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Field of complex numbers

Complex numbers: C = R2 = {(a, b); a, b ∈ R}
Field with respect to the algebraic operations

(a, b) + (c, d) = (a + c, b + d), (a, b) · (c, d) = (ac − bd , ad + bc)

Real numbers become a subfield via: R = R× {0} ⊂ C
Introducing the complex notation i = (0, 1) one obtains the rules i2 = −1 and

(a, b) = (a, 0) + (0, b) = (a, 0) + (0, 1)(b, 0) = a + ib,

(a + ib)(c + id) = (ac − bd , ad + bc) = (ac − bd) + i(ad + bc),
1

a+ib = a−ib
(a+ib)(a−ib)

= a
a2+b2 − i b

a2+b2 .

Definition

For z = x + iy (x , y ∈ R) we define

Re z = x, Im z = y

z = x − iy

|z| = (x2 + y2)1/2
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Absolute value in C

Lemma

For z,w ∈ C, we have:

zz = |z|2, |z| = |z|, |zw | = |z||w |, (z) = z,

z + w = z + w, zw = z · w, (1/z) = 1/z for z 6= 0,

Rez = z+z
2 , Imz = z−z

2i ,∣∣∣|z| − |w |∣∣∣ ≤ |z + w | ≤ |z|+ |w | (triangle inequality).

Idea Triangle inequality:

|z +w |2 = (z +w)(z +w) = |z|2 + |w |2 +2Re(zw) ≤ |z|2 + |w |2 +2|zw | = (|z|+ |w |)2.

Lemma (Absolute value as a norm)

For z,w ∈ C , we have:

|z| ≥ 0,

|z| = 0 if and only if z = 0,∣∣|z| − |w |∣∣ ≤ |z + w | ≤ |z|+ |w |.
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Polar coordinates and arguments

Theorem (Polar coordinates)

For z ∈ C∗ = C \ {0}, there are real numbers r > 0, ϕ ∈ R with

z = r(cosϕ+ isinϕ).

In this case r = |z|

Idea Set x = Re z, y = Im z. Because of

|x |, |y | ≤ |z| 6= 0

and the intermediate value theorem there is a ψ ∈ [0, π] with x = |z|cosψ. Show that

z = r(cosϕ+ isinϕ) with ϕ = ψ or ϕ = −ψ

Corollary (Arguments)

For z ∈ C∗ and θ0 ∈ R, there is a uniqe θ ∈ [θ0, θ0 + 2π[ with

z = |z|(cos θ + i sin θ).

Idea The existence follows from the preceding theorem and 2π-periodicity of
cos, sin, uniqueness from the functional equations for cos, sin.
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Arguments and Euler’s formula

Definition

(a) For z ∈ C∗ and θ0 ∈ R, the unique number θ ∈ [θ0, θ0 + 2π[ with

z = |z|(cos θ + i sin θ)

is called the argument of z relative to θ0 (written: argθ0
(z)).

(b) For ϕ ∈ R, we define eiϕ = cosϕ+ i sinϕ.

Using the defintion of the product in C and the functional equations for cos, sin one
obtains:

Lemma

For ϕ,ψ ∈ R, we have
ei(ϕ+ψ) = eiϕeiψ .
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Convergence in C

Let (zn)n≥0 be a sequence in C and let z ∈ C.

Definition

(zn)n≥0 converges to z (written: limn→∞ zn = z)

:⇔ ∀ε > 0 ∃n0 ∈ N such that |zn − z| < ε ∀n ≥ n0

(zn)n≥0 is a Cauchy sequence

:⇔ ∀ε > 0 ∃n0 ∈ N such that |zn − zm| < ε∀n,m ≥ n0

Using the estimates

max(|Re zn − Re z|, |Im zn − Im z|) ≤ |zn − z| ≤ |Re zn − Re z|+ |Im zn − Im z|

one obtains:

Theorem

limn→∞ zn = z ⇔ limn→∞ Re zn = Re z and limn→∞ Im zn = Im z,

(zn)n≥0 is a Cauchy sequence in C ⇔ (Re zn)n≥0 and (Im zn)n≥0 are Cauchy
sequences in R.



Complex numbers Continuous and differentiable functions Power series Elementary functions Contour integrals Applications Global Cauchy thm Isolated singularities Residue theorem Real Integrals Conformal mappings

Sequences and series

Using the previous theorem and the completeness of R one obtains:

Each Cauchy sequence in C converges (In short: C is complete).

Exactly as in R one proves:

Theorem (Limit theorems)

Suppose that limn→∞ zn = z and limn→∞ wn = w in C. Then

limn→∞(zn + wn) = z + w , limn→∞(znwn) = zw

If w 6= 0 then there is an n0 ∈ N with wn 6= 0∀n ≥ n0. In this case

(
zn

wn
)n≥n0

n→
z
w
.

Since C is complete, the Cauchy criterion for series remains true:
∞∑

n=0

cn converges in C ⇔ ∀ε > 0∃n0 ∈ N with |
q∑

n=p
cn| < ε∀q ≥ p ≥ n0.

With exactly the same proof as in R one concludes that

Lemma

Each absolutely convergent series in C converges

The comparison test and the ratio test remain true for series in C.
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C as a metric space

C = R2 is a metric space relative to the Euclidean metric:

d : C× C→ R, d(z,w) = |z − w |

Open and closed d-balls of radius r ∈ [0,∞]:

Dr (a) = {z ∈ C; |z − a| < r}, Dr (a) = {z ∈ C; |z − a| ≤ r}.

Definition

Let A,U ⊂ C.

U is open⇔ ∀a ∈ U∃ε > 0 with Dε(a) ⊂ U

A is closed⇔ C \ A is open

A ⊂ C is compact if ∀(Ui )i∈I open cover of A ∃i1, . . . , ir ∈ I with

A ⊂ Ui1 ∪ . . . ∪ Uir .
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Closure, interior, boundary

Definition

A = {z ∈ C;∀ε > 0 : Dε(z) ∩ A 6= ∅}
Int(A) = {z ∈ C; ∃ε > 0 mit Dε(z) ⊂ A}
∂A = {z ∈ C; ∀ε > 0 : Dε(z) ∩ A 6= ∅ 6= Dε(z) ∩ Ac}

Lemma

U ⊂ C is open ⇔ U = Int(U)

A ⊂ C is closed⇔ A = A

Int(A) =
⋃

(U ⊂ C open; U ⊂ A) = A ∩ (∂A)c ⊂ C is open

A =
⋂

(F ⊂ C closed; F ⊃ A) = {z ∈ C;∃ sequence A 3 zn
n→ z} is closed

∂A = A \ Int(A) ⊂ C is closed

A ⊂ C is compact⇔ A is closed and bounded⇔ ∀ sequence (zn)n≥0 in A

∃ convergent subsequence (znk )
k→ z ∈ A .
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Paths in C

Let M ⊂ C. A path in M is a continuous map

γ : [a, b]→ C (a, b ∈ R mit a ≤ b)

with γ([a, b]) ⊂ M. A path γ : [a, b]→ C is closed if γ(a) = γ(b).

Examples

Line connecting z,w ∈ C: γ : [0, 1]→ C, γ(t) = z + t(w − z)

Positively oriented circle: γ : [0, 2π]→ C, γ(t) = a + reit

Given paths γj : [aj , bj ]→ C (j = 1, 2) with γ1(b1) = γ2(a2) define
γ1 ∧ γ2 : [a1, b1 + (b2 − a2)]→ C as the composed path

γ1 ∧ γ2(t) =

{
γ1(t), t ∈ [a1, b1]

γ2(t + (a2 − b1)), t ∈ [b1, b1 + (b2 − a2)]

For z0, . . . , zr ∈ C: [z0, z1] ∧ [z1, z2] ∧ . . . ∧ [zr−1, zr ] (polygon)

For a path γ : [a, b]→ C, we define the reversed path

−γ : [a, b]→ C, (−γ)(t) = γ(a + b − t)
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Connected sets

For M ⊂ C, a set V ⊂ M is called open in M if ∃U ⊂ C open with V = M ∩ U.

Definition

M ⊂ C is path connected :⇔ ∀z,w ∈ M∃ path γ in M from z to w .

M ⊂ C is connected :⇔ there are no disjoint non-empty open sets V1,V2 in M with
M = V1 ∪ V2.

Can show: each path connected set in C is connected, but not vice versa!

Theorem

For an open set G ⊂ C, the following are equivalent:

(i) G is connected

(ii) G is path connected

(iii) Any two points z,w ∈ G can be joined in G by a polygon.

Idea for (i)⇒ (iii). Fix a ∈ G. Show that

U = {z ∈ G; z, a can be joined by a polygon in G} and G \ U are both open in G.
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Continuous functions

Let f : D → C be a function on D ⊂ C arbitrary. For a ∈ D, c ∈ C, define

lim
z→a

f (z) = c :⇔ lim
k→∞

f (zk ) = c whenever D 3 zk
k→ a

We call f : D → C continuous at a ∈ D ⇔ limz→a f (z) = f (a).

Lemma (Analysis II)

f : D → C continuous at a ∈ D ⇔ ∀ε > 0∃δ > 0 with f (Dδ(a) ∩ D) ⊂ Dε(f (a))

f is continuous on all of D ⇔
−1
f (V ) is open in D ∀V ⊂ C open

Lemma (Analysis II)

If f , g : D → C are continuous at a ∈ D and λ ∈ C, then

f + g, f · g, λf are continuous at a
f
g : {z ∈ D; g(z) 6= 0} → C is continuous at a if g(a) 6= 0

Compositions of continuous functions are continuous.
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Complex differentiable functions

A function f : U → C (U ⊂ C open) is complex differentiable at a ∈ U

∃ f ′(a) := lim
h→0

f (a + h)− f (a)

h
∈ C.

Theorem

If f , g : U → C are complex differentiable at a ∈ U then:

f is continuous at a.

f + g, f · g are complex differentiable at a and

(f + g)′(a) = f ′(a) + g′(a), (fg)′(a) = f ′(a)g(a) + f (a)g′(a).

If g(a) 6= 0, then f
g is complex differentiable at a and

( f
g

)′
(a) =

f ′(a)g(a)− f (a)g′(a)

g(a)2
.

If h : V → C complex differentiable at f (a), so is h ◦ f : U → C at a and

(h ◦ f )′(a) = h′(f (a))f ′(a).
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Examples - Nothing new or?

Examples

f ≡ c ⇒ f ′(z) = 0 ∀z ∈ C

f (z) = z ⇒ f ′(z) = limh→0
f (z+h)−f (z)

h = 1 ∀z ∈ C

f (z) = zn (n ∈ N) ⇒ f ′(z) = nzn−1 ∀z ∈ C

f (z) = zn (n ∈ Z<0) ⇒ f ′(z) = nzn−1 ∀z ∈ C∗

p(z) = anzn + . . .+ a1z + a0 ⇒ p′(z) = nanzn−1 + . . .+ 2a2z + a1 ∀z ∈ C

Rational functions p
q (p, q polynomials) are complex differentiable on {q(z) 6= 0}

Counterexample: f (z) = z as a function on R2

f : R2 → R2, f (x , y) = (x ,−y).

is C∞ in the real sense, but nowhere complex differentiable

f (z + h)− f (z)

h
=

z + h − z
h

=
h
h

=

{
1, h ∈ R
−1, h ∈ iR .
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Cauchy-Riemann equations

Complex differentiability is much stronger than real differentiability! Precisely:

For a function (x , y) 7→
(

u(x , y), v(x , y)
)
∈ R2 of two real variables, define

ux =
∂u
∂x
, uy =

∂u
∂y

(same for v).

Theorem (Cauchy-Riemann)

Let U ⊂ C be open, f = u + iv : U → C a function, z0 = x0 + iy0 ∈ U.
Equivalent are:

f is complex differentiable at z0.

f = (u, v) is totally differentiable in the real sense at (x0, y0) and

ux (x0, y0) = vy (x0, y0), uy (x0, y0) = −vx (x0, y0) (Cauchy-Riemann eq’s).

In this case:

f ′(z0) = ux (x0, y0) + ivx (x0, y0), det
(

J(u,v)(x0, y0)
)

= |f ′(z0)|2.
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How to check complex differentiability?

Corollary

f = u + iv complex differentiable at z0 ⇒ u, v partially differentiable with

(∗) ux (z0) = vy (z0), uy (z0) = −vx (z0)

If f = u + iv is C1 near z0 with (∗)⇒ f is complex differentiable at z0

Examples

f (z) = |z| =
√

x2 + y2) is nowhere complex differentiable, since vx = vy = 0, but

ux (x , y) =
x

(x2 + y2)1/2
6= 0 (x 6= 0), uy (x , y) =

y
(x2 + y2)1/2

6= 0 (y 6= 0).

and limh→0
f (h)−f (0)

h = limh→0
|h|
h does not exist.

f (x + iy) = |xy |1/2 is partially differentiable at (0, 0) with

ux (0, 0) = 0 = vy (0, 0), uy (0, 0) = 0 = −vx (0, 0),

not complex differentiable: limh→0
f (h,h)−f (0,0)

h+ih = limh→0
1

1+i
|h|
h does not exist.
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If f and f are holomorphic, then . . .

Definition

A set G ⊂ C is called a domain if G ⊂ C is open and connected.

A function f : U → C (U ⊂ C open) is called holomorphic if it is complex differentiable
at every point z ∈ U.

Theorem

Let f : G→ C be holomorphic on a domain G ⊂ C. Then f is constant under each of
the following conditions:

f ′ ≡ 0,

Re f ≡ const,

Im f ≡ const,

f (= Re f − iIm f ) is holomorphic,

|f | is holomorphic.

idea: Under any of the first three conditions ux = uy = vx = vy ≡ 0.
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Which functions are real parts of holomorphic functions?

Recall that a C2-function u : U → C is said to be harmonic if

∆u (= uxx + uyy ) ≡ 0 on U.

Real and imaginary parts of holomorphic functions are harmonic. Precisely:

Theorem

f : U → C holomorphic⇒ u = Re f , v = Im f are harmonic on U

u : Dr (c)→ R harmonic⇒ ∃ (unique up to real constants) v : Dr (c)→ R such
that f = u + iv is holomorphic on Dr (c).

Idea: If f = u + iv is holomorphic, then we shall see later that u, v are C∞.

⇒ (CRDE’s and Schwarz lemma) uxx + uyy = (vy )x − (vx )y ≡ 0.

In the second part the unique solution with v(0) = 0 is

v(x , y) =
(∫ 1

0
−uy (tx , ty)dt

)
x +

(∫ 1

0
ux (tx , ty)dt

)
y .
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Sequences and series of functions

Let (an)n≥0 be a sequence in C.

Aim: Study functions given by a power series f (z) =
∑∞

n=0 an(z − a)n.

Definition

Let fn : D → C (n ∈ N), f : D → C be functions. Then (fn)n≥0 converges to f on D

uniformly :⇔ ∀ε∃n0 ∈ N with |fn(z)− f (z)| < ε∀n ≥ n0∀z ∈ D

uniformly on compact subsets:⇔ ∀K ⊂ D cpct (fn)n≥0 converges to f uniformly on K

Continuity is preserved under uniform convergence on compact subsets.

Definition

Let fn : D → C (n ∈ N) be functions and sN =
∑N

n=0 fn (N ∈ N). Define∑∞
n=0 fn = (sN )N≥0∑∞
n=0 fn converges pointwise, uniformly (on compact subsets) if (sN )N≥0 does
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Power series

How to test uniform convergence?

Theorem (W-M Test)

Let fn : D → C (n ∈ N) be functions, cn ∈ R with

|fn(z)| ≤ cn ∀n ∈ N and ∀z ∈ D∑∞
n=0 cn <∞

Then
∑∞

n=0 fn converges uniformly on D.

Theorem (Power series)

Let (an)n≥0 be a sequence in C, a ∈ C and r > 0.

(anrn)n≥0 bounded⇒
∑∞

n=0 an(z − a)n converges absolutely ∀z ∈ Dr (a).

R = sup{ρ ≥ 0; (anρn)n≥0 bounded} (∈ [0,∞])⇒
∑∞

n=0 an(z − a)n converges
uniformly on all compact subsets of DR(a) and diverges ∀z /∈ DR(a)
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Radius of convergence

Definition

The unique number R ∈ [0,∞] with the property

∞∑
n=0

an(z − a)n converges ∀z ∈ DR(a) and diverges ∀z /∈ DR(a)

is called the radius of convergence of the power series
∑∞

n=0 an(z − a)n.

How can one calculate the radius of convergence?

Theorem (Cauchy-Hadamard)

The radius of convergence of the power series
∑∞

n=0 an(z − a)n is given by

R = 1/limn→∞|an|1/n (c/0 =∞ and c/∞ = 0 for c > 0).

Examples

an = nn ⇒ R = 1/limn→∞|nn|1/n = 0

an = nk ⇒ R = 1/limn→∞|nk |1/n = 1

an = n−n ⇒ R = 1/limn→∞|n−n|1/n =∞
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Analytic functions

Functions f (z) =
∑∞

n=0 an(z − a)n representable by a power series are called analytic.
Analytic functions are complex differentiable, even much better:

Theorem (Termwise differentiation)

If f (z) =
∑∞

n=0 an(z − a)n has positive radius of convergence R ∈]0,∞], then

f : DR(a)→ C is complex differentiable with

f ′(z) =
∞∑

n=0

(n + 1)an+1(z − a)n ∀z ∈ DR(a)

the differentiated power series has radius of convergence R.

Corollary

If f (z) =
∑∞

n=0 an(z − a)n has positive radius of convergence R ∈]0,∞], then
f : DR(a)→ C is infinitely often complex differentiable with

f (k)(z) =
∑∞

n=k n(n − 1) · · · (n − k + 1)an(z − a)n−k ∀z ∈ DR(a)

ak = f (k)(a)
k!
∀k ∈ N.
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Exponential and trigonometric functions

Definition

The complex exponential function, cosine and sine are defined by exp, cos, sin : C→ C,

exp(z) =
∞∑

n=0

zn

n!
, cos z =

∞∑
n=0

(−1)n z2n

(2n)!
, sin z =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
.

Theorem

(i) exp, cos, sin are holomorphic on C with exp′ = exp, cos′ = − sin, sin′ = cos.

(ii) cos z = exp(iz)+exp(−iz)
2 , sin z = exp(iz)−exp(−iz)

2i , exp(iz) = cos z + i sin z
(z ∈ C).

(iii) exp(0) = 1, exp(i π2 ) = i , exp(iπ) = −1, exp(i 3
2π) = −i , exp(2πi) = 1.

Notation: For z ∈ C we also write ez := exp(z). The unit circle is given by

T := {z ∈ C; |z| = 1} = {eit ; t ∈ R} = {eit ; t ∈ [θ0, θ0 + 2π[} (θ0 ∈ R).
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Properties of exp, cos, sin

Theorem (Functional equations)

For z,w ∈ C, n ∈ N,

ezew = ez+w , eze−z = e0 = 1

sin(z + w) = sin z cos w + cos z sin w , cos(z + w) = cos z cos w − sin z sin w

(cos z + i sin z)n = cos(nz) + i sin(nz)

sin2 z + cos2 z = 1.

Theorem (Typical values)

For z ∈ C,

|ez | = eRez , ez = ez

ez = 1 ⇔ z ∈ 2πiZ (= {2πik ; k ∈ Z})
sin z = 0 ⇔ z ∈ πZ
cos z = 0 ⇔ z ∈ π

2 + πZ.
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Branches of the logarithm

For z ∈ C∗, θ0 ∈ R and u ∈ C, we have eu = z ⇔ u is of the form

u = log |z|+ i(argθ0
(z) + 2πk) (k ∈ Z).

Definition

Let G ⊂ C be a domain. A branch of the logarithm (Zweig) on G is a continuous function
f : G→ C with

exp(f (z)) = z for all z ∈ G.

Each branch of the logarithm f : G→ C is holomorphic and satisfies ∀z ∈ G

f ′(z) = lim
h→0

f (z + h)− f (z)

h
= lim

h→0

( ef (z+h) − ef (z)

f (z + h)− f (z)

)−1
=

1
ef (z)

=
1
z
.
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Standard complex logarithms

For θ ∈ R define

Cθ = {z ∈ C∗; argθ(z) ∈ ]θ, θ + 2π[} = C \ {reiθ; r ∈ [0,∞)} (θ ∈ R).

Theorem (k -th branch of the logarithm on Cθ)

For θ ∈ R and k ∈ Z

logθ,k : Cθ → C, z 7→ log |z|+ i(argθ + 2πk)

is holomorphic such that ∀z ∈ Cθ
elogθ,k (z) = z
d

dz

(
logθ,k (z)

)
= 1

z

The mapping logθ,k : Cθ → R × ]θ + 2πk , θ + 2π(k + 1)[ is bijective.

Definition

The principal branch of the logarithm (Hauptzweig) is defined as

log = log−π,0 : C−π = C \ (−∞, 0] → C, z 7→ log |z|+ iarg−π(z)
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Powers and roots

As in the real case exp and log can be used to define powers of complex numbers with
complex exponents.

Theorem

Given θ ∈ R, k ∈ Z and α ∈ C,

Cθ → C, z 7→ z(α,θ,k) = exp
(
α logθ,k (z)

)
= |z|αeiα(argθ(z)+2πk)

defines a holomorphic function such that for α, β ∈ C und z ∈ Cθ ,

z(α,θ,k) z(β,θ,k) = z(α+β,θ,k),
d

dz

(
z(α,θ,k)

)
= αz(α−1,θ,k).

Definition (Principal branch of the complex powers)

For z ∈ C−π = C \ (−∞, 0] and α ∈ C, we simply write

zα = z(α,−π,0) = eα(log |z|+iarg−π(z)) = |z|α eiαarg−π(z).



Complex numbers Continuous and differentiable functions Power series Elementary functions Contour integrals Applications Global Cauchy thm Isolated singularities Residue theorem Real Integrals Conformal mappings

nth roots

Lemma (n-th roots)

For w ∈ C∗ and n ∈ N∗, the equation

zn = w

has exactly n distinct solutions. If w ∈ Cθ , then the n solutions are given by

zk = w ( 1
n ,θ,k) (k = 0, . . . , n − 1).

For w = 1 one obtains the n-th roots of unity (Einheitswurzeln):

Corollary (Exercise 1)

The n distinct solutions of the equation zn = 1 are given by

zk = ei 2πk
n (k = 0, . . . , n − 1)
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C-valued Riemann integrals

A function f : [a, b]→ C is called

Riemann integrable if Re f and Im f are Riemann integrable. In this case∫ b

a
f dt :=

∫ b

a
Re f dt + i

∫ b

a
Im f dt .

pause

continuously differentiable if Re f and Im f are.

piecewise continuously differentiable :⇔ ∃ partition a = t0 < t1 < . . . < tn = b
such that f |[ti−1,ti ] is continuously differentiable ∀i = 1, . . . , n.

Lemma

Let I = [a, b] be a compact interval and f : I → C a function.

RI(I,C)→ C, f 7→
∫ b

a f dt is C-linear

f and |f | Riemann integrable ⇒
∣∣∣ ∫ b

a f dt
∣∣∣ ≤ ∫ b

a |f |dt

f continuously differentiable ⇒
∫ b

a f ′dt = f (b)− f (a).
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Contour integrals

Definition

A contour (Integrationsweg) in M is a piecewise continuously differentiable function
γ : [a, b]→ C with γ([a, b]) ⊂ M . We call γ closed if γ(a) = γ(b).

If γ is a contour with γ[ti−1−ti ] continuously differentiable ∀i , we set

∫
γ

f (z)dz =

∫ b

a
f ◦ γ(t) γ′(t)dt =

n∑
i=1

∫ ti

ti−1

f ◦ γ(t) γ′(t)dt .

The definition does not depend on the choice of the partition a = t0 < . . . < tn = b.
The set Sp(γ) = γ([a, b]) is called the trace (Spur) of γ.

Lemma

Let γ, γ1, γ2 be contours in M ⊂ C and let f , g : M → C be continuous. Then:∫
γ(αf + βg)dz = α

∫
γ f dz + β

∫
γ gdz

endpoint of γ1 = starting point of γ2 ⇒
∫
γ1∧γ2

f dz =
∫
γ1

f dz +
∫
γ2

f dz
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Parameter transformations

Using the chain rule one obtains:

Theorem

Let γ : [a, b]→ C be a contour, f : Sp(γ)→ C continuous.∫
−γ f dz = −

∫
γ f dz

ϕ : [c, d ]→ [a, b] C1-function with ϕ′(t) > 0 for t ∈ [c, d ] and ϕ(c) = a, ϕ(d) = b
⇒ γ̃ = γ ◦ ϕ : [c, d ]→ C is a contour with∫

γ̃
f dz =

∫
γ

f dz.

Definition

The length of a contour γ : [a, b]→ C is defined as

L(γ) =

∫ b

a
|γ′(t)|dt

(
:=

n∑
j=1

∫ tj

tj−1

|γ′(t)|dt , if γ[tj−1,tj ] are C1∀j
)
.

The length of contours is preserved when replacing γ by −γ or by γ ◦ ϕ with a
C1-invertible parameter transformation ϕ with ϕ′ > 0.
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Fundamental estimate for contours

If f : D → C is a function, then for M ⊂ D, we define

‖f‖M = sup
z∈M
|f (z)|

(
∈ [0,∞]

)
.

Theorem (Fundamental estimate)

If γ : [a, b]→ C is a contour and f : Sp(γ)→ C is continuous, then∣∣∣ ∫
γ

f dz
∣∣∣ ≤ L(γ) ‖f‖Sp(γ).

As a consequence one can exchange limits and path integrals provided the integrands
converge uniformly.

Corollary

Let γ : [a, b]→ C be a contour and fn, f : Sp(γ)→ C continuous functions such that
(fn)n≥0 converges uniformly on Sp(γ) to f . Then

lim
n→∞

∫
γ

fndz =

∫
γ

f dz.
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Fundamental theorem for contour integrals

We write
∫
∂Dr (a) f dz =

∫
γ f dz with γ(t) = a + reit (t ∈ [0, 2π]).

Examples

For a ∈ C, r > 0 and all n ∈ Z∫
∂Dr (a)

(z − a)ndz =

∫ 2π

0
(reit )nrieit dt =

∫ 2π

0
i rn+1 ei(n+1)t dt

=

{
0 , n 6= −1

2πi, n = −1 .

Theorem (Fundamental theorem for contour integrals)

If f : U → C (U ⊂ C open) is continuous and F : U → C holomorphic with F ′ = f , then∫
γ

f dz = F (γ(b))− F (γ(a)) ∀ contours γ : [a, b]→ U.
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Existence of primitives

Definition

Let f : U → C (U ⊂ C open) be continuous. A function F : U → C is called a primitive
(Stammfunktion) for f if F is holomorphic with F ′ = f .

Examples

If f : U → C has a primitive and γ is a closed contour in U, then
∫
γ f dz = 0.

In particular:
∫
∂Dr (a)(z − a)ndz = 0 for all n ∈ Z with n 6= −1.∫

∂Dr (a)
1

z−a dz = 2πi 6= 0 ⇒ 1
z−a has no primitive on C \ {a}.

Theorem (6.5)

Let G ⊂ C be a domain and f : G→ C continuous. Then equivalent are:

(i) f has a primitive on G.

(ii)
∫
γ f dz = 0 for each closed contour γ in G.

Idea for (ii)⇒ (i): For fixed a ∈ G define a primitive of f by

F (z) =

∫
γ

f (ξ)dξ, if γ is a contour in G with A(γ) = a,E(γ) = z,
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Goursat’s lemma

Theorem (6.6)

If G ⊂ C is open and convex, then (i) and (ii) are equivalent to

(iii)
∫
δ f dz = 0 for each triangle δ = [a, b] ∧ [b, c] ∧ [c, a] in G.

For a, b, c ∈ C we denote the smallest convex set ∆ 3 a, b, c (closed triangle) by

∆ = ∆(a, b, c) = {t1a + t2b + t3c; 0 ≤ t1, t2, t3 ≤ 1 und t1 + t2 + t3 = 1} ⊂ C

and write
∫
∂∆ f d z =

∫
[a,b]∧[b,c]∧[c,a] f d z.

Theorem (Goursat’s lemma)

Let f : U → C (U ⊂ C open) be holomorphic, ∆ = ∆(a, b, c) ⊂ U a closed triangle

⇒
∫
∂∆

f dz = 0.

Idea: Subdivide ∆ by connecting the midpoints of the edges

|
∫
∂∆

f dz︸ ︷︷ ︸
=I

| = |
4∑

i=1

∫
∂∆i

1

f dz| ≤ 4 max
1≤i≤4

∣∣∣ ∫
∂∆i

1

f dz
∣∣
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Goursat’s lemma

and continue like this forever:

One obtains the estimates (with {z0} =
⋂

n≥1 ∆n)

|I| ≤ 4n
∣∣∣ ∫
∂∆n

f (z0) + (z − z0)f ′(z0)dz︸ ︷︷ ︸
=0

+

∫
∂∆n

(z − z0)r(z)dz
∣∣∣

≤ 4n
(1

4

)n
L(∂∆)2 sup

z∈Ddiam(∆n)(z0)

|r(z)| n−→ 0

Man benutzt dabei, dass diam(∆n) ≤ L(∂∆n) =
(

1
2

)n
L(∂∆).
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Cauchy’s integral theorem and formula

Corollary (Cauchy’s integral thm for convex domains)

Let G ⊂ C be a convex domain and let f : G→ C be holomorphic

⇒
∫
γ

f dz = 0 for each closed contour γ in G.

Corollary (Cauchy’s integral thm for circles)

Let f : U → C (U ⊂ C open) be holomorphic and let Dr (a) ⊂ U be a closed disc.

⇒
∫
∂Dr (a)

f dz = 0.

Theorem (Cauchy’s integral formula for circles)

Let f : U → C (U ⊂ C open) be holomorphic (+ f ′ continuous) and let Dr (a) ⊂ U

⇒ f (z) =
1

2πi

∫
∂Dr (a)

f (ξ)

ξ − z
dξ for all z ∈ Dr (a).
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Taylor’s formula

Theorem (6.13)

Let f : U → C (U ⊂ C open) be holomorphic (+ f ′ continuous) and let DR(a) ⊂ U.
Then f is infinitely often complex differentiable and

f (z) =
∑∞

n=0
f (n)(a)

n!
(z − a)n for all z ∈ DR(a),

f (n)(a) = n!
2πi

∫
∂Dr (a)

f (ξ)

(ξ−a)n+1 dξ for 0 < r < R and n ∈ N.

Corollary (6.14)

f : U → C (U ⊂ C open) holomorphic ⇒ f infinitely often complex differentiable.
In particular f ′ is automatically continuous.

Proof. May suppose that U is convex.

⇒ (Goursat)
∫
∂∆

f d z = 0 ∀ closed triangles ∆ ⊂ U

Thus f has a primitive F . But then F and f = F ′ are infinitely often complex
differentiable.
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CIF for derivatives and Taylor expansion

Theorem (Cauchy’s integral formula for derivatives)

Let f : U → C (U ⊂ C open) be holomorphic and Dr (a) ⊂ U

⇒ f (n)(w) =
n!

2πi

∫
∂Dr (a)

f (ξ)

(ξ − w)n+1
dξ ∀n ≥ 0 ∀w ∈ Dr (a)

Corollary (6.16)

Let f : U → C (U ⊂ C open) be holomorphic and let a ∈ U.
Then f admits a representation as a power series

f (z) =
∞∑

n=0

an(z − a)n ∀z ∈ Dr (a)

on each disc Dr (a) ⊂ U with uniquely determined coefficients

an =
f (n)(a)

n!
∀ n ∈ N.
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Theorems of Morera and Weierstraß

Theorem (Morera’s theorem)

Let U ⊂ C open and let f : U → C be continuous with∫
∂∆

f dz = 0 for each closed triangle ∆ ⊂ U.

Then f is holomorphic.

Idea: Theorem 6.6 ⇒ f has a primitive F on each disc Dr (a) ⊂ U

⇒ f = F ′ is infinitely often complex differentiable

Theorem (Weierstraß’ theorem)

If (fn)
n→ f uniformly on all compact subsets of U ⊂ C open and all fn are holomorphic,

then f is holomorphic and ∀k ∈ N

(f (k)
n )

n−→ f (k) uniformly on all compact subsets of U.

Morera’s theorem ⇒ f holomorphic. The rest follows with CIF for the derivatives.
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Liouville

Wir schreiben: O(U) = {f ; f : U → C ist holomorph}.
Die Funktionen f ∈ O(C) heißen ganze Funktionen.

Theorem (Satz von Liouville)

Jede beschränkte ganze Funktion f ∈ O(C) ist konstant.

Idee: Sei M = ‖f‖C. Dann gilt für alle r > 0 und n ≥ 1∣∣∣ f (n)(0)

n!

∣∣∣ =
∣∣∣ 1
2πi

∫
∂Dr (0)

f (ξ)

ξn+1
dξ
∣∣∣ ≤ L(∂Dr (0))

2π
M

rn+1
=

M
rn

(r→∞)−→ 0

Also ist f (z) =
∑∞

n=0
f (n)(0)

n!
zn ≡ f (0).

Theorem (Cauchysche Ungleichungen)

Sei f ∈ O(DR(a)). Dann gilt für 0 < r < R

|f (n)(a)| ≤
n!

rn
‖f‖∂Dr (a) (n ∈ N).

Folgerung: f ∈ O(C) mit |f (z)| ≤ c|z|N für |z| > R ⇒ f Polynom mit deg f ≤ N.
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Vielfachheit von Nullstellen

Lemma (7.5)

Sei f ∈ O(U), a ∈ U und f in keiner Umgebung von a identisch 0⇒ ∃!N ∈ N mit

∃g ∈ O(U) mit g(a) 6= 0 und f (z) = (z − a)Ng(z) ∀z ∈ U.

Man nennt

N die Vielfachheit der Nullstelle a von f

a Nullstelle unendlicher Vielfachheit, wenn f (n)(a) = 0∀n ∈ N.

Theorem (Fundamentalsatz der Algebra)

Sei p(z) = anzn + an−1zn−1 + . . .+ a0 ∈ C[z] mit n ≥ 1 und an 6= 0. Dann hat

p mindestens eine Nullstelle in C und ist von der Form

p(z) = an
∏n

i=1(zi − ci ) mit geeigneten c1, . . . , cn ∈ C.

Idee: Hätte p keine Nullstelle in C, so wäre 1/p wegen

lim
|z|→∞

|p(z)| =∞

eine beschränkte ganze Funktion und daher 1/p ≡ 0.
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Riemannscher Hebbarkeitssatz und Identitätssatz

Theorem (Riemannscher Hebbarkeitssatz)

Ist f ∈ O(U \ {a}) (a ∈ U ⊂ C offen) beschränkt auf Dr (a) \ {a} ⊂ U für ein r > 0,
dann

∃ g ∈ O(U) mit f = g|U\{a}.

Idee: Zeige, dass

F : U → C, F (z) =

{
(z − a)2f (z), z 6= a
0 , z = a

holomorph ist mit F (a) = F ′(a) = 0⇒ (7.5) F ∈ (z − a)2O(U).

Theorem (Identitätssatz)

Sei G ⊂ C ein Gebiet, A ⊂ G nicht diskret (d.h. A besitze einen Häufungspkt in G).
Dann gilt

f , g ∈ O(G) mit f = g auf A ⇒ f = g auf ganz G.

Beispiel: Sind f , g ∈ O(D1(0)) mit f (1/n) = g(1/n) für fast alle n, so ist f = g.
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Maximumprinzip

Theorem (Maximumprinzip)

Sei G ⊂ C ein Gebiet und f ∈ O(G), g ∈ C(G) mit g|G ∈ O(G).

Hat |f | in einem a ∈ G ein lokales Maximum, so ist f ≡ const.

Ist G beschränkt und g|G nicht konstant, so gilt |g(z)| < ‖g‖∂G∀z ∈ G.

Idee: Sei |f | ≤ |f (a)| auf DR(a) ⊂ G ⇒ ∀0 < r < R

0 CIF
=
∣∣∣f (a)−

1
2πi

∫
∂Dr (a)

f (ξ)

ξ − a
dξ
∣∣∣ =

∣∣∣f (a)−
1

2π

∫ 2π

0
f (a + reit )dt

∣∣∣
≥ |f (a)| −

1
2π

∫ 2π

0
|f (a + reit )|dt =

1
2π

∫ 2π

0
|f (a)| − |f (a + reit )|︸ ︷︷ ︸
≥0 stetig in t

dt ≥ 0

⇒ |f | ≡ |f (a)| auf DR(a)
2.19⇒ f ≡ f (a) auf DR(a)

⇒ (Identitätssatz) f ≡ f (a) auf G
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Minimumprinzip und Gebietstreue

Theorem (Minimumprinzip = 7.13)

Sei G ⊂ C ein Gebiet und f ∈ O(G), g ∈ C(G) mit g|G ∈ O(G).

Hat |f | in einem a ∈ G ein lokales Minimum, so ist f (a) = 0 oder f ≡ const.

Ist G beschränkt und g|G nicht konstant, so hat g eine Nullstelle in G oder

|g(z)| > min{|g(w)|; w ∈ ∂G} ∀ z ∈ G.

Theorem (Satz von der Gebietstreue = 7.14)

Sei G ⊂ C ein Gebiet und f ∈ O(G) nicht konstant⇒ f (G) ist ein Gebiet und

f ist offen, d.h. f (U) ⊂ C ist offen ∀U ⊂ G offen.
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Connected components

Let U ⊂ C be open. An equivalence relation on U is defined by

z ∼ w ⇔ there is a path γ from z to w in U.

The equivalence classes are called path components of U or simply components of U.

Lemma (8.2)

Let U ⊂ C be open and z ∈ U.

(a) The equivalence class C(z) of z in U is open and connected.

(b) U is the disjoint union of its components.

(c) M ⊂ U connected or path connected with M ∩ C(z) 6= ∅ ⇒ M ⊂ C(z).

Examples (8.3)

K ⊂ C compact ⇒ ∃! unbounded component C∞ in C \ K . We have

{z ∈ C; |z| > sup
w∈K
|w |} ⊂ C∞.
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A Cauchy-type integral

Lemma (8.4)

Let γ be a contour in C, ϕ,ψ : Sp(γ)→ C continuous and U = C \ ϕ(Sp(γ). Then

f : U → C, f (z) =

∫
γ

ψ(ξ)

ϕ(ξ)− z
dξ

is holomorphic with lim|z|→∞ f (z) = 0. For all z ∈ U and n ∈ N,

f (n)(z) = n!

∫
γ

ψ(ξ)

(ϕ(ξ)− z)n+1
dξ.

Idee: For z ∈ Dr (a) ⊂ U = C \ ϕ(Sp(γ) , the series

ψ(ξ)

ϕ(ξ)− z
=

ψ(ξ)

(ϕ(ξ)− a)(1− z−a
ϕ(ξ)−a )

=
∞∑

n=0

ψ(ξ)

(ϕ(ξ)− a)n+1
(z − a)n

converges uniformly for ξ ∈ Sp(γ) by the WM-test. Hence

f (z) =
∞∑

n=0

(∫
γ

ψ(ξ)

(ϕ(ξ)− a)n+1
dξ
)

(z − a)n.
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Winding number

Theorem (8.5)

Let γ be a closed contour in C. Then

indγ(z) :=
1

2πi

∫
γ

1
ξ − z

dξ ∈ Z ∀z ∈ C \ Sp(γ)

is constant on each component and vanishes on the unbounded component.

Idee: Show that exp
( ∫

γ
dξ
ξ−z

)
= 1 for all z ∈ C \ Sp(γ).

Definition (8.6)

The winding number (Umlaufzahl) or index of γ relative to z is defined as the integer

indγ(z) =
1

2πi

∫
γ

1
ξ − z

dξ.

Examples (8.7)

For γ : [0, 2π]→ C, γ(t) = a + reimt (a ∈ C,m ∈ Z),

indγ(z) =

{
m, z ∈ Dr (a),

0, z /∈ Dr (a).
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Integrals along cycles

A cycle (Zyklus) in M ⊂ C is a tuple Γ = (γ1, . . . , γn) of closed contours in M.
For cycles Γ = (γ1, . . . , γn) and ∆ = (δ1, . . . , δm) in C, we define

Sp(Γ) = Sp(γ1) ∪ . . . ∪ Sp(γn)

−Γ = (−γ1, . . . ,−γn)

Γ + ∆ = (γ1, . . . , γn, δ1, . . . , δm)∫
Γ f dz =

∑n
i=1
∫
γi

f dz if f : Sp(Γ)→ C is continuous

indΓ(z) = 1
2πi

∫
Γ

dξ
ξ−z =

∑n
i=1 indγi (z) (z ∈ C \ Sp(Γ))

Definition

Let Γ be a cycle or a single contour in C. We define the interior of Γ as the set

Int(Γ) = {z ∈ C \ Sp(Γ); indΓ(z) 6= 0}.

Since indΓ(·) : C \ Sp(Γ)→ C is continuous, Int(Γ) ⊂ C is open.
We identify a single contour γ with the cycle Γ = (γ).
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Global Cauchy theorem

Let Γ = (γ1, . . . , γn) be a cycle in C. Then

Int(Γ) ⊂ {z ∈ C; |z| ≤ supw∈Sp(Γ) |w |} and Int(Γ) ∪ Sp(Γ) is compact

indΓ(·) is constant on each component of C \ Sp(Γ) and 0 on C∞.

Theorem (The global Cauchy theorem = 8.10)

Let f ∈ O(U) (U ⊂ C open). Let Γ be a cycle in U with Int(Γ) ⊂ U. Then

(a)
∫

Γ f dz = 0,

(b) indΓ(z) f (z) = 1
2πi

∫
Γ

f (ξ)
ξ−z dξ ∀z ∈ U \ Sp(Γ),

(c) indΓ(z) f (k)(z) = k!
2πi

∫
Γ

f (ξ)

(ξ−z)k+1 dξ ∀z ∈ U \ Sp(Γ) and k ∈ N.

(d) If Γ1 and Γ2 are cycles in U with

indΓ1 (z) = indΓ2 (z) ∀z ∈ C \ U,

then ∫
Γ1

f dz =

∫
Γ2

f dz.
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Global Cauchy thm: An application

Examples (8.11)

Let U = Dt (a) ∩ Ds(a)c for 0 ≤ s < t ≤ ∞ and f ∈ O(U).

For s < r < t , define γr : [0, 2π]→ C, t 7→ a + reit . Then for s < r1 < r2 < t

indγr1
(z) = indγr2

(z) for all z ∈ C \ U

and
ind(γr2 ,−γr1 )(z) = indγr2

(z)︸ ︷︷ ︸
=1

− indγr1
(z)︸ ︷︷ ︸

=0

= 1 for all r1 < |z| < r2.

Therefore:
1
∫
γr

f dz does not depend on r ∈ (s, t)

2 f (z) = 1
2πi

( ∫
γr2

f (ξ)
ξ−z dξ −

∫
γr1

f (ξ)
ξ−z dξ

)
for all r1 < |z| < r2

3 The integrals in (2) define analytic functions f0 ∈ O(Dt (a)), f∞ ∈ O(Ds(a)c) with

f = f0 − f∞ on U.
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Simply connected domains

Definition (8.12)

A domain G ⊂ C is simply connected if Int(γ) ⊂ G ∀ closed contours γ in G.

A holomorphic logarithm of f ∈ O(U) is a function g ∈ O(U) with eg = f .

Theorem (8.13)

Let G ⊂ C be a domain. Equivalent are:

(i) G is simply connected.

(ii)
∫
γ f dz = 0 ∀ closed contours γ in G and f ∈ O(G).

(iii) Each function f ∈ O(G) has a primitive.

(iv) Each function f ∈ O(G) with 0 /∈ f (G) has a holomorphic logarithm.

Some ideas: (i)⇒ (ii)⇔ (iii). Global Cauchy thm and Theorem 6.5.
(iii)⇒ (iv). Aufgabe 20
(iv)⇒ (i). If 1/(z − a) = eg , then 1/(z − a) = −(1/z − a)′/1/(z − a) = −g′.
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Criteria for simple connectedness

Theorem (8.14)

Let G ⊂ C be a domain.

G not simply connected ⇒ ∃ ∅ 6= A1 compact and A2 closed with

C \ G = A1 ∪ A2, A1 ∩ A2 = ∅.

C \ G unbounded and connected ⇒ G is simply connected.

Examples (8.15)

Convex domains are simply connected by Cauchy’s integral theorem for convex domains.

C−π = C \ (−∞, 0] is simply connected by Theorem 8.14 (but not convex).

G = {z ∈ C; |Im z| < 1} is simply connected (but C \ G is not connected).
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Isolated singularities: Definition

Definition (9.1)

An isolated singularity for f ∈ O(U) is a point a ∈ C \ U with Ḋr (a) ⊂ U for some r > 0.

An isolated singularity a for f is called

removable if ∃ g ∈ O(U ∪ {a} with f = g|U ,

pole if limz→a |f (z)| =∞,

essential if a is neither removable nor a pole.

Examples (9.2)

0 is an isolated singularity for the functions

f (z) =
sin z

z
(removable) , g(z) =

1
zn

(n ∈ N∗) (pole) , h(z) = e
1
z (essential).

If A ⊂ U is discrete and f ∈ O(U \ A), then A consists of isolated singularities for f .



Complex numbers Continuous and differentiable functions Power series Elementary functions Contour integrals Applications Global Cauchy thm Isolated singularities Residue theorem Real Integrals Conformal mappings

Isolated singularities: Characterizations

Theorem (9.4)

For f ∈ O(U \ {a}) (a ∈ U), exactly one of the following cases holds:

(i) a is removable for f ,

(ii) ∃m ∈ N∗, c1, . . . , cm ∈ C with cm 6= 0 such that a is removable for

U \ {a} → C, z 7→ f (z)−
m∑

k=1

ck

(z − a)k
,

(iii) ∀w ∈ C ∃(zn)n≥0 in U \ {a} with limn→∞zn = a and limn→∞f (zn) = w.

f possesses a pole in a in case (ii) and an essential singularity in case (iii).

In case (ii) the numbers m ∈ N∗, c1, . . . , cm are uniquely determined.

Definition (9.6)

In the setting of case (ii) one calls

m the order of the pole a,∑m
k=1

ck
(z−a)k the principal part (Hauptteil) of f in a,

res (f , a) = c1 the residuum of f in a.

We say that f has a simple pole at a if m = 1.
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Laurent separation

Lemma (9.7)

Let f ∈ O(U \ {a}) (a ∈ U). Then equivalent are:

f has a pole of order m in a,

∃ g ∈ O(U) with g(a) 6= 0 and f (z) = g(z)
(z−a)m for all z ∈ U \ {a},

limz→0(z − a)mf (z) ∈ C∗ exists.

In this case: res (f , a) = g(m−1)(a)
(m−1)!

. If m = 1, then

res (f , a) = g(a) = lim
z→a

(z − a)f (z).

We return to Example 8.11. For a ∈ C, 0 ≤ s < t ≤ ∞, set

Ks,t (a) = {z ∈ C; s < |z − a| < t}.

Theorem (Laurent separation = 9.8)

Let f ∈ O(Ks,t (a)). Then ∃! f0 ∈ O(Dt (a)), f∞ ∈ O(C \ Ds(a)) with

f = f0 + f∞ on Ks,t (a), lim
|z|→∞

f∞(z) = 0.
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Beweis von Satz 9.8



Complex numbers Continuous and differentiable functions Power series Elementary functions Contour integrals Applications Global Cauchy thm Isolated singularities Residue theorem Real Integrals Conformal mappings

Laurent expansion

Expanding f0 (Nebenteil) and f∞ (Hauptteil) into series

f0(z) =
∞∑

n=0

an(z − a)n (|z − a| < t), f∞(z) =
∞∑

n=1

a−n(z − a)−n (|z − a| > s)

one obtains:

Theorem (Laurent-Entwicklung = 9.9)

For f ∈ O(Ks,t (a)) there are unique coefficients an (n ∈ Z) with

f (z) =
∞∑

n=−∞
an(z − a)n for all z ∈ Ks,t (a).

The coefficients an are given by

an =
1

2πi

∫
∂Dr (a)

f (ξ)

(ξ − a)n+1
dξ (n ∈ Z, s < r < t).

The series
∑∞

n=0 an(z − a)n and
∑∞

n=1 a−n(z − a)−n converge uniformly on compact
subsets of Dt (a) and C \ Ds(a), respectively.
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Theorem 9.9: Proof

Ḋ1/s(0)→ C, z 7→ f∞(a + 1
z ) extends to F∞ ∈ O(D1/s(0)) with Taylor series

F∞(z) =
∞∑

n=1

a−nzn (Riemansscher Hebbarkeitssatz)

f∞(z) = F∞
(

1
z − a

)
=
∞∑

n=1

a−n(z − a)−n for |z − a| > s

f (z) =
∞∑

n=0

an(z − a)n +
∞∑

n=1

a−n(z − a)−n =:
∑
n∈Z

an(z − a)n

If f (z) =
∑

n∈Z bn(z − a)n for z ∈ Ks,t (a), then the radius of convergence of

∞∑
n=0

bn(z − a)n is ≥ t
( ∞∑

n=1

b−nzn is ≥ 1/s
)
.

Hence the series
∑

n∈Z bn(z − a)n converges uniformly on cpct subsets of Ks,t (a) and∫
∂Dr (a)

f (ξ)

(ξ − a)N+1
dξ =

∑
n∈Z

bn

∫
∂Dr (a)

(z − a)n−N−1dξ = 2πi bN .
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Laurent series

Definition

Let f ∈ O(Ks,t (a)) with 0 ≤ s < t ≤ ∞. The series expansion

f (z) =
∑
n∈Z

an(z − a)n

is called the Laurent series of f . We call∑∞
n=1 a−n(z − a)−n =

∑−∞
n=−1 an(z − a)n the principal part of f∑∞

n=0 an(z − a)n the Nebenteil of f

res (f , a) = a−1 = 1
2πi

∫
∂Dr (a)

f (ξ)dξ (s < r < t) the residuum of f .

Examples

Let f (z) = 1
z(z−1)2 . Then expanding f into its Laurent series yields

f (z) = 1
z

d
dz

( 1
1−z

)
= 1

z
∑∞

n=1 nzn−1 =
∑∞

n=−1(n + 2)zn on K0,1(0)

f (z) = 1
(z−1)2

1
1+(z−1)

=
∑∞

n=−2(−1)n(z − 1)n on K0,1(1).
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How to recognize the singularity type from the Laurent series

Theorem

Let f ∈ O(U \ {a}) (a ∈ U ⊂ C open) with Laurent expansion

f (z) =
∑
n∈Z

an(z − a)n near a

Then

a is removable ⇔ an = 0 ∀n < 0

a is a pole of order m ⇔ a−m 6= 0 and an = 0 ∀n < −m

a is essential ⇔ an 6= 0 for infinitely many n < 0.

Some ideas: If f extends to g ∈ O(U), then

an =
1

2πi

∫
∂Dr (a)

g(ξ)

(ξ − a)n+1
dξ = 0 ∀n < 0.

If f (z)−
∑m

k=1 c−k (z − a)−k extends to g ∈ O(U), then

f (z) =

−1∑
k=−m

ck (z − a)k +
∞∑

k=0

g(k)(a)

k!
(z − a)k

is the Laurent series of f at a. The third case follows by excluding the first two.
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Residue theorem

Theorem

Let f ∈ O(U \ A) (A ⊂ U discrete). If Γ is a cycle in U \ A with Int(Γ) ⊂ U, then

1
2πi

∫
Γ

f dz =
∑
a∈A

indΓ(a) res(f , a) (the sum is finite!).

Idea: The set M = {a ∈ A; indΓ(a) 6= 0} ⊂ Int(Γ) ∪ Sp(Γ) is finite, say

M = {a1, . . . , ak}.

Let qi (z) =
∑∞

n=1 ain(z − ai )
−n be the principal part of f in ai .

Then f − (q1 + . . .+ qk ) extends to g ∈ O(V ) on V = (U \ A) ∪ {a1, . . . , ak} and

∫
Γ

f dz =

∫
Γ

( k∑
i=1

qi

)
dz =

k∑
i=1

∞∑
n=1

ain

∫
Γ

1
(z − ai )n

dz =
k∑

i=1

(2πi) indΓ(ai ) res(f , ai ).

First equality: CIS (8.10 (a)). Last equality: CIF for the derivatives (8.10 (c)).
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Zeroes and poles

Definition

Let f ∈ O(U) and let a be a zero point or a pole for f . Then the order of f at a is

orda(f ) =

{
n, if a is a zero of multiplicity n
−n, if a is a pole of order n

We write orda(f ) = 0 if a ∈ U is no zero of f and define Nf =
−1
f ({0}).

Examples

Let f ∈ O(U). If a is a zero of finite multiplicity or a pole for f , then

f ′

f
has a simple pole at a with res(

f ′

f
, a) = orda(f ).

Indeed, if f (z) = (z − a)ng(z) (n ∈ Z∗) with g(a) 6= 0, then on Ḋr (a) ⊂ U

f ′(z)

f (z)
=

n(z − a)n−1g(z)

(z − a)ng(z)
+

(z − a)ng′(z)

(z − a)ng(z)
∈

n
z − a

+O(Dr (a)).
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Argument principle

Simple facts: Let M,N ⊂ C and f ∈ O(U) be given.

a accumulation pt. (Häufungspkt) of M

:⇔ ∀r > 0 : Ḋr (a) ∩M 6= ∅ ⇔ ∃ M ∩ {a}c 3 zn
(n→∞)−→ a

a accumulation pt. of M ∪ N :⇔ M accumulation pt. of M or N

f not identically zero on any component of U Id.Satz⇐⇒ Nf ⊂ U discrete

Theorem (Argument principle = 10.3)

Let f ∈ O(U \ A) (A ⊂ U discrete) such that Nf ⊂ U \ A is discrete and A consists of
poles for f .

If Γ is a cycle in U \ (A ∪ Nf ) with Int(Γ) ⊂ U, then

1
2πi

∫
Γ

f ′(z)

f (z)
dz =

∑
a∈Nf∪A

indΓ(a) orda(f ) (the sum is finite!).

If A = ∅, then the formula holds without A for each f ∈ O(U) with Nf ⊂ U discrete and
each cycle Γ in U \ Nf with Int(Γ) ⊂ U.
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Arguement principle: Proof

Idea: Apply the residue theorem to f ′
f ∈ O(U \ (A ∪ Nf ))

Assume that there is an accumulation point a of A ∪ Nf in U.

Then a is an accumulation point of Nf in U \ (U \ A) = A.

⇒ ∃ Nf 3 zn
(n→∞)−→ a ∈ A

which is not possible, since a would be a pole for f .

Thus f ′
f ∈ O(U \ (A ∪ Nf )) and A ∪ Nf ⊂ U is discrete.

⇒ (Resiude theorem)
1

2πi

∫
Γ

f ′

f
dz =

∑
a∈Nf∪A

indΓ(a)orda(f )

for each cycle Γ in U \ (A ∪ Nf ) with Int(Γ) ⊂ U.
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Counting zeroes and poles

Remark

If in addition indΓ(a) = 1 ∀a ∈ Int(Γ), then

1
2πi

∫
Γ

f ′(z)

f (z)
dz =

∑
a∈Nf∩Int(Γ)

orda(f ) +
∑

a∈A∩Int(Γ)

orda(f )

is the difference of the number of zeroes and poles in Int(Γ) counted with multplicity and order.

Theorem (Rouché = 10.8)

If f , g ∈ O(U) are not zero on any component of U, Γ is a cycle in U with

|f (z)− g(z)| < |f (z)| ∀ z ∈ Sp(Γ)

and Int(Γ) ⊂ U, then∑
a∈Nf

indΓ(a)orda(f ) =
∑

a∈Ng

indΓ(a)orda(g) (both sums are finite!).
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Rouché’s theorem: Proof

By the argument principle with A = ∅

∑
a∈Nf

indΓ(a)orda(f ) =
1

2πi

∫
Γ

f ′

f
dz,

∑
a∈Ng

indΓ(a)orda(g) =
1

2πi

∫
Γ

g′

g
dz

With Γ = (γ1, . . . , γn) and f (Γ) = (f ◦ γ1, . . . , f ◦ γn)∫
Γ

f ′

f
dz =

n∑
i=1

∫ bi

ai

f ′(γi (t))

f (γi (t))
γ′i (t)dt =

n∑
i=1

∫
f◦γi

1
z

dz = (2πi) indf (Γ)(0).

Hence it suffices to show that

indf (Γ)(0) = indg(Γ)(0).

This equality follows from the hypothesis that (Lemma 10.7)

|f (γi (t))− g(γi (t))| < |f (γi (t))| ∀i = 1, . . . , n, t ∈ [ai , bi ].
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Examples

(a) If indΓ(a) = 1 for all a ∈ Int(Γ) in Rouché’s theorem then,∑
a∈Nf∩Int(Γ) orda(f ) =

∑
a∈Ng∩Int(Γ) orda(g).

(b) For g(z) = z8 − z3 + 5z − 2 and f (z) = 5z,

|g(z)− f (z)| = |z8 − z3 − 2| ≤ 4 < 5 = |f (z)| on ∂D1(0).

Hence g has exactly as many zeroes in D1(0) as f , this means one.

Theorem (10.12)

Let f ∈ O(G) (G ⊂ C domain). If f − w0 has a zero of order k ∈ N∗ at z0 ∈ G, then
∀r > 0 ∃ open neighbourhoods U ⊂ Dr (z0) of z0,W ⊂ C of w0 with

#
(
{z ∈ U; f (z) = w}

)
= k ∀w ∈ W \ {w0} and f (U) = W .

Identity thm. ⇒ ∃r > 0 : w0 /∈ f (Dr (z0) \ {z0}) and 0 /∈ f ′(Dr (z0) \ {z0})

For |w − w0| < s small enough: |(f − w)− (f − w0)| < |f − w0| on ∂Dr (z0)

(Argument principle)⇒ #
(
{z ∈ Dr (z0); f (z) = w}

)
= k ∀w ∈ Ḋs(w0).
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Local invertibility

Theorem (10.14)

Let f ∈ O(U)and z0 ∈ U with f ′(z0) 6= 0.

⇒ ∃ open ngh.hoods V ⊂ U of z0,W of f (z0) such that f : V → W is biholomorphic.

Proof. May suppose that U is connected (Replace U by the component of z0).
Set w0 = f (z0).

⇒ f − w0 has a zero of order 1 at z0.

⇒ ∃ open ngh.hoods V ⊂ U of z0, W of f (z0) such that f : V → W is bijective.

⇒ (Satz v. d. Gebietstreue) g = (f : V → W )−1 is continuous

g(w + h)− g(w)

h
=

g(w + h)− g(w)

f (g(w + h))− f (g(w))

(h→0)→
1

f ′(g(w))

Corollary (10.15)

Let f ∈ O(U) be injective. Then f (U) ⊂ C is open and f : U → f (U) is biholomorphic.
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Applications to improper real integrals

Aim: Use the residue theorem to calculate real integrals of the form

∞∫
−∞

p(x)

q(x)
dx ,

∞∫
−∞

p(x)

q(x)
sin (ax)dx ,

∞∫
−∞

p(x)

q(x)
cos (ax)dx (p, q ∈ C[z], 0 /∈ q(R), a > 0)

Strategy: Calculate ∫
Γ1∧ΓR

p(z)

q(z)
eiazdz

with Γ1(x) = x (−R ≤ x ≤ R) and ΓR(x) = Reix (0 ≤ x ≤ π). If

lim
R→∞

∫
ΓR

p(z)

q(z)
eiazdz = 0,

then the residue theorem implies that with f (z) = p(z)
q(z)

eiaz

∞∫
−∞

p(x)

q(x)
eiax dx = lim

R→∞

R∫
−R

p(x)

q(x)
eiax dx = 2πi

∑
w∈Nq

Im w>0

res (f ,w)

provided the improper Riemann integral on the left-hand side exists.
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deg(q) ≥ deg(p) + 2

Recall: For f , g : R→ C continuous,

by definition
∫∞
−∞ fdx exists if limR→∞

∫ R
0 fdx and limR→∞

∫ 0
−R fdx both exist or,

equivalently, if ∀ε > 0∃rε > 0 such that ∀r , s ∈ R with rε < r < s.∣∣∣∣ s∫
r

fdx
∣∣∣∣ < ε und

∣∣∣∣∣−r∫
−s

fdx

∣∣∣∣∣ < ε (Cauchy criterion).

if
∫∞
−∞ |g(x)|dx exists and |f (x)| ≤ c|g(x)|∀|x | > R, then

∫∞
−∞ fdx exists.

Theorem (11.2)

For p, q ∈ C[z] with deg(q) ≥ deg(p) + 2 and 0 /∈ q(R),

∞∫
−∞

p(x)

q(x)
dx = 2πi

∑
w∈Nq

Im w>0

res (
p
q
,w).

Idea: Show that ∃R0, c > 0 such that ‖p/q‖Sp(ΓR ) ≤ c/R2∀R > R0. Then

|
∫

ΓR
p/qdz| ≤ L(ΓR) ‖p/q‖Sp(ΓR ) ≤ (πR) c/R2 (R→∞)−→ 0.
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Example 11.3

Examples

We calculate

I =

∞∫
−∞

x2

1 + x4
dx

The only poles of

f (z) =
z2

1 + z4
=

g(z)

h(z)

in the upper half plane are simple poles at w1 = ei π4 and w2 = ei 3
4π with (Aufgabe 33(b))

res(f ,wi ) =
g(wi )

h′(wi )
=

1
4wi

By Theorem 11.2

I = 2πi(res(f ,w1) + res(f ,w2)) =
π

2
ei π2 (e−i π4 + e−i 3

4π) =
π
√

2
.
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deg(q) ≥ deg(p) + 1

Theorem (11.5)

If p, q ∈ C[z] with deg (q) ≥ deg (p) + 1, 0 /∈ q(R) and a > 0, then∫ ∞
−∞

p(x)

q(x)
eiax

︸ ︷︷ ︸
f (x)

dx = 2πi
∑

w∈Nq
Im w>0

res
(

p(z)

q(z)
eiaz ,w

)
.

Ideas: Choose r1, r2, s > 0 with {w ∈ Nq ; Im w > 0} ⊂ ]− r1, r2[×]0, s[. Fix ε > 0.

Using the residue theorem and choosing suitable r1, r2 > 0 and then s > 0 one obtains∣∣∣ ∫ r2

−r1
f (x)dx − 2πi

∑
w∈Nq

Im w>0

res (f ,w)
∣∣∣ =

∣∣∣− ∫
γ1∧γ2∧γ3

f (z)dz
∣∣∣ < ε+ ε+ ε.
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Theorem 11.5: Proof

|f (z)| =
∣∣∣ p(z)

q(z)
eiaz
∣∣∣ ≤︸︷︷︸
|z|≥R0

c
|z|e
−a Im z

(
≤ c

s auf γ2

)

γ1(t) = r2 + ist (0 ≤ t ≤ 1)∣∣∣ ∫γ1
fdz
∣∣∣ =

∣∣∣ ∫ 1
0

p
q (γ1(t)) e(iar2−ast) isdt

∣∣∣ ≤ 1
a

c
r2

∫ 1

0
e−ast as dt︸ ︷︷ ︸

=1−e−as≤1

≤ c
ar2

∣∣∣ ∫γ3
fdz
∣∣∣ ≤ c

ar1∣∣∣ ∫γ2
fdz
∣∣∣ ≤ L(γ2) ‖f‖Sp(γ2) ≤ (r1 + r2) c

s < ε for s > s(r1, r2, ε)

Hence ∣∣∣ ∫ r2

−r1
f (x)dx − 2πi

∑
w∈Nq

Im w>0

res (f ,w)
∣∣∣ < 3 ε for r1, r2 > r(ε).
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Example 11.6

Examples

We calculate

I =

∞∫
−∞

x3

1 + x4
sin (ax)dx (a > 0).

The only poles of f (z) = z3eiaz

1+z4 = g(z)
h(z)

in the upper half plane are simple poles at

w1 = ei π4 =
1 + i
√

2
,w2 = ei 3

4π =
−1 + i
√

2

with residues (Aufgabe 33(b))

res (f ,wi ) =
g(wi )

h′(wi )
=

1
4

eiawi .

Theorem 11.5 yields

∞∫
−∞

fdx =
2πi
4

(
e

ia 1+i√
2 + e

ia−1+i√
2

)
= πi e

− a√
2 cos

(
a
√

2

)
.

and hence I = Im
(∫∞
−∞ fdx

)
= πe

− a√
2 cos a√

2
.
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Automorphism groups

Biholomorphic maps f : U → V (U,V ⊂ C open) are also called conformal mappings.

Definition

Let U ⊂ C be open. The automorphism group of U is (with composition as group operation)

Aut(U) = {f ; f : U → U biholomorphic}.

Examples

f : H+ = {z ∈ C; Im z > 0} → D1(0), f (z) = z−i
z+i is biholomorphic with inverse

g : D1(0)→ H+, g(z) = i 1+z
1−z .

The Moebius transformation (gebrochen lineare Transformation)

z 7→ az+b
cz+d ,

(
a b
c d

)
∈ GL(2,C)

defines a biholomorphic mapping
(i) f : C→ C if c = 0
(ii) f : C \ {− d

c } → C \ { a
c } if c 6= 0

with inverse given (up to the determinant) by the inverse matrix z 7→ dz−b
−cz+a .
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Automorphism group of C

For a ∈ C∗, b ∈ C, define fa,b : C→ C, z 7→ az + b.

Theorem

Aut(C) = {fa,b; a ∈ C∗ and b ∈ C}.

Idea: Let f ∈ Aut(C). Then 0 cannot be an essential singularity for

g : C∗ → C, g(z) = f
(

1
z

)
.

since otherwise the open mapping principle (7.14) and Theorem 9.4 would imply that

f (C \ D1(0)) ∩ f (D1(0)) = g(Ḋ1(0)) ∩ f (D1(0)) 6= ∅.

By Theorem 9.4 ∃m ≥ 1, c1, . . . , cm ∈ C such that 0 is a removable singularity for

f
(

1
z

)
−
∑m

k=1
ck
zk .

⇒ C→ C, z 7→ f (z)−
∑m

k=1 ck zk is bounded, hence constant by Liouville.

⇒ Since f ′ ∈ C[z] has no zero (chain rule), f is a polynomial with deg(f ) = 1.
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Schwarz lemma

Obvious biholomorphic maps of the unit disc D = D1(0) are:

rotations f (z) = eiθz (θ ∈ R)

Moebius transformations Ta(z) = z−a
1−az (a ∈ D) with inverse

T−a(z) =
z + a

1 + az
,

(
1 −a
−a 1

)−1
=

1
1− |a|2

(
1 a
a 1

)
Note that: |Ta(z)| =

∣∣∣ z−a
(z−a)z

∣∣∣ = 1 for |z| = 1 ⇒ Max. principle Ta(D) ⊂ D.

Theorem (Schwarz lemma = 12.4)

Let f : D→ D be holomorphic with f (0) = 0. Then

|f ′(0)| ≤ 1

|f (z)| ≤ |z| ∀ z ∈ D.
If |f ′(0)| = 1 or |f (z)| = |z| for some z ∈ D \ {0} , then f (z) = eiθz for some θ ∈ R.
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Automorphism group of D

Corollary (12.5)

Aut(D) consists precisely of the mappings f (z) = eiθ z−a
1−az (a ∈ D, θ ∈ R).

Idea: For f ∈ Aut(D), set a = f−1(0).

⇒ g = Ta ◦ f−1 ∈ Aut (D) with g(0) = 0

⇒ (Schwarz lemma for g and g−1) |g(z)| ≤ |z| = |g−1(g(z))| ≤ |g(z)| for all z

⇒ ∃θ ∈ R with f (z) = e−iθg(f (z)) = e−iθTa(z) ∀z ∈ D.

Corollary (12.6)

Let f ∈ O(D) be given with f (D) ⊂ D. Then:

|f ′(0)| ≤ 1 with equality⇔ ∃ θ ∈ R : f (z) = eiθz ∀z ∈ D.

If a, b ∈ D with f (a) = b, then |f ′(a)| ≤ 1−|b|2

1−|a|2 with equality

⇔ ∃ θ ∈ R : f (z) = T−b(eiθTa(z)) ∀z ∈ D.

Note: The automorphisms f of D with f (0) = 0 are precisely the rotations f (z) = eiθz.
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Riemannian sphere

Define Ĉ = C ∪ {∞} (Riemannsche Zahlenkugel). The system

t = {U; U ⊂ C open} ∪ {Ĉ \ K ; K ⊂ C compact}

defines a topology on Ĉ (or: turns X into a topological space), that is,

∅, Ĉ ∈ t ,

U,V ∈ t ⇒ U ∩ V ∈ t ,

(Ui )i∈I arbitrary family in t ⇒
⋃

i∈I Ui ∈ t .

The sets in t are called the open subsets of Ĉ.

Definition (12.7)

A map f : X → Y between topopological spaces X and Y is called

continuous at x ∈ X ⇔ ∀ open set V 3 f (x) ∃ an open set U 3 x such that f (U) ⊂ V

continuous⇔ f is continuous at every x ∈ X (⇔
−1
f (V ) ⊂ X is open ∀V ⊂ Y open)

homeomorphism (Homömorphismus)⇔ f is bijective and f and f−1 are continuous.

A topological space X is called compact :⇔ Each open cover of X contains a finite subcover.

By definition limn→∞ zn = z in Ĉ :⇔ ∀U 3 z open ∃N ∈ N with zn ∈ U ∀ n ≥ N .
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Beweis von Satz 9.8

S2 = {(z, s) ∈ C× R; |z|2 + s2 = 1} ⊂ R3 = C× R (unit sphere)
is a compact metric (in particular, topological) space. Let N = (0, 1) ∈ S2 be the

north pole. One can define a homeomorphism ϕ : S2 → Ĉ by setting ϕ(N) =∞ and

ϕ(z, s) = N + t((z, s)− N) = (tz, 1 + t(s − 1)) with t =
1

1− s

(intersection of the line through N and (z, s) with C = C× {0} ⊂ R3).
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Simple facts

Lemma

Ĉ is a compact toplogical space (one-point compactificationof C)

C ⊂ Ĉ is open and dense

U ⊂ C is open⇔ ∃ V ⊂ Ĉ open with U = V ∩ C

Ĉ→ Ĉ, z 7→ 1
z (with 1

0 =∞ and 1
∞ = 0) is a homeomorphism.

For zn, z ∈ C : limn→∞ zn = z in C ⇔ limn→∞ zn = z in Ĉ

For zn ∈ C : limn→∞ zn =∞ in Ĉ ⇔ limn→∞ |zn| =∞

Ĉ→ Ĉ, z 7→ 1
z is a homeomorphism, since inv : C∗ → C∗ ↪→ Ĉ is continuous and

1
z

(Dε(0)) ⊂ Ĉ \ D 1
ε

(0),
1
z

(Ĉ \ D 1
ε

(0)) ⊂ Dε(0).
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Function theory on Ĉ

Definition (12.10)

Let U,V ⊂ Ĉ be open. A mapping f : U → C is called holomorphic at a ∈ U if

a ∈ C and f |U∩C is holomorphic at a or

a =∞ and inv(U)→ C, z 7→ f (1/z) is holomorphic at 0.

A continuous map f : U → V is called holomorphic if f ≡ ∞ or

f−1({∞}) ⊂ U is discrete and f : U \ f−1({∞})→ C is holomorphic

and biholomorphic if f is bijective and f : U → V , f−1 : V → U are holomorphic.

For f ∈ O(U) (U ⊂ C open) we call∞ a pole for f

:⇔ ∃s > 0 with {z ∈ C; |z| > s} ⊂ U and lim
|z|→∞

|f (z)| =∞.

Then∞ 6≡ f : U → Ĉ (U ⊂ Ĉ open) is holomorphic⇔ A = f−1({∞}) ⊂ U is discrete
and

f : (U \ A) ∩ C→ C is holomorphic with poles at each a ∈ A.
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Examples

If p, q ∈ C[z] with q 6= 0 and r(z) = p(z)
q(z)

for z ∈ C \ Nq , then

Ĉ→ Ĉ, z 7→
{

r(z) ; z ∈ C \ Nq
lim

w→z
r(w); z ∈ {∞} ∪ Nq

defines a holomorphic map.

For A =

(
a b
c d

)
∈ GL(2,C), the Moebius transformation TA : Ĉ→ Ĉ, i.e., the

unique continuous maps with

TA(z) =
az + b
cz + d

for z ∈ C with cz + d 6= 0

is biholomorphic with (TA)−1 = TA−1 .

Theorem

T : GL(2,C)→ Aut(Ĉ),A 7→ TA is a surjective group homomorphism with

Ker T = C∗
(

1 0
0 1

)
.
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Riemann mapping theorem

Which domains in C are conformally equivalent to (= biholomorphic image of) D?

Necessary condition: Let f : D→ G be biholomorphic and g : G→ C∗ holomorphic.

⇒ (D simply connected) ∃ h ∈ O(D) with g ◦ f = eh ⇒ g = exp(h ◦ f−1)

⇒ (Theorem 8.13) G is a simply connected domain.

Theorem (Riemann mapping theorem = 13.2)

Each simply connected domain C 6= G ⊂ C is conformally equivalent to the unit disc D.

Lemma

G ⊂ C domain, O(G) 3 fn
(n→∞)−→ f uniformly on compact subsets. Then:

If all fn are injective, then f is injective or constant.

Idea: If f 6≡ const , a, b ∈ G, a 6= b ⇒ (Identity thm.)∃r > 0 : f (a) /∈ f (Dr (b) \ {b})

⇒ ‖(fn − fn(a))− (f − f (a)‖∂Dr (b) < minz∈∂Dr (b) |f (z)− f (a)| for n ≥ N

⇒ (Rouché) f − f (a) has no zero in Dr (b).
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Definition

Let U ⊂ C open. A subset F ⊂ O(U) is called

equicontinuous at a ∈ U if ∀ε > 0 ∃ δ > 0 with f (Dδ(a)) ⊂ Dε(f (a)) ∀f ∈ F
bounded if sup{‖f‖K ; f ∈ F} <∞ ∀K ⊂ U compact

normal if each sequence in F has a locally uniformly convergent subsequence.

Lemma (13.5)

Each bounded set F ⊂ O(U) is equicontinuous at each a ∈ U.

Idea: If Dr (a) ⊂ U and M = sup{‖f‖Dr (a); f ∈ F}, then ∀ f ∈ F and |z − a| < r/2

|f (z)− f (a)| CIF
= |

1
2πi

∫
∂Dr (a)

(
f (ξ)

ξ − z
−

f (ξ)

ξ − a
)dξ|

=
|z − a|

2π
|
∫
∂Dr (a)

f (ξ)

(ξ − z)(ξ − a)
dξ| ≤

2
r

M|z − a|
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Lemma (13.6)

If K ⊂ U is compact and F ⊂ O(U) is equicontinuous at each a ∈ K .
⇒ ∀ ε > 0 ∃δ > 0 such that ∀ f ∈ F : |f (z)− f (w)| < ε∀z,w ∈ K with |z − w | < δ.

Idea: Otherwise for some ε > 0 sequences (zn), (wn) in K , (fn) in F with

|zn − wn| < 1/n and |f (zn)− f (wn)| ≥ ε ∀n ∈ N.

For suitable subsequences lim zn = lim wn = z ∈ K exists and by equicontinuity at z

ε ≤ |fn(zn)− fn(wn)| ≤ |fn(zn)− fn(z)|+ |fn(z)− fn(wn)| n→ 0

Lemma (13.7)

If {fn; n ∈ N} ⊂ O(U) is bounded and limn→∞ fn(z) exists ∀z ∈ M ⊂ U dense

⇒ (fn)n∈N converges uniformly on all cpct. subsets of U to a function f ∈ O(U).

Idea: Use 13.5 and 13.6 to show that the sequences (fn(z))n∈N satisfy the Cauchy
condition uniformly for z in each compact subset K ⊂ U.
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Beschränkte Familien sind normal

Theorem (Montel’s theorem = 13.8)

Each bdd.sequence (fn)n∈N in O(U) has a locally uniformly convergent subsequence.

Idea: Let M = {ak ; k ∈ N∗} ⊂ U be dense. Choose subsequences

(f1,n)n∈N von (fn)n∈N st. (fn(a1))n∈N converges

(f2,n)n∈N von (f1,n)n∈N st. (f2,n(a2))n∈N converges

and continue recursively. Then the diagonal sequence

(gn)n∈N = (fn,n)n∈N converges pointwise on M

and defines a locally uniformly convergent subsequence of (fn)n∈N by Lemma 13.7.

Alternatively one can prove Montel’s theorem using the equicontinuity of bounded
subsets F ⊂ O(U) and Arzela-Ascoli’s theorem from topology.
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Riemann mapping theorem: Proof

Let C 6= G ⊂ C be a simply connected domain. Show successively:

(1) Σ := {f ∈ O(G); f is injective with f (G) ⊂ D} 6= ∅.

(2) For each g ∈ Σ with g(G) 6= D and each a ∈ G ∃ f ∈ Σ with |f ′(a)| > |g′(a)|.

(3) Fix a ∈ G. Choose a sequence (gn)n∈N in Σ with

lim
n→∞

|g′n(a)| = s := sup{|g′(a)|; g ∈ Σ}.

May suppose (Montel’s theorem) (gn)n∈N
n→∞−→ g ∈ O(G) uniformly on cpct. subsets

⇒ (Weierstraß’ theorem) |g′(a)| = limn→∞ |g′n(a)| = s ∈ (0,∞)

⇒ g is injective with g(G) ⊂ D

⇒ (Maximum principle) g ∈ Σ and by Step 2 g is surjective.

⇒ (Holomorhic invertibility) g : G→ D is biholomorphic.
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Wichtiges für die Klausur

CRDG’en, harmonische Fkt’en, Bedingungen für Konstanz (Satz 2.19.)

Potenzreihen, Konvergenzradius, Taylorentwicklung

Existenz von Stammfunktionen

Cauchyscher Integralsatz und Formel für Kreise, konvexe Gebiete

Grundprinzipien: Liouville, Nullstellen (Vielfachheit), Identitätssatz,
Maximumprinzip, Riemannscher Hebbarkeitssatz, Gebietstreue

Allgemeiner CIS und CIF, einfacher Zusammenhang, holomorphe Logarithmen

Isolierte Singularitäten: Charakterisierungen, Ordnung von Polstellen,
Berechnung von Residuen (Lemma 9.7 + Aufg.33(b)) und Laurentreihen

Residuensatz, Berechnung von Integralen (komplexe und reelle), Rouché

Konforme Abbildungen von C, D, Schwarzsches Lemma, Moebiustransform.en

Schutzmasken mitbringen! Corona-Regeln für die Klausur beachten (Homepage)!

Viel Glück!!!
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