UNIVERSITÄT DES SAARLANDES FACHRICHTUNG – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Sebastian Toth

Übungen zur Vorlesung Funktionentheorie

Sommersemester 2020

Blatt 9

Abgabetermin: Donnerstag, 09.07.2020, vor der Vorlesung

Aufgabe 33 (2+2=4 Punkte)

Seien $U \subseteq \mathbb{C}$ offen, $a \in U$ und $f: U \setminus \{a\} \to \mathbb{C}$ holomorph. Zeigen Sie:

(a) Hat f in a einen einfachen Pol und ist $g \in \mathcal{O}(U)$, so gilt

$$res(f, a) = \lim_{z \to a} (z - a)f(z),$$

$$res(fg, a) = g(a)res(f, a).$$

(b) Ist $f = \frac{g}{h}$ auf $U \setminus \{a\}$ mit $g, h \in \mathcal{O}(U)$ und hat h eine einfache Nullstelle in a, so ist

$$res(f, a) = \frac{g(a)}{h'(a)}.$$

Aufgabe 34 (4+2=6 Punkte)

(a) Bestimmen Sie die Residuen der folgenden Funktionen in allen ihren Singularitäten:

 $\frac{1-\cos x}{x^3}$

(ii) $\frac{1}{\sin \pi z}$

(iii) $\frac{1}{e^z + 1}$

(iv) $ze^{rac{1}{1-z}}$

(b) Man berechne das Residuum

$$\operatorname{res}(\frac{z^{n-1}}{\sin^n z}, 0)$$

für alle $n \in \mathbb{N}$ sowie das Residuum

$$\operatorname{res}(\frac{z}{1 - (2 - z)^{(\frac{1}{2}, -\pi, 0)}}, 1).$$

(bitte wenden)

Aufgabe 35 (2+2=4 Punkte)

Bestimmen Sie die Zahl der Nullstellen (in Vielfachheiten) der folgenden Funktionen in den angebenden Gebieten:

(a)
$$f: \mathbb{C} \to \mathbb{C}$$
, $f(z) = z^{10} - 4z^6 + 2$ in $1 < |z| < 2$,

(b)
$$g: \mathbb{C} \to \mathbb{C}, \ g(z) = z^7 - 3z^3 - i \text{ in } |z| > 1.$$

Aufgabe 36 (3+2=5 Punkte)

Berechnen Sie die folgenden Integrale

(a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+4)},$$

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2 + x + 1)^2}.$$

Bitte senden Sie Ihre Lösungen in Form einer pdf-Datei an Ihren Tutor. Zwei der Übungsaufgaben werden korrigiert: Dieses Mal Aufgabe 35 und eine zufällig ausgewählte Aufgabe.

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre