Saarland University FACULTY 6.1 – MATH

Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

Übungen zur Vorlesung Topologie II

Sommersemester 2020

Blatt 1 Abgabedatum: 12.05.2020

Sie können die Übungen in Gruppen von bis zu 3 Personen bearbeiten. Zur Zulassung für die Abschlussprüfung müssen insgesamt mindestens 50 Prozent der Übungspunkte erreicht werden.

Ein topologischer Raum X heißt Lindelöf-Raum, falls zu jeder offenen Überdeckung von X eine abzählbare Teilüberdeckung existiert.

Aufgabe 1 (1+2+1=4 Points)

- (a) Es sei (X,t) ein topologischer Raum und $\mathcal{B} \subset t$ eine Basis von t. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:
 - (i) (X, t) ist ein Lindelöf-Raum.
 - (ii) Jede Überdeckung durch Mengen aus \mathcal{B} hat eine abzählbare Teilüberdeckung.
- (b) Für $\alpha \in A$ seien $I_{\alpha} = [a_{\alpha}, b_{\alpha})$ $(a_{\alpha} < b_{\alpha})$ halboffene Intervalle in \mathbb{R} mit $\mathbb{R} = \bigcup_{\alpha \in A} I_{\alpha}$. Es sei $M = \bigcup_{\alpha \in A} (a_{\alpha}, b_{\alpha})$. Zeigen Sie:
 - (i) Es gibt eine Folge $(\alpha_n)_{n\in\mathbb{N}}$ in A mit $M=\bigcup_{n\in\mathbb{N}}(a_{\alpha_n},b_{\alpha_n})$.
 - (ii) $\mathbb{R} \setminus M$ ist abzählbar. (Hinweis: $Zu \ x \in \mathbb{R} \setminus M$ existiert ein $q_x \in \mathbb{Q}$ mit $(x, q_x] \subset M$.)
- (c) Es sei τ die von der Basis $\mathcal{B} = \{[a,b); \ a < b\}$ erzeugte Topologie auf \mathbb{R} (vergleiche Aufgabe 24 Topologie I). Zeigen Sie, dass (\mathbb{R}, τ) ein Lindelöf-Raum ist.

Aufgabe 2 (1+3=4 Points)

- (a) Zeigen Sie, dass jeder reguläre Lindelöf-Raum parakompakt ist.
- (b) Wie zuvor sei τ die von den halboffenen Intervallen [a,b) (a < b) erzeugte Topologie auf \mathbb{R} . Zeigen Sie, dass (\mathbb{R},τ) regulär (und somit parakompakt) ist.

Aufgabe 3 (4 Points)

Sei X ein Hausdorffscher topologischer Raum. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) X ist parakompakt.
- (b) Zu jeder offenen Überdeckung $(U_{\alpha})_{\alpha \in A}$ von X gibt es eine stetige Zerlegung der Eins bezüglich $(U_{\alpha})_{\alpha \in A}$.

(Bitte wenden)

(c) Zu jeder offenen Überdeckung $(U_{\alpha})_{\alpha \in A}$ von X gibt es eine lokal-endliche offene Überdeckung	
$(V_{\alpha})_{\alpha \in A}$ von X mit $V_{\alpha} \subset U_{\alpha}$ für alle $\alpha \in A$.	
(4/46-1	
	_
Aufgabe 4	(2+2=4 Points)
Sei X ein parakompakter Raum und Y ein kompakter Hausdorffraum.	Zeigen Sie:
(a) Zu jeder offenen Überdeckung $\mathcal{U}\subset\mathcal{P}(X\times Y)$ von $X\times Y$ existiert Überdeckung $\mathcal{V}\subset\mathcal{P}(X)$ von X mit	eine lokal-endliche offene
$\forall V \in \mathcal{V} \exists n \in \mathbb{N}, U_1, \dots, U_n \in \mathcal{U} \text{ mit } V \times Y \subset U_1 \cup V$	$\cup \cdots \cup U_n$.
(b) $X \times Y$ ist parakompakt.	
	_

Sie können die Übungsblätter auch auf unserer Homepage finden:

https://www.math.uni-sb.de/ag/eschmeier/lehre/SS20/top2/