on U
- *u*: *D_r(c)* → ℝ harmonic ⇒ ∃ (unique up to real constants) v : *D_r(c)* → ℝ such that *f* = *u* + *iv* is holomorphic on *D_r(c)*.

Idea: If f = u + iv is holomorphic, then we shall see later that u, v are C^{∞} .

 \Rightarrow (CRDE's and Schwarz lemma) $u_{xx} + u_{yy} = (v_y)_x - (v_x)_y \equiv 0$.

In the second part the unique solution with v(0) = 0 is

$$v(x,y) = \Big(\int_0^1 -u_y(tx,ty)dt\Big)x + \Big(\int_0^1 u_x(tx,ty)dt\Big)y.$$

Sequences and series of functions

Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{C} .

Aim: Study functions given by a power series $f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$.

Definition

Let $f_n : D \to \mathbb{C}$ $(n \in \mathbb{N})$, $f : D \to \mathbb{C}$ be functions. Then $(f_n)_{n \ge 0}$ converges to f on D

- uniformly : $\Leftrightarrow \forall \epsilon \exists n_0 \in \mathbb{N} \text{ with } |f_n(z) f(z)| < \epsilon \forall n \ge n_0 \forall z \in D$
- uniformly on compact subsets: $\Leftrightarrow \forall K \subset D \operatorname{cpct} (f_n)_{n>0}$ converges to f uniformly on K

Continuity is preserved under uniform convergence on compact subsets.

Definition

Let $f_n: D \to \mathbb{C}$ $(n \in \mathbb{N})$ be functions and $s_N = \sum_{n=0}^N f_n$ $(N \in \mathbb{N})$. Define

- $\sum_{n=0}^{\infty} f_n = (s_N)_{N \ge 0}$
- $\sum_{n=0}^{\infty} f_n$ converges pointwise, uniformly (on compact subsets) if $(s_N)_{N\geq 0}$ does

Power series

How to test uniform convergence?

Theorem (W-M Test)

Let $f_n : D \to \mathbb{C}$ $(n \in \mathbb{N})$ be functions, $c_n \in \mathbb{R}$ with

• $|f_n(z)| \leq c_n \ \forall n \in \mathbb{N} \ and \ \forall z \in D$

• $\sum_{n=0}^{\infty} c_n < \infty$ Then $\sum_{n=0}^{\infty} f_n$ converges uniformly on D.

Theorem (Power series)

Let $(a_n)_{n\geq 0}$ be a sequence in \mathbb{C} , $a \in \mathbb{C}$ and r > 0.

- $(a_n r^n)_{n\geq 0}$ bounded $\Rightarrow \sum_{n=0}^{\infty} a_n (z-a)^n$ converges absolutely $\forall z \in D_r(a)$.
- R = sup{ρ ≥ 0; (a_nρⁿ)_{n≥0} bounded} (∈ [0,∞]) ⇒ ∑_{n=0}[∞] a_n(z − a)ⁿ converges uniformly on all compact subsets of D_R(a) and diverges ∀z ∉ D_R(a)

Radius of convergence

Definition

The unique number $R \in [0,\infty]$ with the property

$$\sum_{n=0}^{\infty} a_n (z-a)^n \text{ converges } \forall z \in D_R(a) \text{ and diverges } \forall z \notin \overline{D}_R(a)$$

is called the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n (z-a)^n$.

How can one calculate the radius of convergence?

Theorem (Cauchy-Hadamard)

The radius of convergence of the power series $\sum_{n=0}^{\infty} a_n(z-a)^n$ is given by

$$R=1/\overline{\lim}_{n
ightarrow\infty}|a_n|^{1/n}$$
 $(c/0=\infty \ and \ c/\infty=0 \ for \ c>0).$

Examples

• $a_n = n^n \quad \Rightarrow \quad R = 1/\overline{\lim}_{n \to \infty} |n^n|^{1/n} = 0$

•
$$a_n = n^k \quad \Rightarrow \quad R = 1/\overline{\lim}_{n \to \infty} |n^k|^{1/n} = 1$$

•
$$a_n = n^{-n} \quad \Rightarrow \quad R = 1/\overline{\lim}_{n \to \infty} |n^{-n}|^{1/n} = \infty$$

Analytic functions

Functions $f(z) = \sum_{n=0}^{\infty} a_n (z - a)^n$ representable by a power series are called analytic. Analytic functions are complex differentiable, even much better:

Theorem (Termwise differentiation)

If $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ has positive radius of convergence $R \in]0, \infty]$, then

• $f: D_R(a) \to \mathbb{C}$ is complex differentiable with

$$f'(z) = \sum_{n=0}^{\infty} (n+1)a_{n+1}(z-a)^n \quad \forall z \in D_R(a)$$

• the differentiated power series has radius of convergence R.

Corollary

If $f(z) = \sum_{n=0}^{\infty} a_n(z-a)^n$ has positive radius of convergence $R \in]0, \infty]$, then $f: D_R(a) \to \mathbb{C}$ is infinitely often complex differentiable with • $f^{(k)}(z) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1)a_n(z-a)^{n-k} \quad \forall z \in D_R(a)$ • $a_k = \frac{f^{(k)}(a)}{k!} \quad \forall k \in \mathbb{N}.$

Exponential and trigonometric functions

Definition

The complex exponential function, cosine and sine are defined by exp, \cos , \sin : $\mathbb{C} \to \mathbb{C}$,

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \qquad \cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, \qquad \sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}.$$

Theorem

(i) exp, cos, sin are holomorphic on \mathbb{C} with $\exp' = \exp$, $\cos' = -\sin$, $\sin' = \cos$.

(ii)
$$\cos z = \frac{\exp(iz) + \exp(-iz)}{2}$$
, $\sin z = \frac{\exp(iz) - \exp(-iz)}{2i}$, $\exp(iz) = \cos z + i \sin z$
 $(z \in \mathbb{C})$.

(iii) $\exp(0) = 1$, $\exp(i\frac{\pi}{2}) = i$, $\exp(i\pi) = -1$, $\exp(i\frac{3}{2}\pi) = -i$, $\exp(2\pi i) = 1$.

Notation: For $z \in \mathbb{C}$ we also write $e^z := \exp(z)$. The unit circle is given by

$$\mathbb{T} := \{z \in \mathbb{C}; |z| = 1\} = \{e^{it}; t \in \mathbb{R}\} = \{e^{it}; t \in [\theta_0, \theta_0 + 2\pi[\} (\theta_0 \in \mathbb{R}).$$

Properties of exp, cos, sin

Theorem (Functional equations)

For $z, w \in \mathbb{C}, n \in \mathbb{N}$,

•
$$e^{z}e^{w} = e^{z+w}$$
, $e^{z}e^{-z} = e^{0} = 1$

•
$$\sin(z+w) = \sin z \cos w + \cos z \sin w$$
, $\cos(z+w) = \cos z \cos w - \sin z \sin w$

•
$$(\cos z + i \sin z)^n = \cos(nz) + i \sin(nz)$$

Theorem (Typical values)

$$\begin{array}{l} \text{For } z \in \mathbb{C}, \\ \bullet \ |e^{z}| = e^{\operatorname{Re} z}, \quad \overline{e^{z}} = e^{\overline{z}} \\ \bullet \ e^{z} = 1 \ \Leftrightarrow \ z \in 2\pi i \mathbb{Z} \ (= \{2\pi i k; k \in \mathbb{Z}\} \\ \bullet \ \sin z = 0 \ \Leftrightarrow \ z \in \pi \mathbb{Z} \\ \bullet \ \cos z = 0 \ \Leftrightarrow \ z \in \frac{\pi}{2} + \pi \mathbb{Z}. \end{array}$$

Branches of the logarithm

For $z \in \mathbb{C}^*$, $\theta_0 \in \mathbb{R}$ and $u \in \mathbb{C}$, we have $e^u = z \Leftrightarrow u$ is of the form

$$u = \log |z| + i(\arg_{\theta_0}(z) + 2\pi k) \quad (k \in \mathbb{Z}).$$

Definition

Let $G \subset \mathbb{C}$ be a domain. A branch of the logarithm (Zweig) on G is a continuous function $f: G \to \mathbb{C}$ with

$$\exp(f(z)) = z$$
 for all $z \in G$.

Each branch of the logarithm $f : G \to \mathbb{C}$ is holomorphic and satisfies $\forall z \in G$

$$f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \left(\frac{e^{f(z+h)} - e^{f(z)}}{f(z+h) - f(z)} \right)^{-1} = \frac{1}{e^{f(z)}} = \frac{1}{z}$$

Standard complex logarithms

For $\theta \in \mathbb{R}$ define

 $\mathbb{C}_{\theta} = \{ z \in \mathbb{C}^*; \ \mathrm{arg}_{\theta}(z) \in \left] \theta, \theta + 2\pi \right[\} = \mathbb{C} \setminus \{ r e^{i\theta}; \ r \in [0,\infty) \} \quad (\theta \in \mathbb{R}).$

Theorem (*k*-th branch of the logarithm on \mathbb{C}_{θ})

For $\theta \in \mathbb{R}$ and $k \in \mathbb{Z}$

$$\log_{\theta,k} : \mathbb{C}_{\theta} \to \mathbb{C}, \ z \mapsto \log |z| + i(\arg_{\theta} + 2\pi k)$$

is holomorphic such that $\forall z \in \mathbb{C}_{\theta}$

- $e^{\log_{\theta,k}(z)} = z$
- $\frac{\mathrm{d}}{\mathrm{d}z} \left(\log_{\theta,k}(z) \right) = \frac{1}{z}$

The mapping $\log_{\theta,k} : \mathbb{C}_{\theta} \to \mathbb{R} \times]\theta + 2\pi k, \theta + 2\pi (k+1)[$ is bijective.

Definition

The principal branch of the logarithm (Hauptzweig) is defined as

$$\log = \log_{-\pi,0} : \mathbb{C}_{-\pi} = \mathbb{C} \setminus (-\infty, 0] \rightarrow \mathbb{C}, \ z \mapsto \log |z| + i \arg_{-\pi}(z)$$

Powers and roots

As in the real case exp and log can be used to define powers of complex numbers with complex exponents.

Theorem

Given $\theta \in \mathbb{R}$, $k \in \mathbb{Z}$ and $\alpha \in \mathbb{C}$,

$$\mathbb{C}_{\theta} \to \mathbb{C}, \ z \mapsto z^{(\alpha,\theta,k)} \ = \ \exp\left(\alpha \log_{\theta,k}(z)\right) \ = \ |z|^{\alpha} e^{i\alpha(\arg_{\theta}(z) + 2\pi k)}$$

defines a holomorphic function such that for $\alpha, \beta \in \mathbb{C}$ und $z \in \mathbb{C}_{\theta}$,

•
$$z^{(\alpha,\theta,k)} z^{(\beta,\theta,k)} = z^{(\alpha+\beta,\theta,k)},$$

• $\frac{d}{d_2} (z^{(\alpha,\theta,k)}) = \alpha z^{(\alpha-1,\theta,k)}.$

Definition (Principal branch of the complex powers)

For $z \in \mathbb{C}_{-\pi} = \mathbb{C} \setminus (-\infty, 0]$ and $\alpha \in \mathbb{C}$, we simply write

$$z^{\alpha} = z^{(\alpha, -\pi, 0)} = e^{\alpha(\log |z| + i \arg_{-\pi}(z))} = |z|^{\alpha} e^{i \alpha \arg_{-\pi}(z)}$$

nth roots

Lemma (n-th roots)

For $w \in \mathbb{C}^*$ and $n \in \mathbb{N}^*$, the equation

$$z^n = w$$

has exactly n distinct solutions. If $w \in \mathbb{C}_{\theta}$, then the n solutions are given by

$$z_k = w^{(\frac{1}{n}, \theta, k)}$$
 $(k = 0, ..., n-1).$

For w = 1 one obtains the n-th roots of unity (Einheitswurzeln):

Corollary (Exercise 1)

The n distinct solutions of the equation $z^n = 1$ are given by

$$z_k = e^{i\frac{2\pi k}{n}} \qquad (k = 0, \dots, n-1)$$

C-valued Riemann integrals

A function $f : [a, b] \rightarrow \mathbb{C}$ is called

• Riemann integrable if $\operatorname{Re} f$ and $\operatorname{Im} f$ are Riemann integrable. In this case

$$\int_{a}^{b} f dt := \int_{a}^{b} \operatorname{Re} f dt + i \int_{a}^{b} \operatorname{Im} f dt.$$

pause

- continuously differentiable if Re f and Im f are.
- piecewise continuously differentiable :⇔ ∃ partition a = t₀ < t₁ < ... < t_n = b such that f|_[t₁-1,t₁] is continuously differentiable ∀i = 1,..., n.

Lemma

Let I = [a, b] be a compact interval and $f : I \to \mathbb{C}$ a function.

- $\operatorname{RI}(I, \mathbb{C}) \to \mathbb{C}, f \mapsto \int_a^b f dt \text{ is } \mathbb{C}\text{-linear}$
- f and |f| Riemann integrable $\Rightarrow \left| \int_{a}^{b} f dt \right| \leq \int_{a}^{b} |f| dt$

• f continuously differentiable $\Rightarrow \int_a^b f' dt = f(b) - f(a)$.

Contour integrals

Definition

- A contour (Integrationsweg) in *M* is a piecewise continuously differentiable function $\gamma : [a, b] \to \mathbb{C}$ with $\gamma([a, b]) \subset M$. We call γ closed if $\gamma(a) = \gamma(b)$.
- If γ is a contour with $\gamma_{[t_{i-1}-t_i]}$ continuously differentiable $\forall i$, we set

$$\int_{\gamma} f(z) \mathrm{d} z = \int_{a}^{b} f \circ \gamma(t) \ \gamma'(t) \mathrm{d} t = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_i} f \circ \gamma(t) \ \gamma'(t) \mathrm{d} t.$$

The definition does not depend on the choice of the partition $a = t_0 < ... < t_n = b$. The set $Sp(\gamma) = \gamma([a, b])$ is called the trace (Spur) of γ .

Lemma

Let $\gamma, \gamma_1, \gamma_2$ be contours in $M \subset \mathbb{C}$ and let $f, g : M \to \mathbb{C}$ be continuous. Then:

•
$$\int_{\gamma} (\alpha f + \beta g) dz = \alpha \int_{\gamma} f dz + \beta \int_{\gamma} g dz$$

• endpoint of $\gamma_1 =$ starting point of $\gamma_2 \Rightarrow \int_{\gamma_1 \wedge \gamma_2} f dz = \int_{\gamma_1} f dz + \int_{\gamma_2} f dz$

Parameter transformations

Using the chain rule one obtains:

Theorem

Let $\gamma : [a, b] \to \mathbb{C}$ be a contour, $f : \operatorname{Sp}(\gamma) \to \mathbb{C}$ continuous.

•
$$\int_{-\gamma} f dz = - \int_{\gamma} f dz$$

• $\varphi : [c, d] \rightarrow [a, b] C^1$ -function with $\varphi'(t) > 0$ for $t \in [c, d]$ and $\varphi(c) = a, \varphi(d) = b$ $\Rightarrow \tilde{\gamma} = \gamma \circ \varphi : [c, d] \rightarrow \mathbb{C}$ is a contour with

$$\int_{\tilde{\gamma}} f \mathrm{d} z = \int_{\gamma} f \mathrm{d} z.$$

Definition

The length of a contour $\gamma : [a, b] \to \mathbb{C}$ is defined as

$$L(\gamma) = \int_a^b |\gamma'(t)| \mathrm{d}t \ \Big(:= \sum_{j=1}^n \int_{t_{j-1}}^{t_j} |\gamma'(t)| \mathrm{d}t, \text{ if } \gamma_{[t_{j-1}, t_j]} \text{ are } C^1 \forall j \Big).$$

The length of contours is preserved when replacing γ by $-\gamma$ or by $\gamma \circ \varphi$ with a C^1 -invertible parameter transformation φ with $\varphi' > 0$.

Fundamental estimate for contours

If $f : D \to \mathbb{C}$ is a function, then for $M \subset D$, we define

$$\|f\|_M = \sup_{z \in M} |f(z)| \quad \Big(\in [0,\infty]\Big).$$

Theorem (Fundamental estimate)

If $\gamma : [a, b] \to \mathbb{C}$ is a contour and $f : \operatorname{Sp}(\gamma) \to \mathbb{C}$ is continuous, then

$$\int_{\gamma} f \mathrm{d} z \Big| \leq L(\gamma) \, \|f\|_{\mathrm{Sp}(\gamma)}.$$

As a consequence one can exchange limits and path integrals provided the integrands converge uniformly.

Corollary

Let $\gamma : [a, b] \to \mathbb{C}$ be a contour and $f_n, f : \operatorname{Sp}(\gamma) \to \mathbb{C}$ continuous functions such that $(f_n)_{n \ge 0}$ converges uniformly on $\operatorname{Sp}(\gamma)$ to f. Then

$$\lim_{n\to\infty}\int_{\gamma}f_n\mathrm{d} z=\int_{\gamma}f\mathrm{d} z.$$

Fundamental theorem for contour integrals

We write
$$\int_{\partial D_r(a)} f dz = \int_{\gamma} f dz$$
 with $\gamma(t) = a + re^{it}$ $(t \in [0, 2\pi])$.

Examples

For $a \in \mathbb{C}$, r > 0 and all $n \in \mathbb{Z}$

$$\int_{\partial D_r(a)} (z-a)^n dz = \int_0^{2\pi} (re^{it})^n rie^{it} dt = \int_0^{2\pi} i r^{n+1} e^{i(n+1)t} dt$$
$$= \begin{cases} 0, & n \neq -1 \\ 2\pi i, & n = -1 \end{cases}$$

Theorem (Fundamental theorem for contour integrals)

If $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) is continuous and $F: U \to \mathbb{C}$ holomorphic with F' = f, then

$$\int_{\gamma} \operatorname{fd} z = F(\gamma(b)) - F(\gamma(a)) \quad \forall \text{ contours } \gamma : [a, b] \to U.$$

Existence of primitives

Definition

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be continuous. A function $F: U \to \mathbb{C}$ is called a primitive (Stammfunktion) for f if F is holomorphic with F' = f.

Examples

- If $f: U \to \mathbb{C}$ has a primitive and γ is a closed contour in U, then $\int_{\gamma} f dz = 0$.
- In particular: $\int_{\partial D_r(a)} (z-a)^n dz = 0$ for all $n \in \mathbb{Z}$ with $n \neq -1$.

•
$$\int_{\partial D_r(a)} \frac{1}{z-a} dz = 2\pi i \neq 0 \implies \frac{1}{z-a}$$
 has no primitive on $\mathbb{C} \setminus \{a\}$.

Theorem (6.5)

Let $G \subset \mathbb{C}$ be a domain and $f : G \to \mathbb{C}$ continuous. Then equivalent are:

- (i) f has a primitive on G.
- (ii) $\int_{\gamma} f dz = 0$ for each closed contour γ in *G*.

Idea for (*ii*) \Rightarrow (*i*): For fixed $a \in G$ define a primitive of f by

$$F(z) = \int_{\gamma} f(\xi) d\xi$$
, if γ is a contour in *G* with $A(\gamma) = a, E(\gamma) = z$,

Goursat's lemma

Theorem (6.6)

If $G \subset \mathbb{C}$ is open and convex, then (i) and (ii) are equivalent to (iii) $\int_{s} f dz = 0$ for each triangle $\delta = [a, b] \land [b, c] \land [c, a]$ in G.

For $a, b, c \in \mathbb{C}$ we denote the smallest convex set $\Delta \ni a, b, c$ (closed triangle) by

$$\Delta = \Delta(a, b, c) = \{t_1 a + t_2 b + t_3 c; 0 \le t_1, t_2, t_3 \le 1 \text{ und } t_1 + t_2 + t_3 = 1\} \subset \mathbb{C}$$

and write
$$\int_{\partial \Delta} f \, dz = \int_{[a,b] \land [b,c] \land [c,a]} f \, dz$$
.

Theorem (Goursat's lemma)

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic, $\Delta = \Delta(a, b, c) \subset U$ a closed triangle

$$\Rightarrow \quad \int_{\partial \Delta} f \mathrm{d} z = 0.$$

Idea: Subdivide Δ by connecting the midpoints of the edges

$$\left| \underbrace{\int_{\partial \Delta} f \mathrm{d}z}_{=l} \right| = \left| \sum_{i=1}^{4} \int_{\partial \Delta_{1}^{i}} f \mathrm{d}z \right| \le 4 \max_{1 \le i \le 4} \left| \int_{\partial \Delta_{1}^{i}} f \mathrm{d}z \right|$$

Goursat's lemma

and continue like this forever:

One obtains the estimates (with $\{z_0\} = \bigcap_{n \ge 1} \Delta_n$)

$$|I| \leq 4^n \left| \underbrace{\int_{\partial \Delta_n} f(z_0) + (z - z_0) f'(z_0) dz}_{=0} + \int_{\partial \Delta_n} (z - z_0) r(z) dz \right|$$

$$\leq 4'' \left(\frac{1}{4}\right) \quad L(\partial \Delta)^{2} \quad \sup_{z \in \overline{D}_{\operatorname{diam}(\Delta_{n})}(z_{0})} |r(z)| \xrightarrow{\sim} 0$$

Man benutzt dabei, dass diam $(\Delta_n) \leq L(\partial \Delta_n) = \left(\frac{1}{2}\right)^n L(\partial \Delta).$
Cauchy's integral theorem and formula

Corollary (Cauchy's integral thm for convex domains)

Let $G \subset \mathbb{C}$ be a convex domain and let $f: \, G \to \mathbb{C}$ be holomorphic

$$\Rightarrow \int_{\gamma} f dz = 0$$
 for each closed contour γ in G.

Corollary (Cauchy's integral thm for circles)

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic and let $\overline{D}_r(a) \subset U$ be a closed disc.

$$\Rightarrow \quad \int_{\partial D_r(a)} f \mathrm{d} z = 0.$$

Theorem (Cauchy's integral formula for circles)

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic (+ f' continuous) and let $\overline{D}_r(a) \subset U$

$$\Rightarrow \quad f(z) = \frac{1}{2\pi i} \int_{\partial D_r(a)} \frac{f(\xi)}{\xi - z} \mathrm{d}\xi \qquad \text{for all } z \in D_r(a).$$

Taylor's formula

Theorem (6.13)

Let $f : U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic (+ f' continuous) and let $D_R(a) \subset U$. Then f is infinitely often complex differentiable and

•
$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n$$
 for all $z \in D_R(a)$,

•
$$f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\partial D_r(a)} \frac{f(\xi)}{(\xi-a)^{n+1}} \, \mathrm{d}\xi$$
 for $0 < r < R$ and $n \in \mathbb{N}$.

Corollary (6.14)

 $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) holomorphic \Rightarrow f infinitely often complex differentiable. In particular f' is automatically continuous.

Proof. May suppose that *U* is convex.

$$\Rightarrow \quad \text{(Goursat)} \ \int_{\partial \Delta} f \ d \ z = 0 \ \forall \ \text{closed triangles} \ \Delta \subset U$$

Thus *f* has a primitive *F*. But then *F* and f = F' are infinitely often complex differentiable.

CIF for derivatives and Taylor expansion

Theorem (Cauchy's integral formula for derivatives)

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic and $\overline{D}_r(a) \subset U$

$$\Rightarrow \quad f^{(n)}(w) = \frac{n!}{2\pi i} \int_{\partial D_r(a)} \frac{f(\xi)}{(\xi - w)^{n+1}} \, \mathrm{d}\xi \quad \forall n \ge 0 \; \forall w \in D_r(a)$$

Corollary (6.16)

Let $f: U \to \mathbb{C}$ ($U \subset \mathbb{C}$ open) be holomorphic and let $a \in U$. Then f admits a representation as a power series

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n \quad \forall z \in D_r(a)$$

on each disc $D_r(a) \subset U$ with uniquely determined coefficients

$$a_n = rac{f^{(n)}(a)}{n!} \quad \forall \ n \in \mathbb{N}.$$

Theorems of Morera and Weierstraß

Theorem (Morera's theorem)

Let $U \subset \mathbb{C}$ open and let $f : U \to \mathbb{C}$ be continuous with

$$\int_{\partial\Delta} f dz = 0$$
 for each closed triangle $\Delta \subset U$.

Then f is holomorphic.

Idea: Theorem 6.6 \Rightarrow *f* has a primitive *F* on each disc $D_r(a) \subset U$

 $\Rightarrow f = F'$ is infinitely often complex differentiable

Theorem (Weierstraß' theorem)

If $(f_n) \stackrel{n}{\to} f$ uniformly on all compact subsets of $U \subset \mathbb{C}$ open and all f_n are holomorphic, then f is holomorphic and $\forall k \in \mathbb{N}$

 $(f_n^{(k)}) \xrightarrow{n} f^{(k)}$ uniformly on all compact subsets of U.

Morera's theorem \Rightarrow f holomorphic. The rest follows with CIF for the derivatives.

Liouville

Wir schreiben: $\mathcal{O}(U) = \{f; f: U \to \mathbb{C} \text{ ist holomorph}\}.$

Die Funktionen $f \in \mathcal{O}(\mathbb{C})$ heißen ganze Funktionen.

Theorem (Satz von Liouville)

Jede beschränkte ganze Funktion $f \in \mathcal{O}(\mathbb{C})$ ist konstant.

Idee: Sei $M = ||f||_{\mathbb{C}}$. Dann gilt für alle r > 0 und $n \ge 1$

$$\left|\frac{f^{(n)}(0)}{n!}\right| = \left|\frac{1}{2\pi i} \int_{\partial D_r(0)} \frac{f(\xi)}{\xi^{n+1}} \, \mathrm{d}\xi\right| \le \frac{L(\partial D_r(0))}{2\pi} \, \frac{M}{r^{n+1}} = \frac{M}{r^n} \stackrel{(r \to \infty)}{\longrightarrow} 0$$

Also ist $f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n \equiv f(0)$.

Theorem (Cauchysche Ungleichungen)

Sei $f \in \mathcal{O}(D_R(a))$. Dann gilt für 0 < r < R

$$|f^{(n)}(a)| \leq \frac{n!}{r^n} ||f||_{\partial D_r(a)} \quad (n \in \mathbb{N}).$$

Folgerung: $f \in \mathcal{O}(\mathbb{C})$ mit $|f(z)| \le c|z|^N$ für $|z| > R \Rightarrow f$ Polynom mit deg $f \le N$.

Vielfachheit von Nullstellen

Lemma (7.5)

Sei $f \in \mathcal{O}(U)$, $a \in U$ und f in keiner Umgebung von a identisch $0 \Rightarrow \exists ! N \in \mathbb{N}$ mit

$$\exists g \in \mathcal{O}(U) \text{ mit } g(a) \neq 0 \text{ und } f(z) = (z-a)^N g(z) \quad \forall z \in U.$$

Man nennt

- N die Vielfachheit der Nullstelle a von f
- a Nullstelle unendlicher Vielfachheit, wenn $f^{(n)}(a) = 0 \forall n \in \mathbb{N}$.

Theorem (Fundamentalsatz der Algebra)

Sei $p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0 \in \mathbb{C}[z]$ mit $n \ge 1$ und $a_n \ne 0$. Dann hat

- p mindestens eine Nullstelle in \mathbb{C} und ist von der Form
- $p(z) = a_n \prod_{i=1}^n (z_i c_i)$ mit geeigneten $c_1, \ldots, c_n \in \mathbb{C}$.

Idee: Hätte *p* keine Nullstelle in \mathbb{C} , so wäre 1/p wegen

$$\lim_{|z|\to\infty}|p(z)|=\infty$$

eine beschränkte ganze Funktion und daher $1/p \equiv 0$.

Riemannscher Hebbarkeitssatz und Identitätssatz

Theorem (Riemannscher Hebbarkeitssatz)

Ist $f \in \mathcal{O}(U \setminus \{a\})$ ($a \in U \subset \mathbb{C}$ offen) beschränkt auf $D_r(a) \setminus \{a\} \subset U$ für ein r > 0, dann

 $\exists g \in \mathcal{O}(U) \text{ mit } f = g|_{U \setminus \{a\}}.$

Idee: Zeige, dass

$$F: U \to \mathbb{C}, \ F(z) = \left\{ egin{array}{cc} (z-a)^2 f(z), & z \neq a \\ 0, & z = a \end{array}
ight.$$

holomorph ist mit $F(a) = F'(a) = 0 \Rightarrow (7.5) F \in (z-a)^2 \mathcal{O}(U)$.

Theorem (Identitätssatz)

Sei $G \subset \mathbb{C}$ ein Gebiet, $A \subset G$ nicht diskret (d.h. A besitze einen Häufungspkt in G). Dann gilt

$$f, g \in \mathcal{O}(G)$$
 mit $f = g$ auf $A \Rightarrow f = g$ auf ganz G .

Beispiel: Sind $f, g \in \mathcal{O}(D_1(0))$ mit f(1/n) = g(1/n) für fast alle *n*, so ist f = g.

Maximumprinzip

Theorem (Maximumprinzip)

Sei $G \subset \mathbb{C}$ ein Gebiet und $f \in \mathcal{O}(G)$, $g \in C(\overline{G})$ mit $g|_G \in \mathcal{O}(G)$.

- Hat |f| in einem $a \in G$ ein lokales Maximum, so ist $f \equiv const$.
- Ist G beschränkt und $g|_G$ nicht konstant, so gilt $|g(z)| < ||g||_{\partial G} \forall z \in G$.

Idee: Sei
$$|f| \le |f(a)|$$
 auf $D_R(a) \subset G \Rightarrow \forall 0 < r < R$

$$0 \stackrel{ClF}{=} \left| f(a) - \frac{1}{2\pi i} \int_{\partial D_r(a)} \frac{f(\xi)}{\xi - a} \mathrm{d}\xi \right| = \left| f(a) - \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) \mathrm{d}t \right|$$

$$\geq |f(a)| - \frac{1}{2\pi} \int_0^{2\pi} |f(a + re^{it})| dt = \frac{1}{2\pi} \int_0^{2\pi} \underbrace{|f(a)| - |f(a + re^{it})|}_{\geq 0 \text{ stetig in } t} dt \geq 0$$

$$\Rightarrow |f| \equiv |f(a)| \text{ auf } D_R(a) \stackrel{2.19}{\Rightarrow} f \equiv f(a) \text{ auf } D_R(a)$$

 \Rightarrow (Identitätssatz) $f \equiv f(a)$ auf G

Minimumprinzip und Gebietstreue

Theorem (Minimumprinzip = 7.13)

Sei $G \subset \mathbb{C}$ ein Gebiet und $f \in \mathcal{O}(G)$, $g \in C(\overline{G})$ mit $g|_G \in \mathcal{O}(G)$.

- Hat |f| in einem $a \in G$ ein lokales Minimum, so ist f(a) = 0 oder $f \equiv const$.
- Ist G beschränkt und g|G nicht konstant, so hat g eine Nullstelle in G oder

 $|g(z)| > \min\{|g(w)|; w \in \partial G\} \forall z \in G.$

Theorem (Satz von der Gebietstreue = 7.14)

Sei $G \subset \mathbb{C}$ ein Gebiet und $f \in \mathcal{O}(G)$ nicht konstant $\Rightarrow f(G)$ ist ein Gebiet und

f ist offen, d.h. $f(U) \subset \mathbb{C}$ ist offen $\forall U \subset G$ offen.

Connected components

Let $U \subset \mathbb{C}$ be open. An equivalence relation on U is defined by

 $z \sim w \Leftrightarrow$ there is a path γ from z to w in U.

The equivalence classes are called path components of U or simply components of U.

Lemma (8.2)

Let $U \subset \mathbb{C}$ be open and $z \in U$.

- (a) The equivalence class C(z) of z in U is open and connected.
- (b) U is the disjoint union of its components.

(c) $M \subset U$ connected or path connected with $M \cap C(z) \neq \emptyset \Rightarrow M \subset C(z)$.

Examples (8.3)

 $K \subset \mathbb{C}$ compact $\Rightarrow \exists!$ unbounded component C_{∞} in $\mathbb{C} \setminus K$. We have

$$\{z \in \mathbb{C}; |z| > \sup_{w \in K} |w|\} \subset C_{\infty}.$$

A Cauchy-type integral

Lemma (8.4)

Let γ be a contour in \mathbb{C} , φ, ψ : $\operatorname{Sp}(\gamma) \to \mathbb{C}$ continuous and $U = \mathbb{C} \setminus \varphi(\operatorname{Sp}(\gamma))$. Then

$$f: U \to \mathbb{C}, \quad f(z) = \int_{\gamma} \frac{\psi(\xi)}{\varphi(\xi) - z} \mathrm{d}\xi$$

is holomorphic with $\lim_{|z|\to\infty} f(z) = 0$. For all $z \in U$ and $n \in \mathbb{N}$,

$$f^{(n)}(z) = n! \int_{\gamma} \frac{\psi(\xi)}{(\varphi(\xi) - z)^{n+1}} \mathrm{d}\xi.$$

Idee: For $z \in D_r(a) \subset U = \mathbb{C} \setminus \varphi(\operatorname{Sp}(\gamma))$, the series

$$\frac{\psi(\xi)}{\varphi(\xi)-z} = \frac{\psi(\xi)}{(\varphi(\xi)-a)(1-\frac{z-a}{\varphi(\xi)-a})} = \sum_{n=0}^{\infty} \frac{\psi(\xi)}{(\varphi(\xi)-a)^{n+1}}(z-a)^n$$

converges uniformly for $\xi \in Sp(\gamma)$ by the WM-test. Hence

$$f(z) = \sum_{n=0}^{\infty} \Big(\int_{\gamma} \frac{\psi(\xi)}{(\varphi(\xi) - a)^{n+1}} \mathrm{d}\xi \Big) (z - a)^n.$$

Winding number

Theorem (8.5)

Let γ be a closed contour in \mathbb{C} . Then

$$\operatorname{ind}_{\gamma}(z) := rac{1}{2\pi i} \int_{\gamma} rac{1}{\xi - z} \mathrm{d}\xi \in \mathbb{Z} \; orall z \in \mathbb{C} \setminus \operatorname{Sp}(\gamma)$$

is constant on each component and vanishes on the unbounded component.

Idee: Show that
$$\exp\left(\int_{\gamma} \frac{d\xi}{\xi-z}\right) = 1$$
 for all $z \in \mathbb{C} \setminus \operatorname{Sp}(\gamma)$.

Definition (8.6)

The winding number (Umlaufzahl) or index of γ relative to z is defined as the integer

$$\operatorname{ind}_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\xi - z} d\xi.$$

Examples (8.7)

For $\gamma : [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = a + re^{imt}$ $(a \in \mathbb{C}, m \in \mathbb{Z})$,

$$\operatorname{ind}_{\gamma}(z) = \begin{cases} m, & z \in D_r(a), \\ 0, & z \notin \overline{D}_r(a). \end{cases}$$

Integrals along cycles

A cycle (Zyklus) in $M \subset \mathbb{C}$ is a tuple $\Gamma = (\gamma_1, \ldots, \gamma_n)$ of closed contours in M. For cycles $\Gamma = (\gamma_1, \ldots, \gamma_n)$ and $\Delta = (\delta_1, \ldots, \delta_m)$ in \mathbb{C} , we define

• $\operatorname{Sp}(\Gamma) = \operatorname{Sp}(\gamma_1) \cup \ldots \cup \operatorname{Sp}(\gamma_n)$

•
$$-\Gamma = (-\gamma_1, \ldots, -\gamma_n)$$

•
$$\Gamma + \Delta = (\gamma_1, \ldots, \gamma_n, \delta_1, \ldots, \delta_m)$$

•
$$\int_{\Gamma} f dz = \sum_{i=1}^{n} \int_{\gamma_i} f dz$$
 if $f : \operatorname{Sp}(\Gamma) \to \mathbb{C}$ is continuous

•
$$\operatorname{ind}_{\Gamma}(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{d\xi}{\xi - z} = \sum_{i=1}^{n} \operatorname{ind}_{\gamma_i}(z) \quad (z \in \mathbb{C} \setminus \operatorname{Sp}(\Gamma))$$

Definition

Let Γ be a cycle or a single contour in $\mathbb C.$ We define the interior of Γ as the set

$$\operatorname{Int}(\Gamma) = \{z \in \mathbb{C} \setminus \operatorname{Sp}(\Gamma); \operatorname{ind}_{\Gamma}(z) \neq 0\}.$$

Since $\operatorname{ind}_{\Gamma}(\cdot) : \mathbb{C} \setminus \operatorname{Sp}(\Gamma) \to \mathbb{C}$ is continuous, $\operatorname{Int}(\Gamma) \subset \mathbb{C}$ is open. We identify a single contour γ with the cycle $\Gamma = (\gamma)$.

Global Cauchy theorem

Let $\Gamma = (\gamma_1, \dots, \gamma_n)$ be a cycle in \mathbb{C} . Then

- $Int(\Gamma) \subset \{z \in \mathbb{C}; |z| \le \sup_{w \in Sp(\Gamma)} |w|\}$ and $Int(\Gamma) \cup Sp(\Gamma)$ is compact
- ind_Γ(·) is constant on each component of C \ Sp(Γ) and 0 on C_∞.

Theorem (The global Cauchy theorem = 8.10)

Let $f \in \mathcal{O}(U)$ ($U \subset \mathbb{C}$ open). Let Γ be a cycle in U with $Int(\Gamma) \subset U$. Then (a) $\int_{\Gamma} f dz = 0$, (b) $ind_{\Gamma}(z) f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{\xi - z} d\xi \quad \forall z \in U \setminus Sp(\Gamma)$, (c) $ind_{\Gamma}(z) f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{(\xi - z)^{k+1}} d\xi \quad \forall z \in U \setminus Sp(\Gamma) \text{ and } k \in \mathbb{N}$. (d) If Γ_1 and Γ_2 are cycles in U with

$$\operatorname{ind}_{\Gamma_1}(z) = \operatorname{ind}_{\Gamma_2}(z) \quad \forall z \in \mathbb{C} \setminus U,$$

then

$$\int_{\Gamma_1} f \mathrm{d} z = \int_{\Gamma_2} f \mathrm{d} z.$$

Global Cauchy thm: An application

Examples (8.11)

Let
$$U = D_t(a) \cap \overline{D}_s(a)^c$$
 for $0 \le s < t \le \infty$ and $f \in \mathcal{O}(U)$.
For $s < r < t$, define $\gamma_r : [0, 2\pi] \to \mathbb{C}, t \mapsto a + re^{it}$. Then for $s < r_1 < r_2 < t$

$$\operatorname{ind}_{\gamma_{r_1}}(z) = \operatorname{ind}_{\gamma_{r_2}}(z)$$
 for all $z \in \mathbb{C} \setminus U$

and

$$\operatorname{ind}_{(\gamma_{r_2}, -\gamma_{r_1})}(z) = \underbrace{\operatorname{ind}_{\gamma_{r_2}}(z)}_{=1} - \underbrace{\operatorname{ind}_{\gamma_{r_1}}(z)}_{=0} = 1 \text{ for all } r_1 < |z| < r_2.$$

Therefore:

•
$$\int_{\gamma_r} f dz$$
 does not depend on $r \in (s, t)$

 $f(z) = \frac{1}{2\pi i} \left(\int_{\gamma_{r_2}} \frac{f(\xi)}{\xi - z} d\xi - \int_{\gamma_{r_1}} \frac{f(\xi)}{\xi - z} d\xi \right) \text{ for all } r_1 < |z| < r_2$

③ The integrals in (2) define analytic functions $f_0 \in \mathcal{O}(D_t(a)), f_\infty \in \mathcal{O}(\overline{D}_s(a)^c)$ with

$$f = f_0 - f_\infty$$
 on U .

Simply connected domains

Definition (8.12)

- A domain $G \subset \mathbb{C}$ is simply connected if $Int(\gamma) \subset G \forall$ closed contours γ in G.
- A holomorphic logarithm of $f \in \mathcal{O}(U)$ is a function $g \in \mathcal{O}(U)$ with $e^g = f$.

Theorem (8.13)

Let $G \subset \mathbb{C}$ be a domain. Equivalent are:

(i) G is simply connected.

(ii)
$$\int_{\gamma} f dz = 0 \ \forall$$
 closed contours γ in G and $f \in \mathcal{O}(G)$.

- (iii) Each function $f \in \mathcal{O}(G)$ has a primitive.
- (iv) Each function $f \in \mathcal{O}(G)$ with $0 \notin f(G)$ has a holomorphic logarithm.

Some ideas: (i) \Rightarrow (ii) \Leftrightarrow (iii). Global Cauchy thm and Theorem 6.5. (iii) \Rightarrow (iv). Aufgabe 20 (iv) \Rightarrow (i). If $1/(z-a) = e^g$, then 1/(z-a) = -(1/z-a)'/1/(z-a) = -g'.

Criteria for simple connectedness

Theorem (8.14)

Let $G \subset \mathbb{C}$ be a domain.

• G not simply connected $\Rightarrow \exists \emptyset \neq A_1$ compact and A_2 closed with

 $\mathbb{C}\setminus G=A_1\cup A_2, \qquad A_1\cap A_2=\emptyset.$

• $\mathbb{C} \setminus G$ unbounded and connected $\Rightarrow G$ is simply connected.

Examples (8.15)

- Convex domains are simply connected by Cauchy's integral theorem for convex domains.
- $\mathbb{C}_{-\pi} = \mathbb{C} \setminus (-\infty, 0]$ is simply connected by Theorem 8.14 (but not convex).
- $G = \{z \in \mathbb{C}; |\operatorname{Im} z| < 1\}$ is simply connected (but $\mathbb{C} \setminus G$ is not connected).

Isolated singularities: Definition

Definition (9.1)

An isolated singularity for $f \in \mathcal{O}(U)$ is a point $a \in \mathbb{C} \setminus U$ with $\dot{D}_r(a) \subset U$ for some r > 0.

An isolated singularity a for f is called

- removable if $\exists g \in \mathcal{O}(U \cup \{a\} \text{ with } f = g|_U$,
- pole if $\lim_{z\to a} |f(z)| = \infty$,
- essential if *a* is neither removable nor a pole.

Examples (9.2)

0 is an isolated singularity for the functions

$$f(z) = \frac{\sin z}{z}$$
 (removable), $g(z) = \frac{1}{z^n} (n \in \mathbb{N}^*)$ (pole), $h(z) = e^{\frac{1}{z}}$ (essential).

If $A \subset U$ is discrete and $f \in \mathcal{O}(U \setminus A)$, then A consists of isolated singularities for f.

Isolated singularities: Characterizations

Theorem (9.4)

For $f \in \mathcal{O}(U \setminus \{a\})$ ($a \in U$), exactly one of the following cases holds:

(i) a is removable for f,

(ii) $\exists m \in \mathbb{N}^*, c_1, \dots, c_m \in \mathbb{C}$ with $c_m \neq 0$ such that a is removable for

$$U \setminus \{a\} \to \mathbb{C}, \ z \mapsto f(z) - \sum_{k=1}^m \frac{c_k}{(z-a)^k},$$

(iii) $\forall w \in \mathbb{C} \exists (z_n)_{n \geq 0}$ in $U \setminus \{a\}$ with $\lim_{n \to \infty} z_n = a$ and $\lim_{n \to \infty} f(z_n) = w$. *f* possesses a pole in *a* in case (ii) and an essential singularity in case (iii).

In case (ii) the numbers $m \in \mathbb{N}^*, c_1, \ldots, c_m$ are uniquely determined.

Definition (9.6)

In the setting of case (ii) one calls

- *m* the order of the pole *a*,
- $\sum_{k=1}^{m} \frac{c_k}{(z-a)^k}$ the principal part (Hauptteil) of *f* in *a*,
- res $(f, a) = c_1$ the residuum of f in a.

We say that *f* has a simple pole at *a* if m = 1.

Laurent separation

Lemma (9.7)

Let $f \in \mathcal{O}(U \setminus \{a\})$ ($a \in U$). Then equivalent are:

• f has a pole of order m in a,

•
$$\exists g \in \mathcal{O}(U)$$
 with $g(a) \neq 0$ and $f(z) = \frac{g(z)}{(z-a)^m}$ for all $z \in U \setminus \{a\}$,

•
$$\lim_{z\to 0}(z-a)^m f(z) \in \mathbb{C}^*$$
 exists.

In this case: res $(f, a) = \frac{g^{(m-1)}(a)}{(m-1)!}$. If m = 1, then

res
$$(f, a) = g(a) = \lim_{z \to a} (z - a)f(z).$$

We return to Example 8.11. For $a \in \mathbb{C}, 0 \leq s < t \leq \infty$, set

$$K_{s,t}(a) = \{z \in \mathbb{C}; \ s < |z - a| < t\}.$$

Theorem (Laurent separation = 9.8)

Let $f \in \mathcal{O}(K_{s,t}(a))$. Then $\exists ! f_0 \in \mathcal{O}(D_t(a)), f_\infty \in \mathcal{O}(\mathbb{C} \setminus \overline{D}_s(a))$ with

 $f = f_0 + f_\infty$ on $K_{s,t}(a)$, $\lim_{|z| \to \infty} f_\infty(z) = 0$.

Beweis von Satz 9.8

Beuris von Satz 9.8 Sui $f \in O(k_{S,t}(a))$. Schreibe $D_t(a) = \bigcup D_t(a)$, $C \cup \overline{D}_s(a) = \bigcup C \cup \overline{D}_t(a)$. Lemma S.4 => to (to) holomoph and Dr (a) (C. Dr (a)) und lim to (2) = 0 Ally. CIS > fo(2), fo (2) unalthängig von der Wahl von r und (Beispiel 8.11) f = fo - for and Ks, (a) Eindeutigheit von 50, 500 : Seice f= f + f = g + for we im Sate $\Rightarrow \exists h \in O(a) \text{ wit } h = \begin{cases} t_0 - g_0 & \text{auf } D_{k}(a) \\ g_0 - t_0 & \text{auf } C \setminus \overline{D}_{k}(a) \end{cases}$ => lim h (2)=0

121-> 20

=> (Liouville) h = 0.

Laurent expansion

Expanding f_0 (Nebenteil) and f_∞ (Hauptteil) into series

$$f_0(z) = \sum_{n=0}^{\infty} a_n(z-a)^n \quad (|z-a| < t), \quad f_\infty(z) = \sum_{n=1}^{\infty} a_{-n}(z-a)^{-n} \quad (|z-a| > s)$$

one obtains:

Theorem (Laurent-Entwicklung = 9.9)

For $f \in \mathcal{O}(K_{s,t}(a))$ there are unique coefficients $a_n \ (n \in \mathbb{Z})$ with

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z-a)^n$$
 for all $z \in K_{s,l}(a)$.

The coefficients a_n are given by

$$a_n = rac{1}{2\pi i} \int\limits_{\partial D_r(a)} rac{f(\xi)}{(\xi-a)^{n+1}} d\xi \quad (n\in\mathbb{Z}, s< r< t).$$

The series $\sum_{n=0}^{\infty} a_n(z-a)^n$ and $\sum_{n=1}^{\infty} a_{-n}(z-a)^{-n}$ converge uniformly on compact subsets of $D_t(a)$ and $C \setminus \overline{D}_s(a)$, respectively.

Theorem 9.9: Proof

 $\dot{D}_{1/s}(0) \to \mathbb{C}, \ z \mapsto f_{\infty}(a + \frac{1}{z})$ extends to $F_{\infty} \in \mathcal{O}(D_{1/s}(0))$ with Taylor series

 $F_{\infty}(z) = \sum_{n=1}^{\infty} a_{-n} z^n$ (Riemansscher Hebbarkeitssatz)

$$f_{\infty}(z) = F_{\infty}\left(\frac{1}{z-a}\right) = \sum_{n=1}^{\infty} a_{-n}(z-a)^{-n} \text{ for } |z-a| > s$$

$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n + \sum_{n=1}^{\infty} a_{-n} (z-a)^{-n} =: \sum_{n \in \mathbb{Z}} a_n (z-a)^n$$

If $f(z) = \sum_{n \in \mathbb{Z}} b_n (z - a)^n$ for $z \in K_{s,t}(a)$, then the radius of convergence of

$$\sum_{n=0}^{\infty} b_n (z-a)^n \text{ is } \geq t \quad \Big(\sum_{n=1}^{\infty} b_{-n} z^n \text{ is } \geq 1/s\Big).$$

Hence the series $\sum_{n \in \mathbb{Z}} b_n (z - a)^n$ converges uniformly on cpct subsets of $K_{s,t}(a)$ and

$$\int_{\partial D_r(\mathbf{a})} \frac{f(\xi)}{(\xi-\mathbf{a})^{N+1}} d\xi = \sum_{n \in \mathbb{Z}} b_n \int_{\partial D_r(\mathbf{a})} (z-\mathbf{a})^{n-N-1} d\xi = 2\pi i \ b_N.$$

Laurent series

Definition

Let $f \in \mathcal{O}(K_{s,t}(a))$ with $0 \le s < t \le \infty$. The series expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n$$

is called the Laurent series of f. We call

•
$$\sum_{n=1}^{\infty} a_{-n}(z-a)^{-n} = \sum_{n=-1}^{-\infty} a_n(z-a)^n$$
 the principal part of f

•
$$\sum_{n=0}^{\infty} a_n (z-a)^n$$
 the Nebenteil of f

• res
$$(f, a) = a_{-1} = \frac{1}{2\pi i} \int_{\partial D_r(a)} f(\xi) d\xi$$
 $(s < r < t)$ the residuum of f .

Examples

Let $f(z) = \frac{1}{z(z-1)^2}$. Then expanding f into its Laurent series yields • $f(z) = \frac{1}{z} \frac{d}{dz} \left(\frac{1}{1-z}\right) = \frac{1}{z} \sum_{n=1}^{\infty} nz^{n-1} = \sum_{n=-1}^{\infty} (n+2)z^n$ on $K_{0,1}(0)$ • $f(z) = \frac{1}{(z-1)^2} \frac{1}{1+(z-1)} = \sum_{n=-2}^{\infty} (-1)^n (z-1)^n$ on $K_{0,1}(1)$.

How to recognize the singularity type from the Laurent series

Theorem

Let $f \in \mathcal{O}(U \setminus \{a\})$ ($a \in U \subset \mathbb{C}$ open) with Laurent expansion

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n$$
 near a

Then

- a is removable \Leftrightarrow $a_n = 0 \forall n < 0$
- a is a pole of order $m \Leftrightarrow a_{-m} \neq 0$ and $a_n = 0 \forall n < -m$
- a is essential \Leftrightarrow $a_n \neq 0$ for infinitely many n < 0.

Some ideas: If *f* extends to $g \in \mathcal{O}(U)$, then

$$a_n = rac{1}{2\pi i}\int\limits_{\partial D_r(a)}rac{g(\xi)}{(\xi-a)^{n+1}}d\xi = 0 \ \forall n < 0.$$

If $f(z) - \sum_{k=1}^{m} c_{-k}(z-a)^{-k}$ extends to $g \in \mathcal{O}(U)$, then

$$f(z) = \sum_{k=-m}^{-1} c_k (z-a)^k + \sum_{k=0}^{\infty} \frac{g^{(k)}(a)}{k!} (z-a)^k$$

is the Laurent series of f at a. The third case follows by excluding the first two.

Residue theorem

Theorem

Let $f \in \mathcal{O}(U \setminus A)$ ($A \subset U$ discrete). If Γ is a cycle in $U \setminus A$ with $Int(\Gamma) \subset U$, then

$$\frac{1}{2\pi i} \int_{\Gamma} f \, dz = \sum_{a \in A} \operatorname{ind}_{\Gamma}(a) \operatorname{res}(f, a) \quad \text{(the sum is finite!)}.$$

Idea: The set $M = \{a \in A; \text{ ind}_{\Gamma}(a) \neq 0\} \subset \text{Int}(\Gamma) \cup \text{Sp}(\Gamma)$ is finite, say

$$M = \{a_1, \ldots, a_k\}.$$

Let $q_i(z) = \sum_{n=1}^{\infty} a_{in}(z - a_i)^{-n}$ be the principal part of f in a_i . Then $f - (q_1 + \ldots + q_k)$ extends to $g \in \mathcal{O}(V)$ on $V = (U \setminus A) \cup \{a_1, \ldots, a_k\}$ and

$$\int_{\Gamma} f \, dz = \int_{\Gamma} \left(\sum_{i=1}^{k} q_i \right) dz = \sum_{i=1}^{k} \sum_{n=1}^{\infty} a_{in} \int_{\Gamma} \frac{1}{(z-a_i)^n} dz = \sum_{i=1}^{k} (2\pi i) \operatorname{ind}_{\Gamma}(a_i) \operatorname{res}(f, a_i).$$

First equality: CIS (8.10 (a)). Last equality: CIF for the derivatives (8.10 (c)).

Zeroes and poles

Definition

Let $f \in \mathcal{O}(U)$ and let *a* be a zero point or a pole for *f*. Then the order of *f* at *a* is

$$\operatorname{ord}_{a}(f) = \begin{cases} n, & \text{if } a \text{ is a zero of multiplicity } n \\ -n, & \text{if } a \text{ is a pole of order } n \end{cases}$$

We write $\operatorname{ord}_a(f) = 0$ if $a \in U$ is no zero of f and define $N_f = f^{-1}(\{0\})$.

Examples

Let $f \in \mathcal{O}(U)$. If *a* is a zero of finite multiplicity or a pole for *f*, then

$$\frac{f'}{f}$$
 has a simple pole at a with res $(\frac{f'}{f}, a) = \operatorname{ord}_a(f)$.

Indeed, if $f(z) = (z - a)^n g(z)$ $(n \in \mathbb{Z}^*)$ with $g(a) \neq 0$, then on $\dot{D}_r(a) \subset U$

$$\frac{f'(z)}{f(z)} = \frac{n(z-a)^{n-1}g(z)}{(z-a)^n g(z)} + \frac{(z-a)^n g'(z)}{(z-a)^n g(z)} \in \frac{n}{z-a} + \mathcal{O}(D_r(a)).$$

Argument principle

Simple facts: Let $M, N \subset \mathbb{C}$ and $f \in \mathcal{O}(U)$ be given.

• a accumulation pt. (Häufungspkt) of M

 $:\Leftrightarrow \forall r > 0: \dot{D}_r(a) \cap M \neq \emptyset \Leftrightarrow \exists M \cap \{a\}^c \ni z_n \stackrel{(n \to \infty)}{\longrightarrow} a$

- a accumulation pt. of $M \cup N :\Leftrightarrow M$ accumulation pt. of M or N
- *f* not identically zero on any component of $U \stackrel{Id.Satz}{\iff} N_f \subset U$ discrete

Theorem (Argument principle = 10.3)

Let $f \in \mathcal{O}(U \setminus A)$ ($A \subset U$ discrete) such that $N_f \subset U \setminus A$ is discrete and A consists of poles for f.

If Γ is a cycle in $U \setminus (A \cup N_f)$ with $Int(\Gamma) \subset U$, then

$$\frac{1}{2\pi i}\int\limits_{\Gamma}\frac{f'(z)}{f(z)}dz=\sum_{a\in N_f\cup A}\mathrm{ind}_{\Gamma}(a)\;\mathrm{ord}_a(f)\quad \text{(the sum is finite!)}.$$

If $A = \emptyset$, then the formula holds without A for each $f \in \mathcal{O}(U)$ with $N_f \subset U$ discrete and each cycle Γ in $U \setminus N_f$ with $Int(\Gamma) \subset U$.

Arguement principle: Proof

Idea: Apply the residue theorem to $\frac{f'}{f} \in \mathcal{O}(U \setminus (A \cup N_f))$

Assume that there is an accumulation point *a* of $A \cup N_f$ in *U*.

Then *a* is an accumulation point of N_f in $U \setminus (U \setminus A) = A$.

$$\Rightarrow \exists N_f \ni z_n \stackrel{(n \to \infty)}{\longrightarrow} a \in A$$

which is not possible, since a would be a pole for f.

Thus $\frac{f'}{f} \in \mathcal{O}(U \setminus (A \cup N_f))$ and $A \cup N_f \subset U$ is discrete.

$$\Rightarrow \text{ (Reside theorem)} \ \frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz = \sum_{a \in N_f \cup A} \operatorname{ind}_{\Gamma}(a) \operatorname{ord}_{a}(f)$$

for each cycle Γ in $U \setminus (A \cup N_f)$ with $Int(\Gamma) \subset U$.

Counting zeroes and poles

Remark

If in addition $\operatorname{ind}_{\Gamma}(a) = 1 \, \forall a \in \operatorname{Int}(\Gamma)$, then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'(z)}{f(z)} dz = \sum_{a \in N_f \cap \operatorname{Int}(\Gamma)} \operatorname{ord}_a(f) + \sum_{a \in A \cap \operatorname{Int}(\Gamma)} \operatorname{ord}_a(f)$$

is the difference of the number of zeroes and poles in $Int(\Gamma)$ counted with multplicity and order.

Theorem (Rouché = 10.8)

If $f, g \in \mathcal{O}(U)$ are not zero on any component of U, Γ is a cycle in U with

$$|f(z) - g(z)| < |f(z)| \ \forall \ z \in \operatorname{Sp}(\Gamma)$$

and $Int(\Gamma) \subset U$, then

$$\sum_{a \in N_f} \operatorname{ind}_{\Gamma}(a) \operatorname{ord}_a(f) = \sum_{a \in N_g} \operatorname{ind}_{\Gamma}(a) \operatorname{ord}_a(g) \quad \text{(both sums are finite!)}.$$

Rouché's theorem: Proof

By the argument principle with $A = \emptyset$

$$\sum_{a \in N_f} \operatorname{ind}_{\Gamma}(a) \operatorname{ord}_a(f) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz, \quad \sum_{a \in N_g} \operatorname{ind}_{\Gamma}(a) \operatorname{ord}_a(g) = \frac{1}{2\pi i} \int_{\Gamma} \frac{g'}{g} dz$$

With $\Gamma = (\gamma_1, \ldots, \gamma_n)$ and $f(\Gamma) = (f \circ \gamma_1, \ldots, f \circ \gamma_n)$

$$\int_{\Gamma} \frac{f'}{f} dz = \sum_{i=1}^{n} \int_{a_i}^{b_i} \frac{f'(\gamma_i(t))}{f(\gamma_i(t))} \gamma'_i(t) dt = \sum_{i=1}^{n} \int_{f \circ \gamma_i} \frac{1}{z} dz = (2\pi i) \operatorname{ind}_{f(\Gamma)}(0).$$

Hence it suffices to show that

$$\operatorname{ind}_{f(\Gamma)}(0) = \operatorname{ind}_{g(\Gamma)}(0).$$

This equality follows from the hypothesis that (Lemma 10.7)

$$|f(\gamma_i(t)) - g(\gamma_i(t))| < |f(\gamma_i(t))| \quad \forall i = 1, \ldots, n, t \in [a_i, b_i].$$

Examples

(a) If $\operatorname{ind}_{\Gamma}(a) = 1$ for all $a \in \operatorname{Int}(\Gamma)$ in Rouché's theorem then,

$$\sum_{a \in N_f \cap \operatorname{Int}(\Gamma)} \operatorname{ord}_a(f) = \sum_{a \in N_g \cap \operatorname{Int}(\Gamma)} \operatorname{ord}_a(g).$$

(b) For $g(z) = z^8 - z^3 + 5z - 2$ and f(z) = 5z,

$$|g(z) - f(z)| = |z^8 - z^3 - 2| \le 4 < 5 = |f(z)| \text{ on } \partial D_1(0).$$

Hence g has exactly as many zeroes in $D_1(0)$ as f, this means one.

Theorem (10.12)

Let $f \in \mathcal{O}(G)$ ($G \subset \mathbb{C}$ domain). If $f - w_0$ has a zero of order $k \in \mathbb{N}^*$ at $z_0 \in G$, then $\forall r > 0 \exists$ open neighbourhoods $U \subset D_r(z_0)$ of $z_0, W \subset \mathbb{C}$ of w_0 with

$$\#(\{z \in U; f(z) = w\}) = k \quad \forall w \in W \setminus \{w_0\} \quad and \quad f(U) = W.$$

Identity thm. $\Rightarrow \exists r > 0 : w_0 \notin f(\overline{D}_r(z_0) \setminus \{z_0\}) \text{ and } 0 \notin f'(\overline{D}_r(z_0) \setminus \{z_0\})$

For $|w - w_0| < s$ small enough: $|(f - w) - (f - w_0)| < |f - w_0|$ on $\partial D_r(z_0)$

(Argument principle) $\Rightarrow \#(\{z \in D_r(z_0); f(z) = w\}) = k \quad \forall w \in \dot{D}_s(w_0).$

Local invertibility

Theorem (10.14)

Let $f \in \mathcal{O}(U)$ and $z_0 \in U$ with $f'(z_0) \neq 0$.

 $\Rightarrow \exists$ open ngh.hoods $V \subset U$ of z_0 , W of $f(z_0)$ such that $f : V \rightarrow W$ is biholomorphic.

Proof. May suppose that U is connected (Replace U by the component of z_0). Set $w_0 = f(z_0)$.

- \Rightarrow $f w_0$ has a zero of order 1 at z_0 .
- ⇒ \exists open ngh.hoods $V \subset U$ of z_0 , W of $f(z_0)$ such that $f : V \to W$ is bijective.
- \Rightarrow (Satz v. d. Gebietstreue) $g = (f : V \rightarrow W)^{-1}$ is continuous

$$\frac{g(w+h)-g(w)}{h} = \frac{g(w+h)-g(w)}{f(g(w+h))-f(g(w))} \stackrel{(h\to 0)}{\to} \frac{1}{f'(g(w))}$$

Corollary (10.15)

Let $f \in \mathcal{O}(U)$ be injective. Then $f(U) \subset \mathbb{C}$ is open and $f : U \to f(U)$ is biholomorphic.

Applications to improper real integrals

Aim: Use the residue theorem to calculate real integrals of the form

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx, \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) dx, \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) dx \quad (p,q \in \mathbb{C}[z], 0 \notin q(\mathbb{R}), a > 0)$$

Strategy: Calculate

$$\int_{\Gamma_1\wedge\Gamma_R}\frac{p(z)}{q(z)}e^{iaz}dz$$

with $\Gamma_1(x) = x \ (-R \le x \le R)$ and $\Gamma_R(x) = Re^{ix} \ (0 \le x \le \pi)$. If

$$\lim_{R\to\infty}\int\limits_{\Gamma_R}\frac{p(z)}{q(z)}e^{iaz}dz=0,$$

then the residue theorem implies that with $f(z) = \frac{p(z)}{q(z)}e^{iaz}$

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} e^{jax} dx = \lim_{R \to \infty} \int_{-R}^{R} \frac{p(x)}{q(x)} e^{jax} dx = 2\pi i \sum_{\substack{w \in N_q \\ \text{Im } w > 0}} \text{res } (f, w)$$

provided the improper Riemann integral on the left-hand side exists.

$\deg(q) \geq \deg(p) + 2$

Recall: For $f, g : \mathbb{R} \to \mathbb{C}$ continuous,

• by definition $\int_{-\infty}^{\infty} f dx$ exists if $\lim_{R \to \infty} \int_{0}^{R} f dx$ and $\lim_{R \to \infty} \int_{-R}^{0} f dx$ both exist or, equivalently, if $\forall \epsilon > 0 \exists r_{\epsilon} > 0$ such that $\forall r, s \in \mathbb{R}$ with $r_{\epsilon} < r < s$.

$$\left|\int\limits_{r}^{s} f dx\right| < \epsilon$$
 und $\left|\int\limits_{-s}^{-r} f dx\right| < \epsilon$ (Cauchy criterion).

• if $\int_{-\infty}^{\infty} |g(x)| dx$ exists and $|f(x)| \le c |g(x)| \forall |x| > R$, then $\int_{-\infty}^{\infty} f dx$ exists.

Theorem (11.2)

For $p, q \in \mathbb{C}[z]$ with $\deg(q) \geq \deg(p) + 2$ and $0 \notin q(\mathbb{R})$,

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} dx = 2\pi i \sum_{\substack{w \in N_q \\ \text{Im } w > 0}} \text{res} \left(\frac{p}{q}, w\right).$$

Idea: Show that $\exists R_0, c > 0$ such that $\|p/q\|_{Sp(\Gamma_R)} \leq c/R^2 \forall R > R_0$. Then

$$|\int_{\Gamma_R} p/qdz| \leq L(\Gamma_R) \|p/q\|_{\mathrm{Sp}(\Gamma_R)} \leq (\pi R) \ c/R^2 \stackrel{(R \to \infty)}{\longrightarrow} 0.$$

Example 11.3

Examples

We calculate

$$I = \int_{-\infty}^{\infty} \frac{x^2}{1 + x^4} dx$$

The only poles of

$$f(z) = \frac{z^2}{1+z^4} = \frac{g(z)}{h(z)}$$

in the upper half plane are simple poles at $w_1 = e^{i\frac{\pi}{4}}$ and $w_2 = e^{i\frac{3}{4}\pi}$ with (Aufgabe 33(b))

$$\operatorname{res}(f, w_i) = \frac{g(w_i)}{h'(w_i)} = \frac{1}{4w_i}$$

By Theorem 11.2

$$I = 2\pi i(\operatorname{res}(f, w_1) + \operatorname{res}(f, w_2)) = \frac{\pi}{2} e^{j\frac{\pi}{2}} (e^{-j\frac{\pi}{4}} + e^{-j\frac{3}{4}\pi}) = \frac{\pi}{\sqrt{2}}$$
$\deg(q) \geq \deg(p) + 1$

Theorem (11.5)

If $p,q\in\mathbb{C}[z]$ with deg $(q)\geq$ deg (p)+1, $0\notin q(\mathbb{R})$ and a>0, then

$$\int_{-\infty}^{\infty} \underbrace{\frac{p(x)}{q(x)} e^{iax}}_{f(x)} dx = 2\pi i \sum_{\substack{w \in N_q \\ \text{Im } w > 0}} \text{res } \left(\frac{p(z)}{q(z)} e^{iaz}, w \right).$$

Ideas: Choose $r_1, r_2, s > 0$ with $\{w \in N_q; \text{Im } w > 0\} \subset] - r_1, r_2[\times]0, s[$. Fix $\epsilon > 0$.

Using the residue theorem and choosing suitable r_1 , $r_2 > 0$ and then s > 0 one obtains

$$\left|\int_{-r_1}^{r_2} f(x) dx - 2\pi i \sum_{\substack{w \in N_q \\ \text{Im } w > 0}} \operatorname{res} (f, w)\right| = \left|-\int_{\gamma_1 \wedge \gamma_2 \wedge \gamma_3} f(z) dz\right| < \epsilon + \epsilon + \epsilon.$$

Theorem 11.5: Proof

•
$$|f(z)| = \left|\frac{p(z)}{q(z)}e^{iaz}\right| \underset{|z| \ge R_0}{\leq} \frac{c}{|z|}e^{-a \operatorname{Im} z} \left(\leq \frac{c}{s} \operatorname{auf} \gamma_2\right)$$

• $\gamma_1(t) = r_2 + ist \quad (0 \le t \le 1)$
• $\left|\int_{\gamma_1} fdz\right| = \left|\int_0^1 \frac{p}{q}(\gamma_1(t)) e^{(iar_2 - ast)} isdt\right| \le \frac{1}{a} \frac{c}{r_2} \underbrace{\int_0^1 e^{-ast} as dt}_{=1 - e^{-as} \le 1} \le \frac{c}{ar_2}$
• $\left|\int_{\gamma_3} fdz\right| \le \frac{c}{ar_1}$

•
$$\left|\int_{\gamma_2} f dz\right| \leq L(\gamma_2) \|f\|_{\mathrm{Sp}(\gamma_2)} \leq (r_1 + r_2) \frac{c}{s} < \epsilon \text{ for } s > s(r_1, r_2, \epsilon)$$

Hence

$$\left|\int_{-r_1}^{r_2} f(x)dx - 2\pi i \sum_{\substack{w \in N_q \\ \text{Im } w > 0}} \operatorname{res}(f, w)\right| < 3 \epsilon \quad \text{for } r_1, r_2 > r(\epsilon).$$

Example 11.6

Examples

We calculate

$$I = \int_{-\infty}^{\infty} \frac{x^3}{1+x^4} \sin{(ax)} dx \quad (a > 0).$$

The only poles of $f(z) = \frac{z^3 e^{iaz}}{1+z^4} = \frac{g(z)}{h(z)}$ in the upper half plane are simple poles at

$$w_1 = e^{i\frac{\pi}{4}} = \frac{1+i}{\sqrt{2}}, w_2 = e^{i\frac{3}{4}\pi} = \frac{-1+i}{\sqrt{2}}$$

with residues (Aufgabe 33(b))

res
$$(f, w_i) = \frac{g(w_i)}{h'(w_i)} = \frac{1}{4}e^{iaw_i}$$

Theorem 11.5 yields

$$\int_{-\infty}^{\infty} f dx = \frac{2\pi i}{4} \left(e^{ia\frac{1+i}{\sqrt{2}}} + e^{ia\frac{-1+i}{\sqrt{2}}} \right) = \pi i \ e^{-\frac{a}{\sqrt{2}}} \cos \left(\frac{a}{\sqrt{2}} \right).$$

and hence $I = \text{Im}\left(\int_{-\infty}^{\infty} f dx\right) = \pi e^{-\frac{a}{\sqrt{2}}} \cos \frac{a}{\sqrt{2}}$.

Automorphism groups

Biholomorphic maps $f: U \to V$ ($U, V \subset \mathbb{C}$ open) are also called conformal mappings.

Definition

Let $U \subset \mathbb{C}$ be open. The automorphism group of U is (with composition as group operation)

Aut(U) = {f; f : $U \rightarrow U$ biholomorphic}.

Examples

• $f: H_+ = \{z \in \mathbb{C}; \text{ Im } z > 0\} \rightarrow D_1(0), f(z) = \frac{z-i}{z+i} \text{ is biholomorphic with inverse}$

$$g: D_1(0) \to H_+, g(z) = i \frac{1+z}{1-z}$$

• The Moebius transformation (gebrochen lineare Transformation)

$$z\mapsto rac{az+b}{cz+d}, \quad \left(egin{array}{c} a & b \\ c & d \end{array}
ight)\in \mathrm{GL}(2,\mathbb{C})$$

defines a biholomorphic mapping

(i) $f : \mathbb{C} \to \mathbb{C}$ if c = 0(ii) $f : \mathbb{C} \setminus \{-\frac{d}{c}\} \to \mathbb{C} \setminus \{\frac{a}{c}\}$ if $c \neq 0$

with inverse given (up to the determinant) by the inverse matrix $z \mapsto \frac{dz-b}{-cz+a}$.

Automorphism group of $\mathbb C$

For $a \in \mathbb{C}^*$, $b \in \mathbb{C}$, define $f_{a,b} : \mathbb{C} \to \mathbb{C}$, $z \mapsto az + b$.

Theorem

Aut(\mathbb{C}) = { $f_{a,b}$; $a \in \mathbb{C}^*$ and $b \in \mathbb{C}$ }.

Idea: Let $f \in Aut(\mathbb{C})$. Then 0 cannot be an essential singularity for

$$g: \mathbb{C}^* \to \mathbb{C}, g(z) = f\left(\frac{1}{z}\right).$$

since otherwise the open mapping principle (7.14) and Theorem 9.4 would imply that

$$f(\mathbb{C}\setminus \overline{D}_1(0))\cap f(D_1(0))=g(\dot{D}_1(0))\cap f(D_1(0))\neq \emptyset.$$

By Theorem 9.4 $\exists m \ge 1, c_1, \dots, c_m \in \mathbb{C}$ such that 0 is a removable singularity for $f\left(\frac{1}{z}\right) - \sum_{k=1}^{m} \frac{c_k}{z^k}$.

 $\Rightarrow \mathbb{C} \to \mathbb{C}, z \mapsto f(z) - \sum_{k=1}^{m} c_k z^k$ is bounded, hence constant by Liouville.

 \Rightarrow Since $f' \in \mathbb{C}[z]$ has no zero (chain rule), f is a polynomial with deg(f) = 1.

Schwarz lemma

Obvious biholomorphic maps of the unit disc $\mathbb{D} = D_1(0)$ are:

• rotations
$$f(z) = e^{i\theta} z \ (\theta \in \mathbb{R})$$

• Moebius transformations $T_a(z) = \frac{z-a}{1-\overline{a}z}$ $(a \in \mathbb{D})$ with inverse

$$T_{-a}(z) = \frac{z+a}{1+\overline{a}z}, \quad \left(\begin{array}{cc} 1 & -a \\ -\overline{a} & 1 \end{array}\right)^{-1} = \frac{1}{1-|a|^2} \left(\begin{array}{cc} 1 & a \\ \overline{a} & 1 \end{array}\right)$$

Note that: $|T_a(z)| = \left| \frac{z-a}{(\overline{z}-\overline{a})z} \right| = 1$ for $|z| = 1 \Rightarrow \text{Max. principle } T_a(\mathbb{D}) \subset \mathbb{D}$.

Theorem (Schwarz lemma = 12.4)

Let $f : \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then • $|f'(0)| \le 1$ • $|f(z)| \le |z| \forall z \in \mathbb{D}$. If |f'(0)| = 1 or |f(z)| = |z| for some $z \in \mathbb{D} \setminus \{0\}$, then $f(z) = e^{i\theta}z$ for some $\theta \in \mathbb{R}$.

Automorphism group of $\mathbb D$

Corollary (12.5)

Aut(D) consists precisely of the mappings $f(z) = e^{i\theta} \frac{z-a}{1-\overline{a}z}$ $(a \in \mathbb{D}, \theta \in \mathbb{R})$.

Idea: For
$$f \in Aut(\mathbb{D})$$
, set $a = f^{-1}(0)$.

$$\Rightarrow g = T_a \circ f^{-1} \in \operatorname{Aut}(\mathbb{D}) \text{ with } g(0) = 0$$

 \Rightarrow (Schwarz lemma for g and g^{-1}) $|g(z)| \le |z| = |g^{-1}(g(z))| \le |g(z)|$ for all z

$$\Rightarrow \exists \theta \in \mathbb{R} \text{ with } f(z) = e^{-i\theta}g(f(z)) = e^{-i\theta}T_a(z) \; \forall z \in \mathbb{D}.$$

Corollary (12.6)

Let $f \in \mathcal{O}(\mathbb{D})$ be given with $f(\mathbb{D}) \subset \mathbb{D}$. Then:

• $|f'(0)| \leq 1$ with equality $\Leftrightarrow \exists \theta \in \mathbb{R} : f(z) = e^{i\theta} z \ \forall z \in \mathbb{D}$.

• If
$$a, b \in \mathbb{D}$$
 with $f(a) = b$, then $|f'(a)| \le \frac{1-|b|^2}{1-|a|^2}$ with equality $\Leftrightarrow \exists \theta \in \mathbb{R} : f(z) = T_{-b}(e^{i\theta}T_a(z)) \ \forall z \in \mathbb{D}.$

Note: The automorphisms *f* of \mathbb{D} with f(0) = 0 are precisely the rotations $f(z) = e^{i\theta}z$.

Riemannian sphere

Define $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (Riemannsche Zahlenkugel). The system

 $t = \{U; U \subset \mathbb{C} \text{ open}\} \cup \{\hat{\mathbb{C}} \setminus K; K \subset \mathbb{C} \text{ compact}\}$

defines a topology on $\hat{\mathbb{C}}$ (or: turns X into a topological space), that is,

- $\emptyset, \hat{\mathbb{C}} \in t$,
- $U, V \in t \Rightarrow U \cap V \in t$,
- $(U_i)_{i \in I}$ arbitrary family in $t \Rightarrow \bigcup_{i \in I} U_i \in t$.

The sets in t are called the open subsets of $\hat{\mathbb{C}}$.

Definition (12.7)

A map $f : X \to Y$ between topopological spaces X and Y is called

- continuous at $x \in X \Leftrightarrow \forall$ open set $V \ni f(x) \exists$ an open set $U \ni x$ such that $f(U) \subset V$
- continuous \Leftrightarrow *f* is continuous at every $x \in X$ ($\Leftrightarrow f^{-1}(V) \subset X$ is open $\forall V \subset Y$ open)
- homeomorphism (Homömorphismus) $\Leftrightarrow f$ is bijective and f and f^{-1} are continuous.

A topological space X is called compact : \Leftrightarrow Each open cover of X contains a finite subcover. By definition $\lim_{n\to\infty} z_n = z$ in $\hat{\mathbb{C}} : \Leftrightarrow \forall U \ni z$ open $\exists N \in \mathbb{N}$ with $z_n \in U \forall n \ge N$.

Beweis von Satz 9.8

 $\mathcal{S}^2 = \{(z,s) \in \mathbb{C} \times \mathbb{R}; |z|^2 + s^2 = 1\} \subset \mathbb{R}^3 = \mathbb{C} \times \mathbb{R} \quad \text{(unit sphere)}$

is a compact metric (in particular, topological) space. Let $N = (0, 1) \in S^2$ be the north pole. One can define a homeomorphism $\varphi : S^2 \to \hat{\mathbb{C}}$ by setting $\varphi(N) = \infty$ and

$$\varphi(z,s) = N + t((z,s) - N) = (tz, 1 + t(s-1))$$
 with $t = \frac{1}{1-s}$

(intersection of the line through *N* and (z, s) with $\mathbb{C} = \mathbb{C} \times \{0\} \subset \mathbb{R}^3$).

Simple facts

Lemma

- $\hat{\mathbb{C}}$ is a compact toplogical space (one-point compactification of \mathbb{C})
- $\bullet \ \mathbb{C} \subset \hat{\mathbb{C}}$ is open and dense
- $U \subset \mathbb{C}$ is open $\Leftrightarrow \exists V \subset \hat{\mathbb{C}}$ open with $U = V \cap \mathbb{C}$
- $\hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ z \mapsto \frac{1}{z} \ (\text{with } \frac{1}{0} = \infty \ \text{and} \frac{1}{\infty} = 0)$ is a homeomorphism.
- For $z_n, z \in \mathbb{C}$: $\lim_{n \to \infty} z_n = z$ in $\mathbb{C} \Leftrightarrow \lim_{n \to \infty} z_n = z$ in $\hat{\mathbb{C}}$
- For $z_n \in \mathbb{C}$: $\lim_{n \to \infty} z_n = \infty$ in $\hat{\mathbb{C}} \Leftrightarrow \lim_{n \to \infty} |z_n| = \infty$

 $\hat{\mathbb{C}} \to \hat{\mathbb{C}}, \ z \mapsto \frac{1}{z}$ is a homeomorphism, since $\operatorname{inv} : \mathbb{C}^* \to \mathbb{C}^* \hookrightarrow \hat{\mathbb{C}}$ is continuous and $\frac{1}{z}(D_{\epsilon}(0)) \subset \hat{\mathbb{C}} \setminus \overline{D}_{\frac{1}{\epsilon}}(0), \ \frac{1}{z}(\hat{\mathbb{C}} \setminus \overline{D}_{\frac{1}{\epsilon}}(0)) \subset D_{\epsilon}(0).$

Function theory on $\hat{\mathbb{C}}$

Definition (12.10)

Let $U, V \subset \hat{\mathbb{C}}$ be open. A mapping $f : U \to \mathbb{C}$ is called holomorphic at $a \in U$ if

• $a \in \mathbb{C}$ and $f|_{U \cap \mathbb{C}}$ is holomorphic at a or

• $a = \infty$ and $inv(U) \to \mathbb{C}, z \mapsto f(1/z)$ is holomorphic at 0.

A continuous map $f: U \to V$ is called holomorphic if $f \equiv \infty$ or

• $f^{-1}(\{\infty\}) \subset U$ is discrete and $f: U \setminus f^{-1}(\{\infty\}) \to \mathbb{C}$ is holomorphic

and biholomorphic if *f* is bijective and $f: U \to V, f^{-1}: V \to U$ are holomorphic.

For $f \in \mathcal{O}(U)$ ($U \subset \mathbb{C}$ open) we call ∞ a pole for f

$$:\Leftrightarrow \exists s > 0 \text{ with } \{z \in \mathbb{C}; |z| > s\} \subset U \text{ and } \lim_{|z| \to \infty} |f(z)| = \infty.$$

Then $\infty \not\equiv f: U \to \hat{\mathbb{C}}$ $(U \subset \hat{\mathbb{C}}$ open) is holomorphic $\Leftrightarrow A = f^{-1}(\{\infty\}) \subset U$ is discrete and

 $f: (U \setminus A) \cap \mathbb{C} \to \mathbb{C}$ is holomorphic with poles at each $a \in A$.

Examples

• If
$$p, q \in \mathbb{C}[z]$$
 with $q \neq 0$ and $r(z) = \frac{p(z)}{q(z)}$ for $z \in \mathbb{C} \setminus N_q$, then

$$\hat{\mathbb{C}} \to \hat{\mathbb{C}}, z \mapsto \begin{cases} r(z) ; z \in \mathbb{C} \setminus N_q \\ \lim_{w \to z} r(w); z \in \{\infty\} \cup N_q \end{cases}$$

defines a holomorphic map.

• For $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, \mathbb{C})$, the Moebius transformation $T_A : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, i.e., the unique continuous maps with

$$T_A(z) = rac{az+b}{cz+d}$$
 for $z \in \mathbb{C}$ with $cz+d \neq 0$

is biholomorphic with $(T_A)^{-1} = T_{A^{-1}}$.

Theorem

 $T: \mathrm{GL}(2,\mathbb{C}) \to \mathrm{Aut}(\hat{\mathbb{C}}), A \mapsto T_A$ is a surjective group homomorphism with

Ker
$$T = \mathbb{C}^* \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
.

Riemann mapping theorem

Which domains in \mathbb{C} are conformally equivalent to (= biholomorphic image of) \mathbb{D} ?

Necessary condition: Let $f : \mathbb{D} \to G$ be biholomorphic and $g : G \to \mathbb{C}^*$ holomorphic.

- $\Rightarrow (\mathbb{D} \text{ simply connected}) \quad \exists h \in \mathcal{O}(\mathbb{D}) \text{ with } g \circ f = e^h \Rightarrow g = \exp(h \circ f^{-1})$
- \Rightarrow (Theorem 8.13) *G* is a simply connected domain.

Theorem (Riemann mapping theorem = 13.2)

Each simply connected domain $\mathbb{C} \neq G \subset \mathbb{C}$ is conformally equivalent to the unit disc \mathbb{D} .

Lemma

 $G \subset \mathbb{C}$ domain, $\mathcal{O}(G) \ni f_n \stackrel{(n \to \infty)}{\longrightarrow} f$ uniformly on compact subsets. Then: If all f_n are injective, then f is injective or constant.

Idea: If $f \neq const$, $a, b \in G$, $a \neq b \Rightarrow$ (Identity thm.) $\exists r > 0 : f(a) \notin f(\overline{D}_r(b) \setminus \{b\})$

$$\Rightarrow \|(f_n - f_n(a)) - (f - f(a)\|_{\partial D_r(b)} < \min_{z \in \partial D_r(b)} |f(z) - f(a)| \text{ for } n \ge N$$

 \Rightarrow (Rouché) f - f(a) has no zero in $D_r(b)$.

Definition

Let $U \subset \mathbb{C}$ open. A subset $\mathcal{F} \subset \mathcal{O}(U)$ is called

- equicontinuous at $a \in U$ if $\forall \epsilon > 0 \exists \delta > 0$ with $f(D_{\delta}(a)) \subset D_{\epsilon}(f(a)) \forall f \in \mathcal{F}$
- bounded if sup{ $||f||_{\mathcal{K}}$; $f \in \mathcal{F}$ } $< \infty \forall \mathcal{K} \subset U$ compact
- normal if each sequence in \mathcal{F} has a locally uniformly convergent subsequence.

Lemma (13.5)

Each bounded set $\mathcal{F} \subset \mathcal{O}(U)$ is equicontinuous at each $a \in U$.

Idea: If
$$\overline{D}_r(a) \subset U$$
 and $M = \sup\{\|f\|_{\overline{D}_r(a)}; f \in \mathcal{F}\}$, then $\forall f \in \mathcal{F}$ and $|z - a| < r/2$

$$|f(z) - f(a)| \stackrel{\text{CIF}}{=} |\frac{1}{2\pi i} \int_{\partial D_r(a)} \left(\frac{f(\xi)}{\xi - z} - \frac{f(\xi)}{\xi - a}\right) d\xi|$$
$$= \frac{|z - a|}{2\pi} |\int_{\partial D_r(a)} \frac{f(\xi)}{(\xi - z)(\xi - a)} d\xi| \le \frac{2}{r} M|z - a|$$

Lemma (13.6)

If $K \subset U$ is compact and $\mathcal{F} \subset \mathcal{O}(U)$ is equicontinuous at each $a \in K$. $\Rightarrow \forall \epsilon > 0 \exists \delta > 0$ such that $\forall f \in \mathcal{F} : |f(z) - f(w)| < \epsilon \forall z, w \in K$ with $|z - w| < \delta$.

Idea: Otherwise for some $\epsilon > 0$ sequences $(z_n), (w_n)$ in $K, (f_n)$ in \mathcal{F} with

 $|z_n - w_n| < 1/n$ and $|f(z_n) - f(w_n)| \ge \epsilon \quad \forall n \in \mathbb{N}.$

For suitable subsequences $\lim z_n = \lim w_n = z \in K$ exists and by equicontinuity at z

$$\epsilon \leq |f_n(z_n) - f_n(w_n)| \leq |f_n(z_n) - f_n(z)| + |f_n(z) - f_n(w_n)| \xrightarrow{n} 0$$

Lemma (13.7)

If $\{f_n; n \in \mathbb{N}\} \subset \mathcal{O}(U)$ is bounded and $\lim_{n \to \infty} f_n(z)$ exists $\forall z \in M \subset U$ dense

 $\Rightarrow (f_n)_{n \in \mathbb{N}}$ converges uniformly on all cpct. subsets of U to a function $f \in \mathcal{O}(U)$.

Idea: Use 13.5 and 13.6 to show that the sequences $(f_n(z))_{n \in \mathbb{N}}$ satisfy the Cauchy condition uniformly for *z* in each compact subset $K \subset U$.

Beschränkte Familien sind normal

Theorem (Montel's theorem = 13.8)

Each bdd.sequence $(f_n)_{n \in \mathbb{N}}$ in $\mathcal{O}(U)$ has a locally uniformly convergent subsequence.

Idea: Let $M = \{a_k; k \in \mathbb{N}^*\} \subset U$ be dense. Choose subsequences

 $(f_{1,n})_{n\in\mathbb{N}}$ von $(f_n)_{n\in\mathbb{N}}$ st. $(f_n(a_1))_{n\in\mathbb{N}}$ converges

 $(f_{2,n})_{n\in\mathbb{N}}$ von $(f_{1,n})_{n\in\mathbb{N}}$ st. $(f_{2,n}(a_2))_{n\in\mathbb{N}}$ converges

and continue recursively. Then the diagonal sequence

 $(g_n)_{n\in\mathbb{N}}=(f_{n,n})_{n\in\mathbb{N}}$ converges pointwise on M

and defines a locally uniformly convergent subsequence of $(f_n)_{n \in \mathbb{N}}$ by Lemma 13.7.

Alternatively one can prove Montel's theorem using the equicontinuity of bounded subsets $\mathcal{F} \subset \mathcal{O}(U)$ and Arzela-Ascoli's theorem from topology.

Riemann mapping theorem: Proof

Let $\mathbb{C} \neq G \subset \mathbb{C}$ be a simply connected domain. Show successively:

(1) $\Sigma := \{f \in \mathcal{O}(G); f \text{ is injective with } f(G) \subset \mathbb{D}\} \neq \emptyset.$

(2) For each $g \in \Sigma$ with $g(G) \neq \mathbb{D}$ and each $a \in G \exists f \in \Sigma$ with |f'(a)| > |g'(a)|.

(3) Fix $a \in G$. Choose a sequence $(g_n)_{n \in \mathbb{N}}$ in Σ with

$$\lim_{n\to\infty}|g_n'(a)|=s:=\sup\{|g'(a)|;g\in\Sigma\}.$$

May suppose (Montel's theorem) $(g_n)_{n \in \mathbb{N}} \xrightarrow{n \to \infty} g \in \mathcal{O}(G)$ uniformly on cpct. subsets

- \Rightarrow (Weierstraß' theorem) $|g'(a)| = \lim_{n \to \infty} |g'_n(a)| = s \in (0, \infty)$
- \Rightarrow *g* is injective with *g*(*G*) $\subset \overline{\mathbb{D}}$
- \Rightarrow (Maximum principle) $g \in \Sigma$ and by Step 2 g is surjective.
- \Rightarrow (Holomorhic invertibility) $g : G \rightarrow \mathbb{D}$ is biholomorphic.

Wichtiges für die Klausur

- CRDG'en, harmonische Fkt'en, Bedingungen für Konstanz (Satz 2.19.)
- Potenzreihen, Konvergenzradius, Taylorentwicklung
- Existenz von Stammfunktionen
- Cauchyscher Integralsatz und Formel für Kreise, konvexe Gebiete
- Grundprinzipien: Liouville, Nullstellen (Vielfachheit), Identitätssatz, Maximumprinzip, Riemannscher Hebbarkeitssatz, Gebietstreue
- Allgemeiner CIS und CIF, einfacher Zusammenhang, holomorphe Logarithmen
- Isolierte Singularitäten: Charakterisierungen, Ordnung von Polstellen, Berechnung von Residuen (Lemma 9.7 + Aufg.33(b)) und Laurentreihen
- Residuensatz, Berechnung von Integralen (komplexe und reelle), Rouché
- $\bullet\,$ Konforme Abbildungen von $\mathbb{C},\,\mathbb{D},$ Schwarzsches Lemma, Moebiustransform.en

Schutzmasken mitbringen! Corona-Regeln für die Klausur beachten (Homepage)!

Viel Glück!!!