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1 Metric spaces
Definition 1.1 (Metric space): Let X 6= {}. A function d : X ×X → R is called a
metric, if the following conditions hold for all x, y, z ∈ X:

(i) d(x, y) ≥ 0,
(ii) d(x, y) = 0⇔ x = y, (positive definiteness)

(iii) d(x, y) = d(y, x), (symmetry)
(iv) d(x, z) ≤ d(x, y) + d(y, z). (triangular inequality)

(X, d) is then called a metric space.

Example 1.2: (i) X = Rn or X = Cn can be equipped with the following met-
rics: For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X, put

d1(x, y) :=
n∑
i=1
|xi − yi| dp(x, y) :=

( n∑
i=1
|xi − yi|p

) 1
p

d∞(x, y) := max
1≤i≤n

|xi − yi|

(ii) Let (E, ‖·‖) be a normed space. Then ‖·‖ induces a metric

d‖·‖ : E × E → R , d(x, y) := ‖x− y‖.

(iii) Let M 6= {}. For f : M → C, let ‖f‖M = supx∈M |f(x)| ∈ [0,∞]. Set

X = `∞(M) = {f : M → C | ‖f‖M <∞}.

One can check, that ‖·‖M is a norm and thus induces a metric d‖·‖M .
(iv) Let X = RN = {(xn)n∈N | xn ∈ R∀n ∈ N} – this construction works

analogeously with CN – and

d : X ×X −→ R

((xn), (yn)) 7−→
∞∑
n=0

1
2n

|xn − yn|
1 + |xn − yn|

.

This map is welldefined via the dominated convergence theorem. Positive definite-
ness and symmetry are clear. For the triangular inequality we note that

f : (−1,∞) −→ R

t 7−→ t

1 + t

is strictly increasing because f ′(t) = 1
(1+t)2 > 0 for all t ∈ (−1,∞). Thus, for

α, β, γ ≥ 0 with α ≤ β + γ, we have

α

1 + α
≤ β + γ

1 + β + γ
≤ β

1 + β
+ γ

1 + γ
.
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1 Metric spaces

For x = (xn)n∈N, y = (yn)n∈N and z = (zn)n∈N we conclude

d(x, y) =
∞∑
n=0

1
2n

|xn − yn|
1 + |xn + yn|

≤
∞∑
n=0

1
2n

|xn − zn|
1 + |xn − zn|

+
∞∑
n=0

1
2n

|zn − yn|
1 + |zn − yn|

= d(x, z) + d(z, y).

(v) SetX = Cn[a, b] = {f : [a, b]→ C : f is n-times continuously differentiable}
for a perfect interval [a, b]. Then

d : X ×X −→ R

d(f, g) 7−→ max
0≤i≤n

‖f (i) − g(i)‖[a,b]

declares a metric on X.
(vi) For 1 ≤ p < ∞, let `p = {(xn)n∈N ∈ CN :

∑∞
n=0|xn|p < ∞}. Then we

define a metric on `p via

d : `p × `p −→ R

((xn)n∈N, (yn)n∈N) 7−→
( ∞∑
n=0
|xn − yn|p

) 1
p

.

In functional analysis 1, we show that this is indeed a metric space.
(vii) Let X 6= {} and define

d : X ×X −→ R

(x, y) 7−→
{

1 x 6= y

0 x = y
.

Then d is a metric on X, the so-called discrete metric.

In the following text, let (X, d) be a metric space.

Definition 1.3: Let a ∈ X, r > 0.

(i) We call Br(a) = {x ∈ X : d(x, a) < r} the open ball with radius r in a and
Br(a) = {x ∈ X : d(x, a) ≤ r} the closed ball with radius r in a.

(ii) A set U ⊂ X is called open (in X), if the following holds:

∀x ∈ U ∃ ε > 0 : Bε(x) ⊆ U.

A set F ⊆ X is closed (in X), if X \ F ⊂ X is open.
(iii) U ⊆ X is called a neighbourhood of a, if there is V ⊂ X open such that

a ∈ V ⊂ U .
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(iv) U(a) = {U ⊆ X : U is a neighbourhood of a}.

Proposition 1.4: (i) Open balls are open,
(ii) Closed balls are closed.

Proof: (i) Let Br(a) ⊆ X and x ∈ Br(a). Put ε = r − d(x, a) > 0. For all
y ∈ Bε(x) it holds that

d(y, a) ≤ d(y, x) + d(x, a) < r − d(x, a) + d(x, a) = r,

so Bε(x) ⊆ Br(a) and thus Br(a) ⊆ X is open.
(ii) Let Br(a) ⊆ X and x ∈ X \Br(a). Put ε = d(x, a)− r > 0. For y ∈ Bε(x)

we get
d(y, a) ≥ d(x, a)− d(x, y) > d(x, a)− (d(x, a)− r) = r,

so Bε(x) ⊆ X \Br(a) and Br(a) ⊆ X is closed. �

Remark 1.5: Let X 6= {} be equipped with the discrete metric, U ⊆ X and x ∈ U .
Then, we have B 1

2
(x) = {x}, so all sets are open and all sets are closed.

Lemma 1.6: (i) {} and X are open,
(ii) If U1, . . . , Un ⊆ X are open, then

⋂n
i=1 Ui ⊆ X is open,

(iii) If (Ui)i∈I is a family of sets open in X, then
⋃
i∈I Ui ⊆ X is open.

Proof: The statements are easy to show. �

Corollary 1.7: (i) {} and X are closed,
(ii) If X1, . . . , Xn ⊆ X are closed, then

⋃n
i=1Xi ⊆ X is closed,

(iii) If (Xi)i∈I is a family of sets closed in X, then
⋂
i∈I Xi ⊆ X is closed.

Proof: Follows immediately with Lemma 1.6 and De Morgans laws. �

Remark 1.8: Arbitrary unions of closed sets respectively arbitrary intersections of
open sets need not be closed respectively open, e. g. let (X, d) = (R, d|·|), then⋂

n∈N

(
− 1
n
,

1
n

)
= {0} ,

⋃
n∈N

[
1
n
, 1
]

= (0, 1].

Definition 1.9: Let A ⊂ X. We call Int(A) := {x ∈ A : ∃U ∈ U(x) : U ⊆ A} the
interior of A, cl(A) := A := {x ∈ X : ∀U ∈ U(x) : U ∩ A 6= {}} the closure of A
and ∂A = {x ∈ X : ∀U ∈ U(x) : U ∩A 6= {} 6= U ∩ (X \A)} the boundary of A.
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1 Metric spaces

Lemma 1.10: Let A,B ⊆ X. Then we have:

(i) Int(A) =
⋃
U⊂X open,U⊂A U is the biggest (with respect to inclusion) open

subset contained in A.
(ii) cl(A) =

⋂
F⊆X closed,F⊇A F is the smallest closed set containing A,

(iii) ∂A ⊆ X is closed and we have cl(A) = A ∪ ∂A, Int(A) = A ∩ (X \ ∂A) and
∂A = cl(A) \ Int(A),

(iv) If A ⊆ B, then Int(A) ⊆ Int(B),
(v) If A ⊆ B, then cl(A) ⊆ cl(B),

(vi) A ⊆ X is open if and only if A = Int(A),
(vii) A ⊆ X is closed if and only if A = cl(A),
(viii) cl(A ∪B) = cl(A) ∪ cl(B), Int(A ∩B) = Int(A) ∩ Int(B).

The equalities in (vi) do not hold for the respective other operation “∩”, “∪”.

Proof: (i) “⊇”: Let U ⊆ X be open with U ⊆ A, then U ⊆ Int(A) because
∀x ∈ U : U ∈ U(x) and U ⊆ A. “⊆”: That Int(A) ⊆ A is clear. Int(A) ⊆ X is
open, if ∀x ∈ Int(A) : ∃ ε > 0 : Bε(x) ⊆ A, which holds since ∀x ∈ Int(A) there
is ε > 0 such that Bε(x) ⊆ A.

(ii) “⊇”: Let x ∈
⋂
F⊆X closed,F⊇A F . Let U ∈ U(x) with U ∩A = {}. Without

loss of generality let U ⊆ X open. Then X \U ⊆ X is closed with X \U ⊇ A and
x /∈ X \ U , which is a contradiction.
“⊆”: Let x ∈ cl(A) and let F ⊆ X be closed with F ⊇ A. If x /∈ F , then

X \ F ∈ U(x) with X \ F ∩A = {}, which is a contradiction.
(iii) “∂A = cl(A) \ Int(A)”: x ∈ ∂A if and only if ∀U ∈ U(x) : U ∩A 6= {} and

U ∩X \A 6= {} which holds if and only if x ∈ cl(A) and x /∈ Int(A). In particular,
∂A ⊆ X is closed.
“cl(A) = A ∪ ∂A”: The inclusion A ∪ ∂A ⊆ cl(A) is obvious. Let x ∈ cl(A) and

x /∈ A, then we have: ∀U ∈ U(x) : U ∩ A 6= {} and U ∩ (X \ A) 6= {}. But then,
x ∈ ∂A which was to be shown.
“Int(A) = A ∩ (X \ ∂A)”: The inclusion Int(A) ⊆ A ∩ (X \ ∂A) is clear. Let

x ∈ A and x /∈ ∂A. Then ∃U ∈ U(x) : U ∩ (X \ A) = {}, so U ⊆ A and then
x ∈ Int(A).

(iv) It holds that Int(A) ⊆ A ⊆ B, so by (i) Int(A) ⊆ Int(B).
(v) Since A ⊆ B ⊆ cl(B), by (ii) cl(A) ⊆ cl(B).
(vi) Direct consequence of (i) and (ii).
(vii) Direct consequence of (i) and (ii).
(viii) Because A∪B ⊆ cl(A)∪ cl(B), we have cl(A∪B) ⊆ cl(A)∪ cl(B) by (v).

Furthermore we have
A ⊆ cl(A ∪B)
B ⊆ cl(A ∪B) ⇒

cl(A) ⊆ cl(A ∪B)
cl(B) ⊆ cl(A ∪B) ⇒ cl(A) ∪ cl(B) ⊆ cl(A ∪B).
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It holds that Int(A) ∩ Int(B) ⊆ A ∩ B, so via Lemma 1.10(iv), we know that
Int(A) ∩ Int(B) ⊆ Int(A ∩B). Furthermore

A ⊇ Int(A ∩B), B ⊇ Int(A ∩B)⇒ Int(A) ∩ Int(B) ⊇ Int(A ∩B). �

Example 1.11: (i) Let X 6= {} be equipped with the discrete metric d. For
A ⊆ X, we have

∂A = cl(A) \ Int(A) = A \A = {},

In particular, for a ∈ X and r = 1: ∂Br(a) = {} 6= {x ∈ X : d(x, a) = r}, if
#(X) > 1.

(ii) In (R, d|·|), we have cl(Q) = R, Int(Q) = {}, ∂Q = R and for a < b ∈ R we
have cl((a, b)) = [a, b] as well as Int([a, b]) = (a, b).
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2 Convergence, Completeness and
Baire’s theorem

Let (X, d) be a metric space.
Definition 2.1: A sequence (xn)n∈N is called

(i) convergent to x ∈ X, if ∀ ε > 0 : ∃N ∈ N : ∀n ≥ N : xn ∈ Bε(x),
(ii) convergent, if it converges to some x ∈ X,

(iii) a Cauchy sequence, if ∀ ε > 0 : ∃N ∈ N : ∀n,m ≥ N : d(xn, xm) < ε.

Lemma 2.2: Limits in metric spaces are unique, i. e. if a sequence (xn)n∈N ∈ XN

converges to x ∈ X and y ∈ X, then x = y.

Proof: Because xn → x, yn → y, we have 0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y) → 0,
so d(x, y) = 0 and that implies x = y. �

Definition 2.3: For Y ⊆ X, we call dY := d|Y×Y the relative metric from (X, d)
on Y .

Lemma 2.4: For A ⊆ X, we have cl(A) = {x ∈ X : ∃ (xn)n∈N ∈ AN : xn → x}.

Definition 2.5: X is called complete, if every Cauchy sequence in X converges.

Example 2.6: (i) (R, |·|) is complete by construction, Rn and Cn with dp for
1 ≤ p <∞ or d∞ are complete.

(ii) (`∞(M), dM ) is complete. Let (fk)k∈N ∈ (`∞)N be a Cauchy sequence. For
x ∈M , by

|fk(x)− fl(x)| ≤ ‖fk − fl‖M = dM (fk, fl)
for k, l ∈ N, the sequence (fk(x))k∈N is a Cauchy sequence in C. Because C is
complete, (fk(x))k∈N converges for all x ∈M . Let

f : M −→ C,

x 7−→ lim
k→∞

fk(x).

Let ε > 0. Choose N ∈ N such that dM (fk, fl) < ε for all k, l ∈≥ N . Then we
have for all k ≥ N and x ∈M :

|fk(x)− f(x)| = lim
l→∞
l≥N

|fk(x)− fl(x)| ≤ ε.

Then, for all k ≥ N , we have ‖fk − f‖M ≤ ε. In particular, for x ∈M :

|f(x)| ≤ |f(x)− fN (x)|+ |fN (x)| ≤ ε+ ‖fN‖M ,

so ‖f‖M ≤ ε+‖fN‖M <∞, which shows that f ∈ `∞(M) and with what we have
shown above, we have fk → f for k →∞ in dM .
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(iii) (RN, d) is complete (refer to Example 1.2 for the metric used). Let (x(k))k∈N
be a sequence in RN and let x = (xn)n∈N ∈ RN. For k ∈ N, let x(k) = (x(k)

n )k∈N.
We show that (x(k))k∈N is a Cauchy sequence in (RN, d) if and only if (x(k)

n )k∈N
is Cauchy in (R, d|·|)∀n ∈ N.
“⇒”: Let n ∈ N and ε > 0. Choose N ∈ N such that

1
2n

|x(k)
n − x(k)

n |
1 + |x(k)

n − x(l)
n |
≤ d(x(k), x(l)) < 1

2n
ε

1 + ε

for all k, l ≥ N . Then, for all k, l ≥ N , it holds that |x(k)
n − x

(l)
n | < ε by the

increasing function used in Example 1.2.
“⇐”: Let ε > 0. Choose K ∈ N such that

∑∞
n=K+1

1
2n < ε

2 . Choose N ∈ N,
such that for all k, l ≥ N and for all 0 ≤ n ≤ K:

|x(k)
n − x(l)

n | <
ε

4

Then, for all k, l ≥ N we have

d(x(k), x(l)) =
k∑

n=0

1
2n

|x(k)
n − x(l)

n |
1 + |x(k)

n − x(l)
n |

+
∞∑

n=K+1

1
2n

<
( K∑
n=0

1
2n
)ε

4 + ε

2 < ε.

Similarily we show: x(k) → x for k →∞ if and only if x(k)
n → xn for k →∞ in

(R, d|·|) ∀n ∈ N. Thus, (RN, d) is complete since (R, |·|) is complete.
(iv) (C1([0, 1]), d1) from Examples 1.2 v) is complete by Analysis I. Inductively:

(Cn([0, 1]), dn) is complete.
(v) (`p, dp) is complete for 1 ≤ p <∞.
(vi) Let X 6= {} and d the discrete metric. Then, the Cauchy sequences and

convergent sequences are exactly the eventually constant sequences. Thus, (X, d)
is complete.

(vii) Q ⊆ R and R× ⊆ R with the corresponding relative metrics are not
complete.

Proposition 2.7: For x, y, x′, y′ ∈ X we have

|d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′).

The proof is obvious, you need the triangular equality and you have to consider
two cases.
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2 Convergence, Completeness and Baire’s theorem

Definition 2.8: A mapping j : X → Y between metric spaces (X, dX) and (Y, dY )
is called an isometry, if

dY (j(x), j(y)) = dX(x, y)

for all x, y ∈ X.

Remark 2.9: For an isometry j : X → Y we will identify X with j(X) ⊆ Y as
metric spaces and write X ⊆ Y . This is justified, since isometries preserve all
properties of metric spaces, e. g. open and closed sets, convergence and Cauchy
sequences, bounded sets and continuity are preserved under isometries.

Theorem 2.10: Let (X, d) be a metric space. Then there is a complete metric
space (X∼, d∼) such that X ⊆ X∼, d∼|X×X = d and X ⊆ X∼ dense (that is
cl(X) = X∼).

Proof: Let

X∼ = {(xn)n∈N : (xn)n∈N ∈ XN is a Cauchy sequence}/ ∼

with respect to the equivalence relation ∼ defined by

(xk)k∈N ∼ (yk)k∈N :⇔ lim
k→∞

d(xk, yk) = 0.

Furthermore, let

d∼ : X∼ ×X∼ −→ R

d∼([(xk)k∈N], [(yk)k∈N]) = lim
k→∞

d(xk, yk).

In the following, we will denote [xk] := [(xk)k∈N]. d∼ is well-defined: First of all,
by Proposition 2.7, we have

∀ k, l ∈ N : |d(xk, yk)− d(xl, yl)| ≤ d(xk, xl) + d(yk, yl),

so (d(xk, yk))k∈N is a Cauchy sequence in (R, d|·|), thus convergent. Secondly, for
[xk] = [x̃k] and [yk] = [ỹk] we have, again by Proposition 2.7, that

∀ k ∈ N : 0 ≤ |d(xk, yk)− d(x̃k, ỹk)| ≤ d(xk, x̃k) + d(yk, ỹk) k→∞−→ 0,

so limk→∞ d(xk, xk) = limk→∞ d(x̃k, ỹk). Finally, d∼ is non-negative, symmetric
and fulfills the triangular inequality since d does. d∼ is positive definite by the
definition of “∼”.
So (X∼, d∼) is a metric space. Now, let

j : X −→ X∼,

x 7−→ [(x)k∈N].
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Then j is an isometry, because for all x, y ∈ X:

d∼(j(x), j(y)) = d∼([(x)k∈N], [(y)k∈N]) = lim
k→∞

d(x, y) = d(x, y).

Hence, we can identify X ∼= j(X) and d∼|X×X = d.
Let ξ = [xk] ∈ X∼. Let ε > 0 and N ∈ N such that d(xk, xl) < ε

2 for all
k, l ≥ N . For all k ∈ N, the sequence (d(xk, xl))l∈N converges in (R, d|·|) due to
Proposition 2.7. In particular, for all k ≥ N , we have that

lim
l→∞
l≥N

d(xk, xl) ≤
ε

2 < ε.

Thus, for all k ≥ N :

d∼(j(xk), ξ) = lim
l→∞

d(xk, xl)
l→∞−→ 0,

so j(xk)→ ξ for k →∞ with respect to d∼ and j(X) ⊆ X∼ is dense.
Let (ξ(k))k∈N be a Cauchy sequence in (X∼, d∼). Then for all k ∈ N there exists

xk ∈ X such that d∼(ξ(k), j(xk)) < 1
k+1 . Let ε > 0 and choose N ∈ N such that

d∼(ξ(k), ξ(l)) < ε

3 ,
1

k + 1 <
ε

3

holds for all k, l ≥ N . Hence, for all k, l ≥ N

d(xk, xl) = d∼(j(xk), j(xl)) ≤ d∼(j(xk), ξ(k)) + d∼(ξ(k), ξ(l)) + d∼(ξ(l), j(xl))

<
1

k + 1 + ε

3 + 1
l + 1 < ε,

thus (xk)k∈N is a Cauchy sequence. Let now ξ = [xk]. For all k ∈ N:

d∼(ξ(k), ξ) ≤ d∼(ξ(k), j(xk)) + d∼(j(xk), ξ) k→∞−→ 0,

so ξ(k) → ξ for k →∞ with repect to d∼, so (X∼, d∼) is complete. �

Lemma 2.11: Let Y ⊆ X. Then we have: If (Y, dY ) is complete, then Y ⊆ X is
closed. If (X, d) is complete, then equivalence holds.

Proof: “⇒”: Let (xn)n∈N be a sequence in Y with xn → x ∈ X for n → ∞ with
respect to d. Then, (xn)n∈N is a Cauchy sequence in (X, d) and thus a Cauchy
sequence in (Y, dY ), hence there exists a y ∈ Y , such that xn → y for n→∞ with
respect to dY . But then xn → y for n → ∞ with respect to d holds, and thus
x = y ∈ Y . By Lemma 2.4, Y ⊆ X is closed.

“⇐”: Let (xn)n∈N be a Cauchy sequence in (Y, dY ). Then (xn)n∈N is a Cauchy
sequence in (X, d) and because X is complete, there exists an x ∈ X, such that
xn → x. By Lemma 2.4, x ∈ Y and thus xn → y for n→∞ with respect to dY .�
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2 Convergence, Completeness and Baire’s theorem

Definition 2.12: For {} 6= A ⊆ X, we call

diam(A) = sup{d(x, y) | x, y ∈ A} ∈ [0,∞]

the diameter of A.

Theorem 2.13 (Cantor’s Intersection Theorem): Let (X, d) be a complete metric
space and (An)n∈N be a sequence of non-empty, closed subsets Ak ⊆ X with
Ak+1 ⊆ Ak for all k ∈ N and diam(Ak) → 0 for k → ∞. Then there is an
x ∈ X, such that

⋂
k∈NAk = {x}.

Proof: For k ∈ N, choose xk ∈ Ak. Due to

d(xk, xl) ≤ diam(Amin{k,l})

for all n, l ∈ N and diam(Ak)→ 0 we know that (xk)k∈N is a Cauchy sequence in
X, hence there is an x ∈ X such that xk → x for k → ∞ with respect to d. For
all n ∈ N, we have x = limk→∞,k≥n xk ∈ cl(An) = An due to Lemma 2.4 and the
properties of (Ak)k∈N. Thus x ∈

⋂
k∈NAk.

Let now y ∈
⋂
k∈NAk, then 0 ≤ d(x, y) ≤ diam(Ak) for all k ∈ N, hence

d(x, y) = 0 and x = y. �

Theorem 2.14 (Baire’s Theorem): Let (X, d) be a complete metric space, (Fn)n∈N
a sequence of closed subsets Fn ⊆ X. Then we have: If Int(

⋃
n∈N Fn) 6= {}, then

there exists an n0 ∈ N : Int(Fn0) 6= {}.

Proof: We will first argue for the following claim: If F ⊆ X is a closed subset with
Int(F ) = {}, then

∀x ∈ X ∀ r > 0 ∃x1 ∈ X ∃ r1 > 0 : Br1(x1) ⊆ (X \ F ) ∩Br(x) (2.1)

holds. This is true, because (X \ F ) ∩ Br(x) is open and non-empty due to
Int(F ) = {} for all x ∈ X, r > 0.

Now let (Fn)n∈N be as in the assumption. We assume that Int(Fn) = {} ∀n ∈ N.
Let x0 ∈ X, r0 > 0 such that Br0(x0) ⊆

⋃
n∈N Fn. Then, by (2.1), there exist

x1 ∈ X, r1 ∈ (0, 1), such that Br1(x1 ⊆ X \ F0 ∩ Br0(x0). Again, by (2.1) there
exist x2 ∈ X, r2 ∈ (0, 1

2 ), such that Br2(x) ⊆ (X \ F1) ∩Br1(x1).
Inductively, we find a sequence (Bn)n∈N\{0} (B1 := Br1(x1), B2 := Br2(x2), . . . )

of closed balls Bn ⊆ X such that Bn+1 ⊆ Bn ⊆ X \ Fn−1 for all n ≥ 1 and
diam(Bn)→ 0 for n→∞. By Theorem 2.13 there exists x ∈ X such that

x ∈
⋂

n∈N\{0}

Bn ⊆
⋂

n∈N\{0}

X \ Fn−1 = X \
⋃
n∈N

Fn.

On the other hand, x ∈ B1 ⊆ Br0(x0) ⊆
⋃
n∈N Fn, which is a contradiction. �
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Definition 2.15: LetM ⊆ X. ThenM is called nowhere dense, if Int(cl(M)) = {}.
Countable unions of nowhere dense sets are called meagre.

Corollary 2.16: Let (X, d) be a complete metric space, M ⊆ X meagre. Then
Int(M) = {}.

Proof: Let (Mn)n∈N be a sequence of nowhere dense sets such thatM =
⋃
n∈NMn.

We assume, that Int(
⋃
n∈NMn) 6= {}. Then, Int(

⋃
n∈N cl(Mn)) 6= {}, hence

by Theorem 2.14, there exists n0 ∈ N such that Int(cl(Mn0)) 6= {}, which is a
contradiction. �

Lemma 2.17: Let A ⊆ X. Then cl(A) = X holds if and only if Int(X \A) = {}.

Proof: “⇒”: Assume, that there exists x ∈ Int(X \ A). Then, for a sequence
(xk)k∈N in A with xk → x for k →∞ we see that U ∩A = {} for all U ∈ U(x).
“⇐”: Let x ∈ X. Then for k ∈ N \ {0}, there is xk ∈ B 1

k
(x)∩A. Then (xk)k∈N

is a sequence in A which converges to x. �

Corollary 2.18: Let (X, d) be a complete metric space and (Un)n∈N a sequence of
open, dense subsets Un ⊆ X. Then,

⋂
n∈N Un ⊆ X is also dense.

Proof: For all n ∈ N, we have Un ⊆ X open and cl(Un) = X. By Lemma 2.17,
for all n ∈ N, X \ Un ⊆ X is closed and non-empty and Int(X \ Un) = {}. By
Theorem 2.14 Int(X \

⋂
n∈N Un) = Int(

⋃
n∈NX \ Un)) = {}, so by Lemma 2.17,⋂

n∈N Un ⊆ X is dense. �

Remark 2.19: In general metric spaces, Baire’s Theorem need not hold. Let for
example (X, d) = (Q, d|·|,Q) and for q ∈ Q, let {q} ⊆ Q which is closed and
non-empty with Int({q}) = {}. But Int(

⋃
q∈Q{q}) = Int(Q) = Q 6= {}.

15



3 Continuous mappings between
metric spaces

In the following, let (X, d) and (Y, d′) be metric spaces.

Definition 3.1: A mapping f : X → Y is called

(i) continuous in x ∈ X, if ∀ ε > 0 ∃ δ > 0 : f(Bδ(x)) ⊆ Bε(f(x)),
(ii) continuous, if it is continuous in every x ∈ X,

(iii) sequentially continuous in x ∈ X, if for all sequences (xn)n∈N ∈ XN with
xn → x, f(xn)→ f(x) holds,

(iv) sequentially continuous, if it is sequentially continuous in every x ∈ X,
(v) uniformly continuous, if ∀ ε > 0 ∃ δ > 0∀x ∈ X : f(Bδ(x)) ⊆ Bε(f(x)).

Theorem 3.2: For f : X → Y , the following are equivalent:

(i) f is continuous,
(ii) f is sequentially continuous,

(iii) The preimage f−1(U) of every open set U ⊆ Y is open in X,
(iv) The preimage f−1(A) of every closed set A ⊆ Y is closed in X.

Definition 3.3: A subset K ⊆ X is called compact, if for every open cover (Ui)i∈I
of K (i. e. Ui ⊆ X open ∀ i ∈ I and K ⊆

⋃
i∈I Ui) there are i1, . . . , in ∈ I, such

that K ⊆
⋃n
j=1 Uij .

Theorem 3.4: Let K ⊆ X be compact and equipped with the relative metric dK
and let f : K → (Y, d′) be continuous. Then, f is uniformly continuous.

Proof: Let ε > 0. For x ∈ K, choose δx > 0 with f(Bδx(x)) ⊆ Bε/2(f(x)).
Then, K ⊆

⋃
x∈X Bδ/2(x) is an open cover. Because K is compact, there are

x1, . . . , xn ∈ K, such that with δi := δxi :

K ⊆
n⋃
i=1

Bδi/2(xi).

Let now δ := min{δi/2 | 1 ≤ i ≤ n} and let x, x′ ∈ K with dK(x, x′) < δ.
Finally, let i ∈ {1, . . . , n}, such that x ∈ Bδi/2(xi). Via the triangular inequality,
x′ ∈ Bδi(xi), thus

d′(f(x), f(y)) ≤ d′(f(x), f(xi)) + d′(f(xi), f(x′)) < ε

2 + ε

2 = ε,

and f is uniformly continuous. �
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Theorem 3.5: Let X0 ⊆ X be dense, Y complete and f : X0 → Y uniformly
continuous. Then, there is exactly one continous extension F : X → (Y, d′) of f
(i. e. F |X0 = f). This extension is uniformly continuous.

Proof: For every ε > 0, choose δε > 0 such that “∀x, y ∈ X0 : d(x, y) < δε ⇒
d′(f(x), f(y)) < ε” holds. Define

F : X −→ Y

x 7−→ lim
n→∞

f(xn)

for a sequence (xn)n∈N ∈ XN
0 with xn → x for n → ∞. X0 is dense in X, hence

there is such a sequence for all x ∈ X. For the well-definedness of F , we have to
check that F (x) does not depend on the sequence that converges to x and that
(f(xn))n∈N converges for any such sequence.
Let x ∈ X and let (xn)n∈N be a sequence in X0, such that xn → x for n →

∞. For ε > 0, choose N ∈ N such that d(xn, xm) < δε for all n,m ≥ N .
Then d′(f(xn), f(xm)) < ε for all n,m ≥ N . Because Y is complete, (f(xn))n∈N
converges in (Y, d′). Now, let (x′n)n∈N be another sequence in X0 with x′n → x for
n→∞ and let ε > 0. Choose N ∈ N, such that

d(xN , x), d(x′N , x) < 1
2δε/3 , d′( lim

n→∞
f(xN ), f(xN )), d′( lim

n→∞
f(x′N ), x′N ) < ε

3 .

We conclude d(xN , x′N ) ≤ d(xN , x) + d(x, x′N ) < δ ε
3
and thus

d′( lim
n→∞

f(xn), lim
n→∞

f(x′n))

≤ d′( lim
n→∞

f(xn), f(xN )) + d′(f(xN ), f(x′N )) + d(f(x′N ), lim
n→∞

f(x′n))

< ε
3 + ε

3 + ε
3 = ε,

hence limn→∞ f(xn) = limn→∞ f(x′n).
We have F |X0 = f since we can choose the constant sequence (x)n∈N in X0 for

x ∈ X0, which converges to x.
Last, we show that F is uniformly continuous. Let ε > 0 and x, y ∈ X, such

that d(x, y) < δε/2. Let (xn)n∈N, (yn)n∈N ∈ XN
0 , such that xn → x and yn → y

for n → ∞. Then, limn→∞ d(xn, yn) = d(x, y) < δε/2 holds. Choose N ∈ N, such
that d(xn, yn) < δ ε

2
for all n ≥ N . We conclude for all n ≥ N :

d′(F (x), F (y)) = d′( lim
n→∞

f(xn), lim
n→∞

f(yn)) = lim
n→∞

d′(f(xn), f(yn)) ≤ ε

2 < ε,

thus F is uniformly continuous.
F is a unique as a continuous extension of f since every continuous extension is

sequentially continuous. �
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4 Topologic spaces
Definition 4.1: Let {} 6= X be a set.

(i) A subset T ⊆ P(X) is called a topology on X, if
(1) {}, X ∈ T,
(2) U1, . . . , Un ∈ T⇒

⋂n
i=1 Ui ∈ T,

(3) (Ui)i∈I ∈ TI ⇒
⋃
i∈I Ui ∈ T

hold. The elements of T are called open. A ⊆ X is called closed, if X \A ∈ T.
(X,T) is then called a topological space.

(ii) A topological space (X,T) is called Hausdorff (or separated), if

∀x, y ∈ X,x 6= y : ∃U, V ∈ T : x ∈ U, y ∈ V,U ∩ V = {}

holds.
(iii) Let T1,T2 be topologies on X. T1 is called coarser than T2, if T1 ⊆ T2. T2

is then called finer than T1.

Example 4.2: (i) Let (X, d) be a metric space. By (Lemma 1.6),

T := {U ⊆ X | U is open with respect to d}

defines a topology on X. The corresponding topological space (X,T) even is Haus-
dorff: For x 6= y ∈ X with x 6= y, set r := 2−1d(x, y) > 0. Then Br(x), Br(y) ⊆ X
are open and disjoint with x ∈ Br(x), y ∈ Br(y).

(ii) Let {} 6= X be a set. Then T = {{}, X} is a topology on X which is not
Hausdorff for #(X) > 1. T is called the indiscrete topology.

Remark 4.3: Metrics d, d′ on a set X are called equivalent, if there is C > 0, such
that

1
C
d(x, y) ≤ d(x, y) ≤ Cd′(x, y)

for all x, y ∈ X. In this case, we have Bε/C(y) ⊆ B′ε(y) and B′ε/C(y) ⊆ Bε(y),
where B′ε(x) denotes the ball arround x of radius ε with respect to d′.

Definition 4.4: Let (X,T), (Y,T′) be topoligical spaces, A ⊆ X, x ∈ X, f : X → Y
a function and (xn)n∈N a sequence in X.

(i) U ⊆ X is called a neighbourhood of x, if there is V ∈ T, such that x ∈ V ⊆ U .
We write

U(x) := {U ⊆ X | U is neighbourhood of x}.
Put

cl(A) := {x ∈ X | ∀U ∈ U(x) : U ∩A 6= {}},
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Int(A) := {x ∈ A | ∃U ∈ U(x) : U ⊆ A},
∂A := {x ∈ X | ∀U ∈ U(x) : U ∩A 6= {} 6= U ∩ (X \A)},

cl(A) is called the closure of A, Int(A) is called the interior of A, ∂A is called
the boundary of A.

(ii) K ⊆ X is called compact, if for every open cover (Ui)i∈I of K, there are
i1, . . . , in ∈ I, such that K ⊆

⋃n
j=1 Uij .

(iii) (xn)n∈N converges to x, if: ∀U ∈ U(x) : ∃N ∈ N : ∀n ≥ N : xn ∈ U .
(iv) f is called continuous in x, if ∀V ∈ U(f(x)) ∃U ∈ U(x) : f(U) ⊆ V . f

is called continuous if: ∀V ∈ T′ : f−1(V ) ∈ T. This holds if and only
if f is continuous in every x ∈ X. f is called sequentially continuous, if
∀x ∈ X ∀ (xn) ∈ XN : xn → x : f(xn)→ f(x) holds.

Lemma 4.5: Let (X,T) be a topological space, A,B ⊆ X. Then all the assertions
from (1.10) hold.

Remark 4.6: (i) Continuous functions between topological spaces are sequen-
tially continuous, but the reverse implication doesn’t hold in general.

(ii) For a topological space (X,T) and Y ⊆ X,

T|Y := {U ∩ Y | U ∈ T}

defines a topology on Y , the relative topology.
(iii) Compositions of continuous mappings are continuous due to

f−1(g−1(V )) = (g ◦ g)−1(V )

for f : X → Y , g : Y → Z and V ⊆ Z.
(iv) If T1,T2 are topologies on a set X 6= {}, the identity mapping

id : (X,T1) −→ (X,T2)

is continuous if and only if T2 ⊆ T1. In particula, there continuous bijections with
non-continuous inverse functions.

Definition 4.7: A bijective mapping f : X → Y between topological spaces (X,T),
(Y,T′) is called a homeomorphism, if f and f−1 are continuous.

Lemma 4.8: Let {} 6= Y ⊆ X, A ⊆ Y , K ⊆ X. We have

(i) A is closed in (Y,T|Y ) if and only if there is B ⊆ X closed: B ∩ Y = A,
(ii) A is compact in (Y,T|Y ) if and only if A is compact in (X,T),
(iii) K is compact if and only if for every family (Fi)i∈I of sets closed in (K,T|K)

with f with finite intersection property, we have
⋂
i∈I Fi 6= {}.
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4 Topologic spaces

Proof: (i) Let A ∈ TY . A is closed in (Y,TY ) if and only if ∃U ⊆ X open,
such that Y \ A = U ∩ Y and this holds if and only if ∃U ⊆ X open, such that
(X \ U) ∩ Y = Y \ (U ∩ Y ) = A.

(ii) “⇒”: Let (Ui)i∈I be an open cover in (X,T). Then A ⊆
⋃
i∈I(Ui ∩ Y ) is

an open cover in (Y,TY ). Because A is compact in (Y,TY ), there exist i1, . . . , in
such that

A ⊆
n⋃
j=1

(Uij ∩ Y ) ⊆
n⋃
j=1

Uij .

“⇐” is shown similarly to the other direction.
(iii) For a family (Ui)i∈I in P(K) and the family of its complements (Fi)i∈I =

(K \ Ui)i∈I we have a collection of facts: Ui ⊆ K are open for all i ∈ I if and
only if Fi ⊆ K are closed for all i ∈ I. Furthermore K =

⋃
i∈I Ui holds if and

only if
⋂
i∈I Fi = {}, because if K is compact, there are i1, . . . , in ∈ I, such that

K =
⋃n
j=1 Uij which holds if and only if

⋂n
j=1 Fij = {}. With these facts, (iii)

follows from contraposition. �

Lemma 4.9: Let {} 6= K ⊆ X be compact, A ⊆ K.
(i) If A ⊆ K is closed, A is compact.
(ii) If (X,T) is Hausdorff, then K ⊆ X is closed.

(iii) If f : X → Y is a continuous space to another topological space (Y,T′), then
f(K) is compact.

Proof: (i) Let (Ui)i∈I be an open cover of A in (K,T|K). Because A ⊆ K is
closed in (K,TK), K \ A is open in (K,T|K). Thus K =

⋃
i∈I Ui ∪ (K \ A) is an

open cover. Due to the compactness of K, there are i1, . . . , in ∈ I, such that

K =
n⋃
j=1

Uij ∪ (K \A).

Then A ⊆
⋃n
j=1 Uij , hence A is compact.

(ii) We will show, thatX\K ⊆ X is open. Let x ∈ X\K. For every y ∈ K, there
are open neighbourhoods Uy ∈ U(x), Vy ∈ U(y) such that Uy∩Vy = {}. Obviously,
K ⊆

⋃
y∈K Vy. Since K is compact, there finitely many points y1, . . . , yn ∈ K,

such that

K ⊆
n⋃
j=1

Vyj .

Let Ux :=
⋂n
j=1 Uyj ∈ U(x) open in (X,T) with

Ux ∩K ⊆
n⋂
j=1

Uyj ∩
n⋃
k=1

Vyk =
n⋃
k=1

(( n⋂
j=1

Uyj

)
∩ Vyk

)
= {},

thus Ux ⊆ X \K. Finally, it holds: X \K =
⋃
x∈X\K Ux ⊆ X is open.
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(iii) Let (Vi)i∈I be an open cover of f(K) in (Y,T′). Then K ⊆
⋃
i∈I f

−1(Vi)
is an open cover of (X,T). Because K is compact, there are i1, . . . , in ∈ I: K ⊆⋃n
j=1 f

−1(Vij ), therefore

f(K) ⊆
n⋃
j=1

f(f−1(Vij )) ⊆
n⋃
j=1

Vij .
�

Corollary 4.10: If f : X → Y is a bijective continuous function to a Hausdorff
space (Y,T′) and (X,T) is compact, then f is a homeomorphism.

Proof: Let A ⊆ X be closed. By Lemma 4.9 (i), A then is compact. Due to
Lemma 4.9 (iii), f(A) is open. Now, Lemma 4.9 (ii) that (f−1)−1(A) = f(A) ⊆ Y
is closed, hence f−1 : Y → X is continuous. �

Remark 4.11: (i) If {} 6= X and T1,T2 are two topologies on X such that
(X,T1) is compact and (X,T2) is Hausdorff and T2 ⊆ T1, then T1 = T2.

(ii) The finer a topology, the more open and closed sets it has, the fewer com-
pact sets, the fewer convergent sequences, the smaller its closures, the bigger its
interiors, more continuous functions on the space, the less continous functions to
this space.

Example 4.12: Let X = R (or any uncountable set) and let

T = {U ⊆ X | U = {} or X \ U is at most countable}.

Let (xn) ∈ XN, x ∈ X. Then, xn → x for n→∞ if and only if (xn) is eventually
constant (else, U = X \ {xn, xn 6= x} ∈ U(x) is open with: ∀N ∈ N ∃n ≥ N :
xn 6= x, i. e. x /∈ U , so (xn) cant converge to x). In particular,

A = {x | ∃ (xn) ∈ AN : xn → x}

for all A ⊆ X, but A 6= cl(A) in general (e. g. for A = R \N, then X \ (X \ A) =
A = R \N is not at most countable, so X \A is not open, so A ⊆ X is not closed.
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5 Bases, subbases and countability
Definition 5.1: Let (X,T) be a topological space.

(i) A collection of sets B ⊆ T is called a base of T, if for every U ∈ T, we have

U =
⋃

B⊆U,B∈B

B.

following the convention
⋃
S∈{} S = {}.

(ii) A collection of sets S ⊆ T is called a subbase of T, if

B = {S1 ∩ · · · ∩ Sn | n ∈ N, S1, . . . , Sn ∈ S}

is a base of T, following the convention
⋂0
j=1 Sj = X.

Example 5.2: (i) The collection of setsS = {(−∞, b) | b ∈ R}∪{(a,∞) | a ∈ R}
are a subbase for T|·| on R. Indeed, every open set U ⊆ R can be written as a
union of open intervals (a, b) ⊆ R with a, b ∈ R, a < b, which can be written as a
finite intersection of elements from S.

(ii) The collection of sets B = {
∏n
i=1(ai, bi) | a1, . . . , an, b1, . . . , bn ∈ Q} is a

(countable) base for (Rn,T‖·‖∞).

Theorem 5.3: Let {} 6= X, S ⊆ P(X). Then, there is a unique topology on X,
which has S as a subbase. T is the coarsest topology on X which contains S:

T =
⋂

T′ topology on X
S⊆T′

T′.

Then T is called the topology generated by S.

Proof: Let B = {S1 ∩ · · · ∩ Sn | n ∈ N, S1, . . . , Sn ∈ S} and

T =
{
U ⊆ X : U =

⋃
B∈B,B⊆E

B
}

=
{⋃
i∈I

Bi : (Bi)i∈I ∈ BI , Bi ⊆ U ∀ i ∈ I
}

= {U ⊆ X | ∀x ∈ U : ∃B ∈ B : x ∈ B ⊆ U}.

Then, {}, X ∈ T by convention. That T is stable under unions is clear by the
second way we wrote T. If U1 =

⋃
i∈I B

(1)
i , U2 =

⋃
j∈J B

(2)
j ∈ T, thus

U1 ∩ U2 =
⋃

(i,j)∈I×J

(B(1)
i ∩B

(2)
j ) ∈ T.

By induction, T is stable under finite intersections. Let T′ be another topology on
X with S ⊆ T′. Then, due to the properties of a topology, we have B ⊆ T′ and
therefore T ⊆ T′. If S is even a subbase of T′, similarly T′ ⊆ T holds. �
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Definition 5.4: Let (X,T) be a topological space.

(i) Let x ∈ X. Then B ⊆ U(x) is called a neighbourhood base at x, if: ∀U ∈
U(x)∃B ∈ B : x ∈ B ⊆ U .

(ii) (X,T) is called first-countable, if every point has a countable neighbourhood
base.

(iii) (X,T) is called secound-countable, if it has a countable base.
(iv) (X,T) is called separable, if there is a countable setM ⊆ X with cl(M) = X.

Lemma 5.5: Let (X,T) be a topological space, B a base of T and x ∈ X. Then

B(x) := {B ∈ B | x ∈ B}

is a neighbourhood base at x.

Proof: Let U ∈ U(x). Then there exists V ⊆ X open, such that x ∈ V ⊆ U .
Because B is a base of T, there exists B ∈ B, such that x ∈ B ⊆ V ⊆ U . So,
B ∈ B(x) with x ∈ B ⊆ U . �

Lemma 5.6: (i) Second-countable topological spaces are first-countable,
(ii) Metric spaces are first-countable,

(iii) A metric space is second-countable if and only if X is seperable (for a topo-
logical space, “⇐” doesn’t hold!).

(iv) If (X,T) is a second-countable topological space, (Ui)i∈I a family in T. Then,
there is a sequence (Un)n∈N in T, such that⋃

n∈N
Un =

⋃
i∈I

Ui.

(Lindelöf’s Theorem)
(v) If (X,T) is second-countable and B is a base of T, there exists B′ ⊆ T,

which is a countable base for T with B′ ⊆ B.

Proof: (i) See Lemma 5.5.
(ii) For x ∈ X, the collection of sets {B 1

k
(x) | k ∈ N} is a neighbourhood base

at x.
(iii) “⇒”: Let B ∈ T be a countable base. For {} 6= B ∈ B, we choose xB ∈ B

and put M = {xB | {} 6= B ∈ B}. M then is countable. Let x ∈ X and U ∈ U(x),
then there is B ∈ B : x ∈ B ⊆ U , hence xB ∈ B ∩ M ⊆ U ∩ M , and thus
cl(M)T = X.

“⇐”: Now, let (X, d) be a metric space and M ⊆ X countable and dense.
Because M is countable, we can write M = {xn | n ∈ N}. Then

B := {B 1
k

(xn) | n ∈ N, k ∈ N \ {0}}
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5 Bases, subbases and countability

is countable. Let {} 6= U ⊆ X open and x ∈ U . Then there is k ∈ N \ {0}, such
that B 1

k
(x) ⊆ U , thus ∃n ∈ N : xn ∈ B 1

2k
(x). Then x ∈ B 1

2k
(xn) ⊆ U (the

inclusion holds due to the triangular inequality), thus B is a base for T.
(iv) Let (X,T) be second-countable and B = {Bk | k ∈ N} a countable base

for T. Let {} 6= U ⊆ T. Set

J = {k ∈ N ∃U ∈ U : Bk ⊆ U} ⊆ N.

For k ∈ J , choose Uk ∈ U with Bk ⊆ Uk. We will show, that
⋃
k∈N Un =

⋃
U∈U U .

“⊆”: This inclusion is clear. “⊇”: Let U ∈ U and x ∈ U . Then there is k ∈ N,
such that x ∈ Bk ⊆ U , hence there is a k ∈ J , such that x ∈ Bk ⊆ Uk ⊆

⋃
n∈N Uk.

(v) Let (X,T) a topological space, B a base for T and B′ = {Bk | k ∈ N} a
countable base for T. For all k ∈ N, we have that

Bk =
⋃
B∈B
B⊆Bk

B.

Via (iv), for all k ∈ N ∃ (B(n)
k )n∈N in B such that Bk =

⋃
n∈NB

(n)
k . Now, for all

U ∈ T, we can write U as

U =
⋃
k∈N
Bk⊆U

Bk =
⋃
k∈N
Bk⊆U

⋃
n∈N

B
(n)
k ,

hence B0 = {B(n)
k | n, k ∈ N} ⊆ B is a countable base for T. �

Corollary 5.7: Let (X, d) be a separable metric space, M ⊆ X any subset. Then
(M,d|M ) is separable.

Proof: If (X, d) is separable, (X, d) is secound-countable via Lemma 5.6(iii). If B
is a base for (X, d), B ∩M = {B ∩M | B ∈ B} is a base for (M,d|M ). Then
(M,d|M ) is second-countable and via Lemma 5.6 (iii), (M,d|M ) is separable. �

Lemma 5.8: Let (X,T) be first-countable, (Y,T′) another topological space, A ⊆ X.
Let f : X → Y be a mapping. Then the following holds:

(i) cl(A) = {x ∈ X | ∃ (xn)n∈N ∈ AN : xn → x},
(ii) f is sequentially continuous if and only if f is continuous.

Proof: (i) “⊇”: Let x = limn→∞ xn for a sequence (xn)n∈N ∈ AN, without loss
of generality U ∈ U(x) open. Then there is n ∈ N : xn ∈ U ∩A, hence x ∈ cl(A).
“⊆”: Let x ∈ cl(A) and let B(x) = {Bk(x) | k ∈ N} be a countable neighbour-

hood base at x. Then there is k ∈ N, such that ∃xk ∈ B0(x) ∩ · · · ∩ Bk(x) ∩ A.
Then, let U ∈ U(x) and N ∈ N such that BN (x) ⊆ U , thus ∀ k ≥ N : xk ∈
B0(x) ∩ · · · ∩Bk(x) ⊆ BN (x) ⊆ U , and thus xk → x for k →∞.
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(ii) “⇐”: Refer to (Remark 4.6) (i) and (Theorem 3.2).
“⇒”: Let x ∈ X and V ∈ U(f(x)). Let’s assume ∀U ∈ U(x) : f(U) 6⊂ V .

Let B(x) = {Bk(x) | k ∈ N} be a countable neighbourhood base at x. Then
∀ k ∈ N : ∃xk ∈ B0(x) ∩ · · · ∩ Bk(x), such that f(xk) /∈ V held. As in (i), this
sequence (xk)k∈N converged to x, but f(xk) /∈ V for all k ∈ N, thus f(xk) 6→ f(x)
for k →∞ held, which is a contradiction. �

Example 5.9: (i) Rn and Cn with T‖·‖ are separable due to Rn = cl(Qn) and
C = cl(Q+ iQ).

(ii) RN with the metric as in (Example 1.2) (iv) is separable, because

M = {(xn)n∈N ∈ QN | ∃N ∈ N : xn = 0∀n ≥ N}

is countable (via
⋃
n∈NQ

N) and dense in (RN, d): Let x = (xn)n∈N ∈ RN and for
n ≥ 1 and k = 0, . . . , n, choose

x
(n)
k ∈ Q ∩

(
xk −

1
n
, xk + 1

n

)
and for n ≥ 1 let

x(n) = (x(n)
0 , . . . , x(n)

n , 0, . . . , 0) ∈M

with x(n) → x with respect to d where n→∞ by (Example 2.6), thus cl(M) = RN.
(iii) For any 1 ≤ p <∞, (`p, dp) is separable with

M = {(xn)n∈N ∈ (Q+ iQ)N | ∃N ∈ N : xn = 0∀n ≥ N} ⊆ `p

is dense and countable.
(iv) Let {} 6= X be equipped with the discrete metric. Then cl(A) = A for all

A ⊆ X, thus X is countable if and only if X is countable.
(v) Let {} 6= M be a set. Then (`∞(M), dM ) is separable if and only if M is

finite.

Proof: “⇒”: Let M = {m1, . . . ,mn} and

Φ : (`∞(M), dM ) −→ (Cn, d∞)
f 7−→ (f(mi))1≤i≤n

is an isometric isomorphism. Thus (`∞(M), dM ) is separable by (i).
“⇐”: Let M be infinite, (xn)n∈N in M with xn 6= xm for n 6= m. Set

L := {f ∈ `∞(M) | f(M) ⊆ {0, 1}, f |M\{xn|n∈N = 0}.

Since

P(N) ↪→ L
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5 Bases, subbases and countability

A 7→

(
f : M → C, x 7→

{
1 ∃n ∈ A ⊆ N : x = xn,

0 else.

)

Then L is uncountable. Now, dM |L is the discrete metric, hence (L, dM |L) is not
separable and therefore `∞(M) is not separable. �
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6 Product topologies
Theorem 6.1: Let {} 6= X be a set, (Xi,Ti)i∈I a family of topological spaces. For
i ∈ I, let fi : X → Xi be a function. Then, there is a topolgoy T on X with
subbase

S = {f−1
i (U) | U ∈ Ti, i ∈ I}

Then the following statements hold:

(i) T is the coarsest topology, for which all the fi : (X,T) → (Xi,Ti) are con-
tinuous.

(ii) If (Y,T′) is another topological space, then a function g : (Y,T′) → (X,T)
is continuous if and only if fi ◦ g : (Y,T′) → (Xi,Ti) is continuous for all
i ∈ I.

Proof: (i) That the fi are continuous for all i ∈ I is clear. Let U be another
topology on X with this property, then S ⊆ U holds and thus T ⊆ U.

(ii) “⇒”: This is clear via (Remark 4.6)(iii).
“⇐”: Check that U := {U ⊆ X | g−1(U) ∈ T′} defines a topology onX. Because

all compositions fi ◦ g are continuous, S ⊆ U holds (g−1(f−1
i (U)) = (fi ◦ g)−1(U)

holds). Since g : (Y,T′) → (X,U) is continuous, g : (Y,T′) → (X,T) is continuos,
too. �

Definition 6.2: In the context of Theorem 6.1, T is called the weak topolgy gener-
ated by the fi for i ∈ I.

Definition 6.3: Let (Xi,Ti)i∈I be a family of topological spaces, X =
∏
i∈I Xi.

Then, the weak topolgy generated by the projections (j ∈ I)

πj : X −→ Xj

(xi)i∈I 7−→ xj

is called the product topology on X.

Theorem 6.4: Let (Xi,Ti)i∈I be a family of topological spaces and X =
∏
i∈I Xi be

equipped with the product topology. Let (Y,T′) be another topological space. Then
the following statements holds:

(i) The collection of sets

S := {π−1
i (V ) | i ∈ I, V ∈ Ti}

=
{
U =

∏
i∈I

Ui | Ui ∈ Ti ∀ i ∈ I, ∃ i0 ∈ I : Ui = Xi ∀ i ∈ I \ {i0}
}
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6 Product topologies

is a subbase for T and

B =
{
U =

∏
i∈I

Ui | Ui ∈ Ti ∀ i ∈ I : ∃ J ⊆ I,#(J) <∞ : Ui = Xi ∀ i ∈ I \ J
}

is a base for T.
(ii) f : (Y,T′)→ (X,T) is continuous if and only if fi := πi◦f : (Y, t)→ (Xi,Ti)

are continuous for all i ∈ I.

(iii) A sequence ((x(k)
i )i∈I)k∈N is convergent in (X,T) to some x = (xi)i∈I ∈ X

if and only if ∀ i ∈ I : x(k)
i → xi in (Xi,Ti).

(iv) Let (Xi, di)Ni=1 be metric spaces. Then, the product topology on X =
∏n
i=1Xi

is induced by the metric

d : X ×X −→ R

((xi)Ni=1, (yi)Ni=1) 7−→ max
1≤i≤N

di(xi, yi),

or by equivalent metrics.

Proof: (i) This follows directly from (Theorem 6.1) and the fact, that products
interchange with intersections.

(ii) This stateent is proven in (Theorem 6.1)(ii).

(iii) “⇒”: This follows from (Theorem 6.1)(i), because πi(x(n)) = x
(n)
i ∀ i ∈

I, ∀n ∈ N and πi(x) = xi.
“⇐”: Let U ∈ U(x). By (i) and (Lemma 5.5), there is a finite J = {j1, . . . , jn} ⊆

I and a base elementB =
∏n
i=1 Ui with Ui ⊆ Xi open for all i ∈ I and Ui = Xi ∀ i ∈

I\J : x ∈ B ⊆ U . This implies, that ∃N ∈ N : ∀ i = 1, . . . , n ∀n ≥ N : x(n)
ji
∈ Uji ,

thus ∀n ∈ N : x(n) ∈ B ⊆ U . This shows, that x(n) → x as n→∞.
(iv) The product topology and Td have the base

{Bdε ((xi)Ni=1) | (xi)Ni=1 ∈ X, ε > 0} =
{ N∏
i=1

Bdiε (xi) : (xi)Ni=1, ε > 0
}
,

so they are the same (for the other metric, show as in Analysis II, that is equivalent
to the maximum metric). �

Definition 6.5: Let (X,T) be a topological space.

(i) Let A be a quasi-ordered set (that is, there is a relation “≤” on A which is
reflexive and transitive). A is called directed if for all α, β ∈ A there is γ ∈ A
such that α ≤ γ, β ≤ γ.

(ii) A net in X is a family (xα)α∈A with a directed index set A 6= {}.
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For the rest of the definition, let (xα)α∈A and (yi)i∈I be nets in X, x ∈ X.

(iii) (xα)α∈A converges to x if ∀U ∈ U(x) : ∃α0 ∈ A ∀α ≥ α0 : xα ∈ U .
(iv) (xα)α∈A has a cluster point if ∀U ∈ U(x) : ∀α ∈ A ∃β ∈ A : β ≥ α : xβ ∈

U .
(v) The net (yi)i∈I is called a subnet of (xα)α∈A if there is a function ϕ : I →

A, i→ αi such that
(1) yi = xαi ∀ i ∈ I,
(2) i, j ∈ I, i ≤ j ⇒ αi ≤ αj ,
(3) ∀α ∈ A : ∃ i ∈ I : αi ≥ α.
We often write (xαi)i∈I for the subnet (yi)i∈I .

Note that #(I) > #(A) might occur.

Remark 6.6: (i) Exactly as for sequences, one shows that limits of nets are
unique in Hausdorff spaces.

(ii) Let (X,T) be a topological space, x ∈ X. Then the set of neighbourhoods
of x, U(x), is directed by “U ≤ V ⇔ U ⊇ V ” – for U, V ∈ U(x) is a common upper
bound.

(iii) Let a, b ∈ R with a < b and let

P := {
(
(p0, . . . , pn), (ξ1, . . . , ξn)

)
| n ∈ N,

a ≤ p0 < · · · < pn ≤ b, pi−1 ≤ ξi ≤ pi ∀ i = 1, . . . , n}

be directed by(
(p0, . . . , pn), (ξ1, . . . , ξn)

)
≤
(
(q0, . . . , qm), (η1, . . . , ηm)

)
⇔

∃ (ji)ni=1 ∈ {1, . . . ,m}n ∀ i = 1, . . . , n : pi = qij , ξi = ηk for some ji ≤ k ≤ ji+1.

If f : [a, b]→ R is Riemann-integrable, one can show that
ˆ b

a

f(x) dx = lim
((p0,...,pn),(ξ1,...,ξn))

n−1∑
i=1
|pi+1 − pi|f(ξi+1),

in particular, properties like additivity, monotonocity, . . . can be derived from more
general results.

Theorem 6.7: Let (X,T) be a topological space, (Y,T′) a topological space, A ⊆ X,
x ∈ X and f : X → Y . Then:

(i) cl(A) = {x ∈ X | ∃ (xi)i∈I ∈ AI : xi → x},
(ii) f is continuous in x if and only if for any net (xi)i∈I ∈ XI with xi → x:

f(xi)→ f(x).
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6 Product topologies

(iii) Let (Xi,Ti)i∈I be topological spaces, X =
∏
i∈I Xi be equipped with the prod-

uct topology. A net (x(α)) in X (with x(α) = x
(α)
i∈I for α ∈ A) converges to

x = (xi)i∈I ∈ X if and only if x(α)
i → xi ∀α ∈ A.

Proof: (i) “⊇”: Let x = limi∈I xi for a net (xi)i∈I in A, U ∈ U(x), there is
i0 ∈ I ∀ i ≥ i0 : xi ∈ U ∩A, in particular, U ∩A 6= {}.
“⊆”: Let x ∈ cl(A). For U ∈ U(x), choose xU ∈ U ∩ A. Then (xU )U∈U(x) is

a net in A. For any U ∈ U(x) and V ∈ U(x) with V ≥ U : xV ∈ V ⊆ U , thus
xU → x ∈ A.

(ii) “⇒”: Let (xi)i∈I be a net in X with xi → x and let V ∈ U(f(x)). Then,
there is U ∈ U(x) : f(U) ⊆ V , thus there is i0 ∈ I : ∀ i ≥ i0 : xi ∈ U and thus
∀ i ≥ i0 : f(xi) ∈ f(U) ⊆ V , hence f(xi)→ f(x).
“⇐”: Let f fulfill the right side and assume, there is V ∈ U(f(x)) : ∀U ∈

U(x) : f(U) 6⊆ V . Then, for U ∈ U(x) choose xU ∈ U with f(xU ) /∈ V . As in (i):
xU → x. But due to f(xU ) /∈ V ∀U ∈ U(x), f(xU ) 6→ f(x).

(iii) “⇒”: This follows from (ii) and (Theorem 6.1)(i).
“⇐”: Let U ∈ U(x). By (Theorem 6.4)(i) and (Lemma 5.5), there are a finite

J = {j1, . . . , jn} ⊆ I and a B =
∏
i∈I Ui with Ui ∈ Ti ∀ i ∈ I and Ui = Xi ∀ i ∈ I\J

such that x ∈ B ⊆ U . Then ∀ i = 1, . . . , n : ∃αi ∈ A : ∀α ≥ αi : x(α)
ji
∈ Uji .

Because A is directed, we can show via induction, that there is α0 ∈ A : αi ≤
α0 ∀ i = 1, . . . , n such that ∀α ≥ α0 ∀ i = 1, . . . n : x(α)

ji
∈ Uji , thus ∀α ≥ α0 :

x(α) ∈ B ⊆ U . Thus x(α) → x. �

Theorem 6.8: Let (Xn,Tn)n∈N be a sequence of metrizable topological spaces (i. e.
there are metrics di for i ∈ N) such that T = Tdi). Then, X =

∏
n∈NXn with the

product topology T is metrizable with the metric

d : X ×X −→ R

((xn)n∈N, (yn)n∈N) 7−→
∞∑
n=0

1
2n

dn(xn, yn)
1 + dn(xn, yn) .

Proof: Let f : (X,Td) → (X,T), x 7→ x. We have for a net (x(α))α∈A =
((x(α)

i )i∈I)α∈A in X and x = (xi)i∈I ∈ X it holds

x(α) α−→
T

x⇔ x
(α)
i

α−→
Ti
∀ i ∈ N⇔ x(α) α−→

Td
x

By (Theorem 6.7) (ii), f is a homeomorphism, thus Td = T. �
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7 Compact sets
Definition 7.1: A topological space (X,T) is called sequentially compact, if every
sequence (xn)n∈N ∈ XN has a convergent subsequence (xnk)k∈N. K ⊆ X is called
sequentially compact, if (K,T|K) is sequentially compact.

Theorem 7.2: Let (X, d) is a metric space. Then: (X,Td) is compact if and only
if (X,Td) is sequentially compact.

Proof: “⇒”: Let (xn)n∈N be a sequence in X. For m ∈ N, let

Km := cl({xn | n ≥ m}).

Then the sequence of sets (Km)m∈N has the finite intersection property, so there
is x ∈

⋂
m∈NKm. Thus, for all k ≥ 1, n ∈ N : B1/k(x) ∩ {xl | l ≥ n} 6= {}.

Inductively: there is a monotonly increasing sequence (nk)k∈N in N such that
xnk ∈ B1/k(x)∀ k ≥ 1. Therefore, (xnk)k≥1 is a subsequence of (xn)n∈N with
xnk → x as k →∞.

“⇐”: Let (Ui)i∈I be an open cover for X. Via (Lemma 5.6) (ii), there is a
sequence (in)n∈N such that X =

⋃
n∈N Uin . Assume ∀n ∈ N ∃xn ∈ X \Ui0 ∪· · ·∪

Uin . By assumption, the sequence (xn)n∈N has a convergent subsequence (xnk)k∈N
to some x ∈ X. Then ∀ l ∈ N : x = limn→∞,k≥l xnk ∈ X \ (Ui0 ∪ · · · ∪ Uil), thus
X \ (Ui0 ∪ · · · ∪ Uil) ⊆ X is closed which contradicts X =

⋃
n∈N Uin . �

Theorem 7.3: Let (X,T) be a topological space. Then X is compact if and only if
every net in X has a converging subnet if and only if every net in X has a cluster
point.

Proof: The second equivalence follows immediately from Exercise 33 e).
“⇒”: Let (xα)α∈A be a net in X. For β ∈ A, let Kβ := cl{xα | α ≥ β}.

Then (Kβ)β∈A is a family of sets closed in (X,T) which has the finite intersection
property since A is directed. By (Lemma 4.9) (iii) there is x ∈

⋂
β∈AKβ . Let

I = {(U,α) ∈ U(x)×A | xα ∈ U}. I is non-empty due to (X,α) ∈ I for all α ∈ A.
I can be directed by

(U,α) ≤ (V, β) :⇔ U ⊇ V and α ≤ β

because: Let (U,α), (V, β) ∈ I, then U ∩ V ∈ U(x) and there is γ ∈ A : α, β ≤ γ.
By choice of x there is γ′ ∈ A such that γ′ ≥ γ and xγ′ ∈ U ∩ V , therefore
(U ∩ V, γ′) ∈ I.
For (U,α) ∈ I, let y(U,α) = xα. Then (y(U,α))(U,α)∈I is a subnet of (xα)α∈A. Let

any U ∈ U(x) be given and let α ∈ A with (U,α) ∈ I. Then for all (V, β) ≥ (U,α)
it holds yV,b = xβ ∈ V ⊆ U . Hence y(U,α) → x.
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7 Compact sets

“⇐”: Let {} 6= F ⊆ P(X) be a collection of non-empty closed subsets of X with
finite intersection property. Define

A := {F1 ∩ · · · ∩ Fn | n ∈ N, F1, . . . Fn ∈ F}.

Because F has the finite intersection property, for all F ∈ A there is xF ∈ F . Then
(xF )F∈A is a net where A is directed by F ≤ G⇔ F ⊇ G. By assumption there is
a subnet (xFi)i∈I of (xF )F∈A, such that xFi → x for some x ∈ X. Let F0 ∈ F, then
there is i0 ∈ I such that Fi0 ≥ F0 and thus x = limi∈I xFi = limi∈I,i≥i0 xFi ∈ F0
since xi ∈ Fi ⊆ Fi0 for any i ≥ i0, xi0 ∈ Fi0 ⊆ F0 and F0 is closed. �

Remark 7.4: By passing to subnets (respectively subsequences) repeatedly and
using (Theorem 7.3), one can show that finite products of compact (respectively
sequentially compact) topological spaces X are compact (respectively sequentially
compact) again. With a diagonalization trick, one can even show that count-
able products of sequentially compact topological spaces are sequentially compact
again.

Definition 7.5: Let {} 6= M be a partially ordered1 set and {} 6= C ⊆M a subset.

(i) C is called a chain or totally ordered if: x, y ∈ C : x ≤ y ∨ y ≤ x.
(ii) An upper bound of C is an element z ∈M with x ≤ z ∀x ∈ C.

(iii) A maximal element is an element z ∈M such that (x ∈M, z ≤ x⇒ x = z).

With this, one can show the following Theorem (it is even equivalent to the
axiom of choice in ZFC).

Theorem 7.6 (Zorn’s Lemma): Every partially ordered set in which every chain
has an upper bound, has a maximal element.

Theorem 7.7 (Tychonoff’s Theorem2): Let (Xi,Ti)i∈I be a family of compact topo-
logical spaces and let X =

∏
i∈I Xi be equipped with the product topology T. Then

(X,T) is compact.

Proof: For J ⊆ I, let XJ =
∏
i∈J Xi be equipped with the product topology. Let

(x(α))α∈A := x be a net in X. For J ⊆ I, we call an element g ∈ Xy a partial
cluster point (x)α∈A, if g is a cluster point of x|J = (x(α)|J)α∈A.
Then, let

H := {g | g ∈ XJ is partial cluster point of x, J ⊆ I}

be partially ordered by

(gi)i∈J ≤ (hi)i∈K :⇔ J ⊆ K ∧ gi = hi ∀ i ∈ J.
1There is an antisymmetric quasi-ordering “≤” on M .
2Tchonoff’s Theorem can be shown to be equivalent to the axiom of choice.
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H is non-empty since for i0 ∈ I, (x(α)
i0

)α∈A has a cluster point g ∈ Xi0 where we
identify Xi0 =

∏
i∈{i0 Xi.

Let C = {g(λ) = (g(λ)
i )i∈Jλ | λ ∈ Λ} be a chain in (H,≤). Now, let J =⋃

λ∈Λ Jλ ⊆ I and G ∈
∏
i∈J Xi by Gi = g

(λ)
i if i ∈ Jλ. This is well-defined: If

i ∈ Jλ, i ∈ Jµ, without loss of generality g(λ) ≤ g(µ), but then g(λ)
i = g

(µ)
i .

Next, let α ∈ A, U ∈ U(G). Without loss of generality U =
∏
i∈J Ui, Ui ⊆ Xi

open ∀ i ∈ J , ∃F ⊆fin J : Ui = Xi ∀ i ∈ J \ F . Now ∀ f ∈ F : ∃λf ∈ Λ : f ∈
Jλf ⇒ ∃λ0 ∈ Λ : Jλf ⊆ Jλ0 ∀ f ∈ F , thus F ⊆ Jλ0 . Thus ∃β ≥ α : ∀ i ∈ F :
x

(β)
i ∈ Ui, thus x(β) ∈ U . Thus, G ∈ H ⇒ G is an upper bound for C. Via Zorns

Lemma, there exists a maximal element g = (gi)i∈J ∈ H.
Assume, J ( I. Let k ∈ I \ J . Since g ∈ H, g is a cluster point of (x(α)|J)α∈A.

By Exercise 33 e) we know that there is a subnet (xα+ |J)t∈T of x|J such that
xαt |J → g. Because (Xk,Tk) is compact, the net (xαtk )t∈T has a cluster point
p ∈ Xk. For i ∈ J ∪ {k}, let

hi =
{
yi if i ∈ J,
p if i = k.

Futhermore let h = (hi)i∈J∪{k}. Let α ∈ A, U ∈ U(h). Without loss of gernerality
U =

∏
i∈J∪{k} Ui with Ui ⊆ Xi open for all i and ∃F ⊆fin J ∪ {k} : Ui = Xi ∀ i ∈

J ∪ {k} \F . Therefore ∃ t′0 ∈ T : αt′0 ≥ α and ∀ t ≥ t′0 : x(αt)|J ∈
∏
i∈J Ui ∈ U(g).

Thus ∃αt0 ≥ α : x(αt0
i ∈ Ui ∀ i ∈ F . Thus xαt0 |J∪{k} ∈ U . Thus, h ∈ H which is

a contradiction.
Therefore J = I. Thus, g is already a cluster point. Thus, by (Theorem 7.3),

(X,T) is compact. �

Corollary 7.8: Let K ⊆ Rn, Rn equipped with T‖·‖∞ . Then K is compact if and
only if it is closed in Rn and bounded.

Proof: “⇒”: Let K ⊆ Rn be compact. Then, via (Theorem 4.10) (ii), K ⊆ Rn is
closed. Since K ⊆

⋃
n∈NBN (0) is an open cover, there are finitely many i1, . . . , in

such that K ⊆
⋃n
j=1BNi(0). Then K ⊆ Bmax1≤j≤n ij (0) and thus bounded.

“⇐”: Let K ⊆ Rn be closed and bounded. Then there is L ∈ R such that
K ⊆ BL(0) =

∏n
i=1[−L,L]. By Tychonoff,

∏n
i=1[−L,L] is compact. �

Definition 7.9: A topological space (X,T) is called locally compact, if every x ∈ X
has a compact neighbourhood K ∈ U(x).

Example 7.10: (i) (Rn,T‖·‖∞) and (Cn,T‖·‖∞) are locally compact by (Corol-
lary 7.9). For x ∈ Rn, cl(Br(x)) is a compact neighbourhood of x.

(ii) Differentiable manifolds (and even more generally topological manifolds) are
locally compact, because every point has a neighbourhood homeomorphic to an
open set in some Rn.

33



7 Compact sets

(iii) RN =
∏
n∈NR with the product topology (also induced by a metric) is

not locally compact. Assume, a point x ∈ RN had a compact neighbourhood K.
Then there existed U = U0 × · · · × UN ×

∏∞
n=N+1R with Ui ⊆ R open for all

0 ≤ Ui ≤ N such that x ∈ U ⊆ K held. Via (Theorem 4.10), cl(U) ⊆ K was
compact. But then, the image of cl(U) under the N + 1-th continuous projection
πN+1(cl(U)) = R was compact, which is a contradiction.

(iv) (E, ‖·‖) is locally compact if and only if it is finite-dimensional by Func-
tional Analysis, as cl(Bε(x)) is not compact for infinite-dimensional normed spaces.

Theorem 7.11 (Alexandroff-Extension3): Let (X,T) be a Hausdorff space,∞ /∈ X,
X̂ = X ∪ {∞}. Then,

T̂ = T ∪ {X̂ \K | K ⊆ X compact} ∪ {X̂}

defines a topology on X such that

(i) T̂ |X = T, X ⊆ X̂ is open,
(ii) (X̂, T̂) is compact.

If (X,T) is locally compact, (X̂, T̂) is Hausdorff. If X is not compact, then
cl(X)X̂ = X̂.

Proof: First, we want to show that T̂ is indeed a topology. That {}, X̂ ∈ T̂ holds
is clear. Let now U ∈ T, K,L ⊆ X compact. Then

U ∩ (X̂ \K) = U ∩ (X \K) ∈ T ⊆ T̂ (X̂ \K) ∩ (X̂ \ L) = X̂ \ (K ∪ L) ∈ T,

thus via induction, T̂ is closed under finite intersections. Let (Ki)i∈I be a family
of compact subsets of X, U ∈ T, K ⊆ X compact. Then⋃

i∈I
X̂ \Ki = X̂ \

⋂
i∈I

Ki ∈ T̂

holds, because there is i0 ∈ I such that
⋂
i∈I Ki ⊆ Ki0 and

U ∪ X̂ \K = X̂ \ (K ∩X \ U) ∈ T,

as K ∩X \ U is closed and contained in K.

(i) It holds

T̂|X = {V ∩X | V ∈ T̂} = T ∪ {X \K | K ⊆ X compact} ∪ {X} = T,

and X ∈ T ⊆ T̂. Next, let X̂ =
⋃
i∈I Ui be an open cover, then there is i0 ∈ I

such that ∞ ∈ Ui0 , thus Ui0 = X̂ \ Ki0 for some Ki0 ⊆ X compact. Hence
3This theorem is also called Alexandroff-Compactification or One-point-compactification.
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⋃
i∈I\{i0}(Ui ∩X) is an open cover in (X,T). Now, there are i1, . . . , in ∈ I such

that K ⊆
⋃n
j=1(Uij ∩X), therefore X̂ = Ki0 ∪ X̂ \Ki0 =

⋃n
j=0 Uij . Thus, (X̂, T̂)

is compact.
Next, let (X,T) in addition be locally compact and let x, y ∈ X̂, x 6= y and

without loss of generality, let y = ∞. Then K ∈ UT(x) ⊆ U
T̂

(x) is compact in
(X,T). Then, K and X̂ \K are disjoint neighbourhoods of x, y.

Now let X be not compact, U ∈ U(∞). Then, there is K ⊆ X compact such
that X̂ \K ⊆ U . In particular, U ∩X ⊇ X̂ \K ∩X = X \K 6= {}. �

Theorem 7.12: Let (X,T) be a Hausdorff space. Then (X,T) is locally compact if
and only if ∀x ∈ X ∀U ∈ U(x)∃K ∈ U(x) compact such that x ∈ K ⊆ U .

Proof: “⇐”: This is clear.
“⇒”: Let x ∈ X, W ∈ U(x), without loss of generality let W ⊆ X be open.

Then there is K ∈ U(x) compact. Let A := K ∩ X \W ⊆ K. Then A is closed
because X is Hausdorff and via (Theorem 4.10) (i) A is compact.

For any y ∈ A, let Uy ∈ U(x), Vy ∈ U(x) open in X with Uy ∩ Vy = {}. Then
A ⊆

⋃
y∈A Vy is an open cover. Because A is compact, there are y1, . . . , yn ∈ A

such that A ⊆
⋃n
i=1 Vyi =: V . Let U =

⋂n
i=1 Uyi , U ∈ U(x) is open in X and

U ∩ V = {}.
Let {} 6= K ′ = U ∩ Int(K) ∈ U(x) open (K ′ is non-empty because Int(K) 6= {})

with

cl(K ′) = cl(U ∩ Int(K)) ⊆ cl(U) ∩K
⊆ X \ V ∩K
⊆ X \A ∩K = (X \K ∪W ) ∩K = W ∩K.

Thus cl(K ′) ∈ U(x) is compact by (Theorem 4.10) (i) and cl(K ′) ⊆W . �

Corollary 7.13: Let (X,T) be a locally compact Hausdorff space, K ⊆ X compact,
U ⊆ X open and K ⊆ U . Then there exists V ⊆ X open such that cl(V ) is
compact and K ⊆ V ⊆ cl(V ) ⊆ U .

Proof: By (Theorem 7.12), for all x ∈ K there is Vx ∈ U(x) open such that
cl(V )x compact and cl(V )x ⊆ U . Therefore there are x1, . . . , xn ∈ K such that
K ⊆

⋃n
i=1 Vxi =: V is open in X with cl(V ) =

⋃n
i=1 cl(V )xi ⊆ U and cl(V ) =⋃n

i=1 cl(V )xi is compact. �

Definition 7.14: A topological space (X,T) is called a Baire space if for every
sequence (Fn)n∈N of sets closed in X with Int(

⋃
n∈N Fn) 6= {}, there is n0 ∈ N,

such that Int(Fn0) 6= {}.

Theorem 7.15 (Baire’s theorem4): Let (X,T) be a locally compact Hausdorff space.
Then (X,T) is a Baire space.

4Note that this is neither a generalization nor a special case of (Theorem 2.13).
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7 Compact sets

Proof: Let Int(
⋃
n∈N Fn) 6= {}. Assume for all n ∈ N it held Int(Fn) = {}. Let

x ∈ Int(
⋃
n∈N Fn) and U ∈ U(x) open and compact in X, with x ∈ U ⊆ with

x ∈ U ⊆
⋃
n∈N Fn. Put x0 := x and B0 := U . Because Int(Fn) 6= {}, it held

that Int(B0) ∩ X \ F0 6= {}. Then we could choose x1 ∈ Int(B0) ∩ X \ F0 and
B1 ⊆ Int(B0) ∩ X \ F0. We could continue this inductively and get a sequence
(xn)n∈N in X and a sequence (Bn)n∈N of compact sets such that for all n ∈ N it
held Bn(x) ∈ U(xn) and for all n ≥ 1 it held Bn ⊆ Bn−1 ∩X \Fn−1. By the finite
intersection property of (Bn)n∈N, there is

x ∈
⋂
n∈N

Bn ⊆
⋂
n≥1

Bn ⊆
⋂
n≥1

X \ Fn−1 = X \
⋃
n∈N

Fn,

but x ∈ B0 ⊆
⋃
n∈N Fn which is a contradiction. �
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8 Separation Theorems
Definition 8.1: A topological space (X,T) is called normal if for all F,G ⊆ X
closed, disjoint, there are U, V ⊆ X open, disjoint, with F ⊆ U and G ⊆ V .

Remark 8.2: Let X be a normal topological space, F ⊆ X closed, W ⊆ X open
with F ⊆ W . Because X is normal, there are U, V ⊆ X open, disjoint such that
F ⊆ U , X \W ⊆ V . In particular F ⊆ U ⊆ cl(U) ⊆ X \ V ⊆ W , because X \ V
is closed.

Lemma 8.3: (i) Compact Hausdorff spaces are normal.
(ii) Metric spaces are normal.

Proof: (i) Let X be a compact Hausdorff space and F,G ⊆ X closed, disjoint.
By (Lemma 4.9) F and G are compact. Exactly as in the proof of (Lemma 4.9)
(ii) we see that the following holds: ∀x ∈ F : ∃Ux ∈ U(x) open in X and Vx ⊆ X
open such that G ⊆ Vx and Ux ∩ Vx = {}. Then, F ⊆

⋃
x∈F Ux is an open cover.

Because F is compact, there are x1, . . . , xn ∈ F such that F ⊆
⋃n
i=1 Uxi =: U .

Then V :=
⋂n
i=1 Vxi ⊆ X is open with G ⊆ V and

U ∩ V =
n⋃
i=1

( n⋂
j=1

Uxi ∩ Vxj
)

=
n⋃
i=1

(
Uxi ∩

n⋂
j=1

Vxj

)
= {}.

(ii) The proof of this part is Exercise 15 d). �

Theorem 8.4 (Urysohn’s Lemma): Let X be a normal topological space, F,G ⊆ X
closed and disjoint. Then there is a continuous function f : X → [0, 1] such that
f |F = 0, f |G = 1.

Proof: Let F,G ⊆ X be closed and disjoint. Put U1 := X \ G ⊆ X, then U1 is
open and F ⊆ U1. By (Remark 8.2) there is another set U1/2 ⊆ X open such that
F ⊆ U 1

2
⊆ cl(U1/2) ⊆ U1. By (Remark 8.2), there are sets U1/4, U3/4 ⊆ X open

such that

F ⊆ U 1
4
⊆ cl(U 1

4
) ⊆ U 1

2
⊆ cl(U 1

2
) ⊆ U 3

4
⊆ cl(U 3

4
) ⊆ U1.

For n ∈ N, let Dn = { n2n | 1 ≤ n ≤ 2n} and let D =
⋃
n∈NDn. Inductively for

d ∈ D, define an open set Ud ⊆ X such that for all d, e ∈ D with d < e, it holds

F ⊆ Ud ⊆ cl(Ud) ⊆ Ue ⊆ cl(Ue) ⊆ U1.

Now define f : X → [0, 1] via

f(x) :=
{

0 x ∈
⋂
d∈D Ud,

sup{d ∈ D | x /∈ Ud} else.
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8 Separation Theorems

Then we have by definition: f |F = 0 due to F ⊆
⋂
d∈D Ud and f |G = 1 since

G ⊆ X \ Ud for all d ∈ D. Next consider the subbase

S = {[0, c) | 0 < c < 1} ∪ {(c, 1] | 0 < c < 1}

of the topology of [0, 1]. Let c ∈ (0, 1). For x ∈ X, we have

f(x) < c⇔ ∃ t < c : x ∈ Ut,

for “⇒” choose t ∈ (f(x), c) ∩ D, for “⇐” use Ut ⊆ Us ∀ s ≥ t and therefore
f(x) ≤ t < c. We also have

f(x) > c⇔ ∃ t > c : x /∈ cl(Ut),

for “⇐” use that f(x) ≥ t > c and for “⇒” use that there is s > c : x /∈ Us, thus
for all t ∈ (c, s) ∩D it holds x ∈ cl(Ut). Hence

f−1([0, c)) =
⋃

t<c,t∈D
Ut ⊆ X

is open as an arbitrary union of open sets and

f−1((c, 1]) =
⋃

t>c,t∈D
X \ cl(Ut) ⊆ X

is open as arbitrary union of open sets. By Exercise 22 d) we conclude that f is
continuous. �

Theorem 8.5 (Tietze Extension Theorem): Let X be a normal topological space,
A ⊆ X closed, [a, b] ⊆ R a perfect interval and f : (A,T|A) → [a, b] continuous.
Then there is a continuous function F : X → [a, b] with F |A = f .

Proof: Without loss of generality we may assume a = −1 and b = 1, since

ϕ : [a, b] −→ [−1, 1]

t 7−→ 2(t− a)
b− a

− 1

is a homeomorphism.
Claim 1: For r > 0 and h : A → [−r, r] continuous, there is H : X → [− r3 ,

r
3 ]

continuous with ‖h−H‖A < 2 r3 .
Consider the disjoint subsets A− = h−1([−r,− r3 ]), A+ = h−1([ r3 , r]) ⊆ X that

also are closed. By Urysohn’s Theorem, there is H : [− r3 ,
r
3 ] continuous with

H|A− = − r3 and H|A+ = r
3 , thus

‖h−H‖A ≤ 2r3 .

Claim 2: There is a sequence (gn)n∈N\{0} of continuous functions gn : X → R

(for n ≥ 1) such that
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(i) ‖gn‖ ≤ ( 2
3 )n for all n ≥ 1,

(ii) ‖f −
∑n
i=1 gj‖A ≤ ( 2

3 )n for all n ≥ 1.

We prove our claim via induction. For n = 1 with h = f and r = 1, the function
g1 = H from claim 1 meets our conditions. (different target space!).
For the inductive step, let g1, . . . , gn be already constructed. Via claim 1 with

r = ( 2
3 )n and h = (f−

∑n
i=1 gi)|A, there is a function gn+1 : X → [− 1

3 ( 2
3 )n, 1

3 ( 2
3 )n]

with ∥∥∥f − n∑
i=1

gi − gn+1

∥∥∥ ≤ (2
3

)n+1
.

Claim 3: The function F : X → R, F (x) :=
∑∞
j=1 gj(x) is well-defined and

continuous with F |A = f .
The well-definedness follows as |gj(x)| ≤ ‖gj‖X ≤ ( 2

3 )j for all x ∈ X – then the
dominated convergence theorem does the job.
Next, for all x ∈ X, we have

∣∣∣F (x)−
n∑
j=1

gj(x)
∣∣∣ ≤ ∞∑

j=n+1
|gj(x)| ≤

∞∑
j=n+1

(
2
3

)j
→ 0,

thus ‖F−
∑n
j=1 gj‖X ≤

∑∞
j=n+1( 2

3 )j → 0 as n→∞. Via Exercise 39, we conclude
that F is continuous.
Furthermore for all x ∈ A : |f(x) −

∑n
j=1 gj(x)| ≤ ( 2

3 )n → 0 as n → ∞, thus
f(x) =

∑∞
j=1 gj(x) = F (x) for all x ∈ A. �

Corollary 8.6: Let (X,T) be a normal topological space, A ⊆ X closed and f :
(A,T|A) → R be continuous. Then there is an extension F : X → R that is
continuous with F |A = f .

Proof: Consider

g : A −→
[
−π2 ,

π

2

]
x 7−→ arctan(f(x)).

Via Tietzes extension theorem, there is G0 : X → [−π2 ,
π
2 ] continuous such that

G0|A = g. By Urysohn’s Lemma there is a function θ : X → [0, 1] such that
θ|G−1

0 ({−π2 ,
π
2 })

= 0, θ|A = 1. Let G = θG0. Then

G : X −→
[
−π2 ,

π

2

]
is continuous with G|A = g, G(X) ⊆ (−π2 ,

π
2 ), thus F : X → R, x 7→ tan(G(x)) is

continuous with F |A = f . �
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8 Separation Theorems

Definition 8.7: Let X be a topological space, f : X → C. Then

supp(f) := cl({x ∈ X | f(x) 6= 0})

is called the support of f .

Definition 8.8: Let X be a topological space and (Uα)α∈A be an open cover of X.
A family (Θα)α∈A of continuous functions Θα : X → [0, 1] (for α ∈ A) is called
continuous partition of unity, if the following conditions hold:

(i) supp(Θα) ⊆ Uα for all α ∈ A,
(ii) (supp(Θα))α∈A is locally finite, i. e. for all x ∈ X there is U ∈ U(x) such

that {α ∈ A | supp(Θα ∩ U = {}} is finite,
(iii)

∑
α∈A Θα(x) = 1 for all x ∈ X.

Theorem 8.9: Let (X,T) be a normal topological space, U1, . . . , Un ⊆ X open with
X =

⋃n
i=1 Ui. Then, there exists a continuous partition of unity (Θ)ni=1 with

respect to (Ui)ni=1.

Proof: By (Remark 8.2), there is V1 ⊆ X open such that

X \
( n⋃
i=2

Ui

)
⊆ V1 ⊆ cl(V1) ⊆ U1,

in particular it holds that X = V1∪
⋃n
i=2 Ui. Inductively there are V1, . . . , Vn ⊆ X

open such that cl(Vi) ⊆ Ui for 1 ≤ i ≤ n and X =
⋃n
i=1 Vi.

Analogeously we findW1, . . . ,Wn ⊆ X open such that cl(Wi) ⊆ Vi for 1 ≤ i ≤ n
and X =

⋃n
i=1Wi. By Urysohns Lemma, for 1 ≤ i ≤ n there are fi : X → [0, 1]

continuous with f |cl(Wi) = 1 and fi|X\Vi = 0. Then, for 1 ≤ i ≤ n it holds that
supp(fi) ⊆ cl(Vi) ⊆ Ui.

Since
∑n
i=1 fi(x) ≥ 1 for all x ∈ X, for 1 ≤ i ≤ n the functions

Θi : X −→ [0, 1]

x 7−→
( n∑
i=1

fi(x)
)−1

fi(x)

are well-defined, continuous and satisfy supp(Θi) ⊆ supp(fi) ⊆ Ui as well as∑n
i=1 Θi(x) = 1 for all x ∈ X. �

Remark 8.10: If (X,T) is a normal topological space, A ⊆ C(X) closed under
finite sums and quotients and for F,G ⊆ X closed, there is f ∈ A with f |F = 1,
f |G = 0, a careful analysis of the proof of (Theorem 8.9) shows that (Θi)ni=1 can
even be chosen in A.
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Definition 8.11: A topological space (X,T) is called regular if it is Hausdorff and
the following holds:

∀F ⊆ X closed ∀x ∈ X \ F : ∃U, V ⊆ X open, disjoint : F ⊆ U, x ∈ V.

Theorem 8.12: Second-countable regular spaces are normal.

Note that normal spaces are always regular.

Proof: Let (X,T) be second-countable, regular, F,G ⊆ X closed and disjoint.
With the same arguments as in (Remark 8.2), for all x ∈ X there is Ux ∈ U(x),
Ux open such that x ∈ Ux ⊆ cl(Ux) ⊆ X \ G. Analogously for all x ∈ G there
is Vx ∈ U(x) open in X such that cl(Vx) ∩ F = {}. By Lindelöfs Theorem there
are sequences (Un)n∈N in {Ux | x ∈ F}, (Vn)n∈N in {Vx | x ∈ G} such that
F ⊆

⋃
n∈N Un, G ⊆

⋃
n∈N Vn.

For all n ∈ N, let

U ′n = Un ∩
n⋂
i=0

X \ cl(Vi), V ′n = Vn ∩
n⋂
i=0

X \ cl(Ui).

Then, let U =
⋃
n∈N U

′
n, V =

⋃
n∈N V

′
n ⊆ X, U, V then are open in X with F ⊆ U ,

G ⊆ V by construction.
Assume there was x ∈ U ∩ V . If there was x ∈ U ∩ V , there were n,m ∈ N

such that it held x ∈ U ′n, x ∈ V ′m held. Without loss of generality we could assume
n ≤ m. It then held that x ∈ U ′n ⊆ Un and x ∈ V ′m ⊆

⋂n
i=0X \cl(Ui) ⊆ X \cl(Un),

which is a contradiction, thus U ∩ V = {}. �

Lemma 8.13: Locally compact Hausdorff spaces are regular.

Proof: Let (X,T) be a locally compact Hausdorff space, F ⊆ X closed and (X̂, T̂)
the one-point compactification ofX. As (X̂, T̂) is Hausdorff, {x} and F∪{∞} ⊆ X̂
are closed. By (Lemma 8.3) (i), there are Û , V̂ ⊆ X̂ open, disjoint such that
x ∈ Û , F ∪{∞} ⊆ V̂ . Then U = Û ∩X, V = V̂ ∩X are open, disjoint and it holds
x ∈ U,F ⊆ V . �

Theorem 8.14 (Urysohn’s metrization theorem1): Let (X,T) be a second-countable,
regular space. Then there is a homeomorphism f : X → f(X) ⊆ RN. In particular
(X,T) is metrizable.

Proof: Let B be a (at most) countable base for T. Then, the set

M = {(B0, B1) ∈ B2 | cl(B0) ⊆ B1}
1In german, the name “Urysohns Einbettungssatz” which translates to Urysohns embedding
theorem, is also used.
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8 Separation Theorems

is also at most countable, let

ϕ : N −→M

n 7−→ (B(n)
0 , B

(n)
1 )

be a surjection. By Urysohn’s Lemma and (Theorem 8.12), for all n ∈ N there is
fn : X → [0, 1] continuous with fn|cl(B(n)

0 ) = 1, fn|X\B(n)
1

= 0. Let

f ′ : X −→ RN

x 7−→ (fn(x))n∈N,

then, since (πn◦f ′)“=”fn (target space!) for all n ∈ N, f ′ is continuous. It remains
to be shown, that for a net (xα)α∈A in X and x ∈ X such that f ′(xα)→ f ′(x), it
holds that xα → x. Let U ∈ U(x). Via (Lemma 5.5), there is B1 ∈ B such that
x ∈ B1 ⊆ U . As X is regular, there is V ⊆ X open such that x ∈ V ⊆ cl(V ) ⊆ V1,
thus by (Lemma 5.5) there is B0 ∈ B such that x ∈ B0 ⊆ cl(B0) ⊆ cl(V ) ⊆ B1.
Let n ∈ N be such that ϕ(n) = (B0, B1). Then fn(xα)→ fn(x) = 1, thus there is
x0 ∈ A such that for all α ≥ α0 it holds that fn(xα) ∈ ( 1

2 ,
3
2 ). Then for all α ≥ α0

it holds that xα ∈ B1 ⊆ U . �

Lemma 8.15: (i) Subspaces and products of Hausdorff spaces are Hausdorff,
(ii) Subspaces and products of regular spaces are regular.

Proof: (i) Let (X,T) be a Hausdorff space, Y ⊆ X and x, y ∈ Y with x 6= y.
Then there are U, V ⊆ X open, disjoint such that x ∈ U, y ∈ V . ThenU∩Y, V ∩Y ⊆
Y are open, disjoint and x ∈ U ∩Y, y ∈ V ∩Y . That products of Hausdorff spaces
are Hausdorff was shown in Exercise 30 (a).

(ii) Let (X,T) be regular, Y ⊆ X, F ⊆ Y closed and x ∈ Y \ F . Via (Lemma
4.9) (i), there is F ′ ⊆ X closed such that F = F ′ ∩ Y . As x ∈ X \ F ′, there
are U ′, V ′ ⊆ X open, disjoint such that x ∈ U ′, F ′ ⊆ V ′. Then U = U ′ ∩ Y ,
V = V ′ ∩ Y are open, disjoint such that x ∈ U , F = F ′ ∩ Y ⊆ V ′ ∩ Y = V .

Let (Xi,Ti)i∈I be a family of regular spaces, X =
∏
i∈I Xi equipped with the

product topology. Let F ⊆ X be closed, x = (xi)i∈I ∈ X \ F . Then there is
J ⊆fin I and Ui ⊆ Xi open for i ∈ I such that Ui = Xi for all i ∈ I \ J and
x ∈

∏
i∈I Ui ⊆ X \ F . Because X is normal, for all i ∈ J there is Vi ⊆ Xi open

such that xi ∈ Vi ⊆ cl(Vi) ⊆ Ui. Let now

V = X \
( ⋂
i∈J

π−1
i (cl(Vi))

)
⊆ X, U =

⋂
i∈J

π−1
i (Vi) ⊆ X.

Then V,U are open and U ∩ V = {}, furthermore x ∈ U by the choice of Vi and
F ⊆ X \

∏
i∈I Ui ⊆ X \

⋂
i∈J π

−1
i (cl(Vi)). �
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Remark 8.16: Subspacs and (even finite) products of normal spaces need not be
normal; refer to Munkres: Topology. A first course, Ex 2 in paragraph 4.2.

Corollary 8.17: For a topological space (X,T), the following is equivalent:

(i) X is a metrizable and second-countable,
(ii) X is metrizable and separable,

(iii) X is regular and second-countable,
(iv) X is homemorphic to a subspace of RN.

Proof: “(i)⇒ (ii)” is (Lemma 5.6) (iii), “(ii)⇒ (iii)” is (Lemma 8.3) and (Lemma
5.6) (iii), “(iii)⇒ (iv)” is (Theorem 8.14) and finally for “(iv)⇒ (i)”: Via (Theorem
6.8), RN is metrizable and therefore X is metrizable; via (Example 5.9) (ii) RN
is separable, therefore by (Corollory 5.7) X is separable and thus by (Lemma 5.6)
(iii) X then is second-countable. �

Remark 8.18: There are several other notions of separability... Diagrams missing.
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