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1 Metric spaces

Definition 1.1 (Metric space): Let X # {}. A function d: X x X — R is called a
metric, if the following conditions hold for all z,y,z € X:

(i) d(z,y) >

(i) d(z,y) = 0 ST =Y, (positive definiteness)
(iti) d(z,y) = d(y, ), (symmetry)
(iv) d(z,2) < d(x,y) + d(y, z). (triangular inequality)

(X,d) is then called a metric space.

Example 1.2: (i) X = R™ or X = C™ can be equipped with the following met-
rics: For @ = (21,..., %), y = (Y1,-..,yn) € X, put

) :Z|$i_yi| d J) y (Z|xl yz|p> doo(xvy) = max |xz yl|
=1

1<i<n

(ii) Let (E,]|-||) be a normed space. Then ||-|| induces a metric
dp:ExE—=R , dzy):=|z-y|.

(ili) Let M # {}. For f: M — C, let | f||ar = supgear|f(x)| € [0,00]. Set
X =02M)={f: M= C[|fllm < oo}

One can check, that [|-||5; is a norm and thus induces a metric dj.||,, -

(iv) Let X = RN = {(#,)nen | » € RVYn € N} — this construction works
analogeously with CN — and

d: X xX —R

1 ‘mn_yn|

This map is welldefined via the dominated convergence theorem. Positive definite-
ness and symmetry are clear. For the triangular inequality we note that

fi(=1,00) — R
t
s ——
1+1¢
is strictly increasing because f'(t) = gz > 0 for all ¢ € (—1,00). Thus, for
a, B,v > 0 with a < 8+ v, we have
@ B+~ < . I
Tta - 1+8+7 148  1+q




1 Metric spaces

For x = (p)nenN, ¥ = (Yn)nen and z = (2, )nen we conclude
oo

1 Ty — Yn
d(;&y)zzf | yl

n— 02n1+|xn+yn|

oo

1 |37n — n| 1 |Zn _yn‘
—7:d d .

(v) Set X = C™[a,b] = {f : [a,b] = C: f is n-times continuously differentiable}
for a perfect interval [a,b]. Then

d: X xX —R

(@) _ g0
d(f.9) — max [/ =g 0y

declares a metric on X.

(vi) For 1 < p < oo, let 7 = {(zp)nen € CN : 3% |z,|P < co}. Then we
define a metric on /P via

d: P xP —R
((In)nE]Na (yn nGIN <Z|xn Yn |p)

In functional analysis 1, we show that this is indeed a metric space.
(vii) Let X # {} and define

d: X xX —1R

1L z#y
(I,y)'—>{0 ey

Then d is a metric on X, the so-called discrete metric.

In the following text, let (X, d) be a metric space.
Definition 1.3: Let a € X, r > 0.

(i) We call B,.(a) = {z € X : d(x,a) < r} the open ball with radius r in a and
B,(a) ={z € X : d(x,a) <r} the closed ball with radius r in a.

(ii) A set U C X is called open (in X), if the following holds:
VeeU3Je>0:B(x) CU.

A set F C X is closed (in X), if X \ F' C X is open.

(iii) U C X is called a neighbourhood of a, if there is V' C X open such that
acV CU.



(iv) U(a) ={U C X : U is a neighbourhood of a}.

Proposition 1.4: (i) Open balls are open,
(if) Closed balls are closed.

Proof: (i) Let B,(a) € X and = € B,(a). Put ¢ = r — d(z,a) > 0. For all
y € B(x) it holds that

d(y,a) < d(y,z) +d(z,a) <r—d(z,a) + d(z,a) =r,

so B.(z) C By(a) and thus B,(a) C X is open.

(ii) Let B,.(a) C X and x € X \ B,(a). Put ¢ = d(x,a) —r > 0. For y € B.(x)
we get
a) > d(z,a) —d(x,y) > d(z,a) — (d(z,a) —r) =1,

d(y,
so Be(x) € X \ B,(a) and B,(a) C X is closed. |

Remark 1.5: Let X # {} be equipped with the discrete metric, U C X and z € U.
Then, we have B% (x) = {x}, so all sets are open and all sets are closed.

Lemma 1.6: (i) {} and X are open,
(ii) If Uy,...,U, C X are open, then (\;_, U; C X is open,
(iii) If (Ui)icr is a family of sets open in X, then | J;c; U; € X is open.

Proof: The statements are easy to show. |

Corollary 1.7: (i) {} and X are closed,

(ii) If X1,..., X, C X are closed, then |J;—, X; C X is closed,

(iii) If (Xi)ier is a family of sets closed in X, then (\;c; X; € X is closed.
Proof: Follows immediately with and De Morgans laws. |

Remark 1.8: Arbitrary unions of closed sets respectively arbitrary intersections of
open sets need not be closed respectively open, e.g. let (X, d) = (R, dH), then

NGa)-o - UL o

neN nelN

Definition 1.9: Let A C X. We call Int(A) :={x € A: U € U(z) : U C A} the
interior of A, cl(A) = A:={z € X : VU € (x) : UN A # {}} the closure of A
and OA={z e X: VU e W(z) : UNA#{} #AUN(X\ A)} the boundary of A.



1 Metric spaces

Lemma 1.10: Let A, B C X. Then we have:

(1) Int(A) = Upcx openvca U is the biggest (with respect to inclusion) open
subset contained in A.

(i) cl(A) = Npcx closed roa F s the smallest closed set containing A,

(iii) 0A C X is closed and we have cl(A) = AUOA, Int(A) = AN (X \ 0A) and
0A = cl(A) \ Int(4),

(iv) If A C B, then Int(A) C Int(B),
(v) If A C B, then cl(A) C cl(B),
(vi) AC X is open if and only if A =1Int(A),
(vil) A C X is closed if and only if A = cl(A),
) cl(AU B) =cl(4) Ucl(B), Int(AN B) = Int(A4) N Int(B).

(viii

The equalities in (vi) do not hold for the respective other operation “N”, “U”

Proof: (i) “2”: Let U C X be open with U C A, then U C Int(A) because
VeeU:U € U(z)and U C A. “C”: That Int(A) C A is clear. Int(A) C X is
open, if Vo € Int(A) : Je > 0: B.(x) C A, which holds since Vz € Int(A) there
is € > 0 such that B.(x) C A.

(i) “2™ Let @ € Npcx closed roa I+ Let U € $(z) with UN A = {}. Without
loss of generality let U C X open. Then X \ U C X is closed with X \U 2 A and
x ¢ X \ U, which is a contradiction.

“C” Let ¢ € cl(A) and let F C X be closed with FF 2O A. If x ¢ F, then
X\ F € d(z) with X \ FN A = {}, which is a contradiction.

(iii) “0A =cl(A) \Int(A)”: x € OA if and only if VU € (z) : UN A # {} and
UNX\ A # {} which holds if and only if « € cl(A) and = ¢ Int(A4). In particular,
0A C X is closed.

cl(A) = AU OA”: The inclusion AU OA C cl(A) is obvious. Let = € cl(A) and
x ¢ A, then we have: YU € U(z) : UNA# {} and UN (X \ A) # {}. But then,
x € 0A which was to be shown.

“Int(A) = AN (X \ 0A4)”: The 1nc1u510n Int( ) C AN (X \ 0A) is clear. Let
x € Aand x ¢ 0A. Then U € U(z) : UN(X\A) ={}, so U C A and then
x € Int(A).

(iv) Tt holds that Int(A) C A C B, so by (i) Int(A) C Int(B).

(v) Since A C B C cl(B), by (ii) cl(A) C cl(B).

(vi) Direct consequence of (i) and (ii).

(vii) Direct consequence of (i) and (ii).

(viii) Because AU B C cl(A)Ucl(B), we have cl(AU B) C cl(A)Ucl(B) by (v).
Furthermore we have

ACcl(AUB) cl(A) Ccl(AUB

B C cl(AU B) = cl(B) é cl(AUB% = cl(A) Ucl(B) C cl(AU B).



It holds that Int(A) NInt(B) € AN B, so via (iv), we know that
Int(A) NInt(B) C Int(A N B). Furthermore

ADInt(ANB),B2Int(AN B) = Int(A) NInt(B) 2 Int(A N B). ]

Example 1.11: (i) Let X # {} be equipped with the discrete metric d. For
A C X, we have

OA =cl(A)\Int(A) = A\ A= {},
In particular, for « € X and r = 1: 0B,(a) = {} # {z € X : d(z,a) = r}, if
#(X) > 1.

(ii) In (R,d}.), we have cl(Q) = R, Int(Q) = {}, 9Q = R and for a < b € R we
have cl((a, b)) = [a, ] as well as Int([a,b]) = (a,b).



2 Convergence, Completeness and
Baire’s theorem

Let (X, d) be a metric space.
Definition 2.1: A sequence (z,,),en is called
(i) convergent tox € X,if Ve >0: INeN:Vn>N:z, € B.(x),
(ii) conwvergent, if it converges to some x € X,
(iii) a Cauchy sequence, if Ve >0: AN e N: Vn,m > N : d(zy, z,) < €.

Lemma 2.2: Limits in metric spaces are unique, i. e. if a sequence (Tp)neny € XN
converges tox € X and y € X, then x = y.

Proof: Because z,, — x, y, — y, we have 0 < d(z,y) < d(z,x,) + d(zn,y) — 0,
so d(z,y) = 0 and that implies = = y. |

Definition 2.3: For Y C X, we call dy := d|yxy the relative metric from (X, d)
onY.

Lemma 2.4: For A C X, we have cl(A) = {x € X : I (zn)nen € AN : 2, — z}.
Definition 2.5: X is called complete, if every Cauchy sequence in X converges.

Example 2.6: (i) (R,[:]) is complete by construction, R™ and C" with d, for
1 < p < > or dy are complete.

(ii) (¢>°(M),dys) is complete. Let (fix)ren € (£°)N be a Cauchy sequence. For
x € M, by
[fe(@) = fil@)] < |Ifx = fill e = daa(fis 1)

for k,1 € IN, the sequence (fx(x))ken is a Cauchy sequence in C. Because C is
complete, (fr(2))ren converges for all x € M. Let

f:M— C,
x+— lim fi(x).
k—o0

Let € > 0. Choose N € IN such that das(fk, fi) < ¢ for all k,1 €> N. Then we
have for all k > N and x € M:

@) = f@)] = lim |fele) — fitw)] < .

I>N
Then, for all & > N, we have || fr — f||a < e. In particular, for z € M:
[f@) < [f(2) = fn(@)] + [n(@)] < e+ 1 fnlla

so |Ifllar < e+ || fnllar < oo, which shows that f € £°°(M) and with what we have
shown above, we have fi, — f for k — oo in dyy;.
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(iii) (RN, d) is complete (refer to Example 1.2 for the metric used). Let (2(F))en
be a sequence in RN and let x = (z,)new € RYN. For k € IV, let zk) = (x%k))kem.
We show that (z(®)),cp is a Cauchy sequence in (RN, d) if and only if (x%k))kem
is Cauchy in (R,d}|)Vn € IN.
“=": Let n € N and € > 0. Choose N € IN such that
1 a® )

-z 1 e
—_mm L < d(z(k),x(l)) < —
2 1 4 2P — 2] 2" 1+e¢

for all k,1 > N. Then, for all k,1 > N, it holds that |24 — 2{Y| < ¢ by the
increasing function used in Example 1.2.
“<": Let € > 0. Choose K € IN such that Y0 ;| 5= < &. Choose N € NN,

such that for all £, > N and for all 0 <n < K:
k) _ (1)) &

Then, for all k,] > N we have

k (k) 0 0o
1 zn’ — | 1

a0y = 3 3
(‘KI/z y L ) 2n

2" 1+ |$£lk) - ajgll)| n=K+1

n=0
K 1\e ¢
< (nz% 27) i + 5 < €.
Similarily we show: x®) = z for k — oo if and only if ;z:%k) — x, for kK — oo in
(R,d}.|) Vn € N. Thus, (RN, d) is complete since (R, |-|) is complete.

(iv) (C*([0,1]),d;) from Examples 1.2 v) is complete by Analysis I. Inductively:
(C™(]0,1]),dy) is complete.

(v) (¢7,dp) is complete for 1 < p < oc.

(vi) Let X # {} and d the discrete metric. Then, the Cauchy sequences and
convergent sequences are exactly the eventually constant sequences. Thus, (X, d)
is complete.

(vii) Q@ € R and R* C R with the corresponding relative metrics are not
complete.

Proposition 2.7: For x,y,z',y € X we have
|d(z,y) — d(@’,y")| < d(z,2") + d(y,y).

The proof is obvious, you need the triangular equality and you have to consider
two cases.

11



2 Convergence, Completeness and Baire’s theorem

Definition 2.8: A mapping j : X — Y between metric spaces (X, dx) and (Y,dy)
is called an isometry, if

dy (j(2),5(y)) = dx(x,y)
for all z,y € X.

Remark 2.9: For an isometry j : X — Y we will identify X with j(X) C Y as
metric spaces and write X C Y. This is justified, since isometries preserve all
properties of metric spaces, e.g. open and closed sets, convergence and Cauchy
sequences, bounded sets and continuity are preserved under isometries.

Theorem 2.10: Let (X,d) be a metric space. Then there is a complete metric
space (X,d.) such that X C X, do|xxx = d and X C X. dense (that is
c(X) =X.).
Proof: Let

X = {(@n)nen : (Zn)nen € XN is a Cauchy sequence}/ ~
with respect to the equivalence relation ~ defined by

(@k)rvew ~ (y)ken =& Lim d(zy, yp) = 0.

Furthermore, let

de: XoxX. — R
de([(zr)ken], [(Yr)ren]) = klggo d(Zr, Yr)-

In the following, we will denote [zx] := [(xk)ren]. d~ is well-defined: First of all,
by , we have

Vi, e IN:|d(xk,ye) — d(z,y)| < dlxg, 1) + d(ye, i),

s0 (d(zk,Yr))ren is a Cauchy sequence in (R, d).|), thus convergent. Secondly, for
[xx] = [Zx] and [yx] = [gr] we have, again by , that

Yk €N 0 < |dr,ye) — d(@r, Gi)| < dlzn, E1) + dlye, ) =3 0,

50 limg 00 d(xg, k) = limg_ 00 d(Zk, §x). Finally, d. is non-negative, symmetric
and fulfills the triangular inequality since d does. d. is positive definite by the
definition of “~”.

So (X.,d.) is a metric space. Now, let

j: X — X,

@ — [(2)ren].

12



Then j is an isometry, because for all z,y € X:
A-((2),3()) = d[(2)ien], [(W)ken]) = Jim d(z,y) = d(a,y).

Hence, we can identify X & j(X) and do|xxx = d.
Let £ = [z] € Xo. Let € > 0 and N € N such that d(zp,z;) <
k,l > N. For all k € IN, the sequence (d(zx,z:1))ien converges in (R, d
. In particular, for all £ > N, we have that

€
lim d(zg,x;) < = <e.
=00 2
I>N

Thus, for all £ > N:

d~(]($k),€) = lli{élo d(l’k,{l}l) li)o O7

so j(zg) — & for k — oo with respect to d. and j(X) C X is dense.

Let (6%))zen be a Cauchy sequence in (X, d~). Then for all £ € IN there exists
zx € X such that d.(§™), j(x1)) < 745 Let € > 0 and choose N € N such that
€ 1 €
— s [ <

d~(€M,€0) < =13

w

holds for all k£, > N. Hence, for all k,1 > N

(g, 21) = do(j(ar), (1) < do(G(2r), €P) + da(€W,€D) + d (€W, ()

thus (x)ken is a Cauchy sequence. Let now & = [z]. For all k € IN:

do(€®,6) < do(€™ () + d(i(ar), &) =50,
so £ — ¢ for k — oo with repect to d., so (X.,d.) is complete. [ |

Lemma 2.11: Let Y C X. Then we have: If (Y,dy) is complete, then Y C X is
closed. If (X,d) is complete, then equivalence holds.

Proof: “=": Let (z,)nen be a sequence in Y with z,, - = € X for n — oo with
respect to d. Then, (2,)nen is a Cauchy sequence in (X, d) and thus a Cauchy
sequence in (Y, dy ), hence there exists a y € Y, such that x,, — y for n — oo with
respect to dy. But then z,, — y for n — oo with respect to d holds, and thus
r=yeY. By , Y C X is closed.

“<": Let (zn)nen be a Cauchy sequence in (Y, dy ). Then (2, )nen is a Cauchy
sequence in (X, d) and because X is complete, there exists an x € X, such that
Tn — 2. By , £ € Y and thus x,, — y for n — oo with respect to dy .l

13



2 Convergence, Completeness and Baire’s theorem

Definition 2.12: For {} # A C X, we call
diam(A) = sup{d(z,y) | z,y € A} € [0, 0]
the diameter of A.

Theorem 2.13 (Cantor’s Intersection Theorem): Let (X,d) be a complete metric
space and (An)nen be a sequence of non-empty, closed subsets A, C X with
Apr1 C Ag for all k € N and diam(Ag) — 0 for k — oo. Then there is an
r € X, such that (e Ar = {2}

Proof: For k € IN, choose zp € Ai. Due to
d(xy, z;) < diam(Amingr,i})

for all n,l € IN and diam(Ay) — 0 we know that (zj)rew is a Cauchy sequence in
X, hence there is an x € X such that z;, — x for k — oo with respect to d. For
all n € IN, we have x = limy_, o k>, ¢% € cl(4,) = A, due to and the
properties of (Ax)ren. Thus z € (o Ar-

Let now y € (e Ak, then 0 < d(z,y) < diam(Ag) for all £ € IN, hence
d(z,y) =0and z = y. [ |

Theorem 2.14 (Baire’s Theorem): Let (X, d) be a complete metric space, (Fy,)nen
a sequence of closed subsets F, C X. Then we have: If Int(U, ey Fr) # {}, then
there exists an ng € IN : Int(F,,) # {}.

Proof: We will first argue for the following claim: If F' C X is a closed subset with
Int(F) = {}, then

Ve e XVr>03z € X3 >0: B, (v1) C(X\ F)NB.(x) (2.1)

holds. This is true, because (X \ F)) N B,(z) is open and non-empty due to
Int(F)={} forallz € X, r > 0.

Now let (F),)nen be as in the assumption. We assume that Int(F,) = {} Vn € IN.
Let xp € X, 79 > 0 such that B,,(20) € U,cn Fn- Then, by (2.1), there exist
x1 € X, r1 € (0,1), such that B,, (z1 € X \ Fo N B,,(z0). Again, by (2.1) there
exist x2 € X, r2 € (0, %), such that B, (z) C (X \ F1) N By, (z1).

Inductively, we find a sequence (By)nem {0y (B1 := Br, (1), Bz := By, (22),...)
of closed balls B, C X such that B,41 C B, € X \ F,,—; for all n > 1 and
diam(B,,) — 0 for n — co. By there exists € X such that

ze (] B.C () X\Foi=X\|JF.

nelN\{0} neN\{0} nelN

On the other hand, x € By C B, (20) C U, .y Fn, which is a contradiction. W

nelN
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Definition 2.15: Let M C X. Then M is called nowhere dense, if Int(cl(M)) = {}.
Countable unions of nowhere dense sets are called meagre.

Corollary 2.16: Let (X,d) be a complete metric space, M C X meagre. Then
Int(M) = {}.

Proof: Let (M,,)new be a sequence of nowhere dense sets such that M = J,, .y Mp.
We assume, that Int(|J,cn Mn) # {}. Then, Int({J,cncl(Mn)) # {}, hence
by , there exists ng € IN such that Int(cl(M,,)) # {}, which is a
contradiction. |

Lemma 2.17: Let A C X. Then cl(A) = X holds if and only if Int(X \ A) = {}.

Proof: “=": Assume, that there exists x € Int(X \ A). Then, for a sequence

(zg)ken in A with z;, — x for k — oo we see that UN A = {} for all U € (x).
“«<" Let v € X. Then for k € IN\ {0}, there is #x € Bi(x)NA. Then (2 )ren

is a sequence in A which converges to x. ]

Corollary 2.18: Let (X,d) be a complete metric space and (Up)nen a sequence of
open, dense subsets U, C X. Then, ﬂneIN U, C X is also dense.

Proof: For all n € N, we have U,, C X open and cl(U,) = X. By ,
forall n € N, X \ U, C X is closed and non-empty and Int(X \ U,) = {}. By

Int(X \ N,yen Un) = Int(U, e X \ Un)) = {}, so by ’
Mpew Un € X is dense. -

Remark 2.19: In general metric spaces, Baire’s Theorem need not hold. Let for
example (X,d) = (Q,d}.|q) and for ¢ € Q, let {¢g} € Q which is closed and

non-empty with Int({q}) = {}. But Int(quQ{q}) =Int(Q) =Q # {}.
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3 Continuous mappings between
metric spaces

In the following, let (X,d) and (Y, d’) be metric spaces.
Definition 3.1: A mapping f: X — Y is called
(i) continuous in x € X, if Ve > 036 > 0: f(Bs(x)) C B(f(x)),

(ii) continuous, if it is continuous in every x € X,

(iii) sequentially continuous in x € X, if for all sequences (7, )nen € XN with
Tn =z, f(xn) — f(z) holds,

(iv) sequentially continuous, if it is sequentially continuous in every z € X,
(v) uniformly continuous, if Ve > 036 > 0Va € X : f(Bs(x)) C B(f(x)).

Theorem 3.2: For f: X — Y, the following are equivalent:

(i) f is continuous,
(ii) f is sequentially continuous,
(iii) The preimage f=2(U) of every open set U C'Y is open in X,
(iv) The preimage f~1(A) of every closed set A CY is closed in X.
Definition 3.3: A subset K C X is called compact, if for every open cover (U;)ier

of K (i.e. U; C X open Vi € I and K C |J,.;U;) there are iy,...,i, € I, such
that K € U, U;

i€l

Theorem 3.4: Let K C X be compact and equipped with the relative metric dy
and let f: K — (Y,d') be continuous. Then, [ is uniformly continuous.

Proof: Let ¢ > 0. For x € K, choose d§, > 0 with f(Bs,(z)) € B(f()).
Then, K C |J,cx Bsp(7) is an open cover. Because K is compact, there are
Z1,...,%n € K, such that with §; := §,,:

U 5/2 ;).

Let now ¢ := min{di, | 1 < i < n} and let z,2" € K with dg(z,2) < 4.
Finally, let @ € {1,...,n}, such that x € Bs,/,(7;). Via the triangular inequality,
x' € By, (x;), thus
e ¢
&), F0) < d (@), £) +d (), Fa)) < S+ 5 =2,

and f is uniformly continuous. |
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Theorem 3.5: Let Xqg C X be dense, Y complete and f : Xg — Y uniformly
continuous. Then, there is exactly one continous extension F : X — (Y,d') of f
(i.e. F|x, = f). This extension is uniformly continuous.

Proof: For every ¢ > 0, choose 0. > 0 such that “Vz,y € X : d(z,y) < 6 =
d'(f(x), f(y)) < €” holds. Define

F: X —Y
x+— lim f(z,)
n—r oo

for a sequence (z,)neN € X(I)N with z,, — x for n — co. Xy is dense in X, hence
there is such a sequence for all z € X. For the well-definedness of F', we have to
check that F(z) does not depend on the sequence that converges to = and that
(f(xn))nen converges for any such sequence.

Let x € X and let (x,)nen be a sequence in Xy, such that =, — x for n —
oo. For ¢ > 0, choose N € N such that d(z,,z,) < J. for all n,m > N.
Then d'(f(zy), f(zm)) < € for all n,m > N. Because Y is complete, (f(2n))nen
converges in (Y, d’). Now, let (2! )nen be another sequence in X with a], — x for
n — oo and let € > 0. Choose N € IN, such that

d(wax)v d(xl]\fvx) < %55/3 ’ d/( lim f(xN)v f(xN))vd/(nh_)H;O f(xg\f)a x?\f) <

n—r oo

Wl M

We conclude d(zy,zy) < d(wy,z) + d(7,27y) < ¢ and thus

d'(lim f(z,), lim f(z7,)

n— oo

< d(lim f(r), fon) +d (), fay) + d(f ), T f(a))

n—oo

€ € e _
<§+§+§—E,

hence lim, 00 f(2n) = limy, 00 f(2),).

We have F|x, = f since we can choose the constant sequence (z),en in Xo for
x € Xp, which converges to x.

Last, we show that F' is uniformly continuous. Let ¢ > 0 and z,y € X, such
that d(z,y) < d:5. Let (Tn)nen, (Yn)new € X&) such that z, — z and y,, — y
for n — oco. Then, limy, o0 (2, yn) = d(z,y) < d, holds. Choose N € IN, such
that d(z,,yn) < for all n > N. We conclude for all n > N:

d(P), Fy) = (i f(a), lm_ fyn) = lim d(f(ea), f(yn)) <

n—oo

<e,

N ™

thus F' is uniformly continuous.
F' is a unique as a continuous extension of f since every continuous extension is
sequentially continuous. |
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4 Topologic spaces

Definition 4.1: Let {} # X be a set.

(i) A subset T CB(X) is called a topology on X, if
1) {},Xeg,
(2) Up,....U, eT=N, U, €%,
(3) (Ui)iel S TI = UiEI U, e¥
hold. The elements of ¥ are called open. A C X is called closed, if X\ A € T.
(X, %) is then called a topological space.

(if) A topological space (X, %) is called Hausdorff (or separated), if
Ve,ye X,x#£y: 3UVeEeT:zeUyeV,UNV ={}

holds.

(iii) Let ¥1,%5 be topologies on X. ¥ is called coarser than T, if 1 C Ty, T
is then called finer than ;.

Example 4.2: (i) Let (X, d) be a metric space. By (Lemma 1.6),
% :={U C X | U is open with respect to d}

defines a topology on X. The corresponding topological space (X, ¥) even is Haus-
dorff: For x # y € X with o # y, set r := 271d(x,y) > 0. Then B,.(x), B.(y) C X
are open and disjoint with x € B.(z),y € B, (y).

(ii) Let {} # X be a set. Then T = {{}, X} is a topology on X which is not
Hausdorff for #(X) > 1. ¥ is called the indiscrete topology.

Remark 4.3: Metrics d,d’ on a set X are called equivalent, if there is C' > 0, such

that 1
cdl@y) <d(z,y) < Od'(z,y)
for all z,y € X. In this case, we have B./.(y) € Bl(y) and Bg/c(y) C B:(y),

where B.(z) denotes the ball arround z of radius ¢ with respect to d'.

Definition 4.4: Let (X, %), (Y,%') be topoligical spaces, AC X,z € X, f: X - Y
a function and (x,)nen & sequence in X.

(i) U C X is called a neighbourhood of z, if thereis V' € ¥, such that z € V C U.
We write
U(x) :={U C X | U is neighbourhood of z}.

Put

c(A) ={z e X | VU el(z) : UNA#{}}
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Int(A):={x e A| U € l(z) : U C A},
A ={ze X |VUeWMa):UNAL{}AUN(X\A)},
cl(A) is called the closure of A, Int(A) is called the interior of A, 0A is called
the boundary of A.

(ii) K C X is called compact, if for every open cover (U;);c; of K, there are
i1,...,4n € I, such that K C U?Zl Ui,

(iii) (@n)nen converges to z, if: YU € h(x): AINeN:Vn>N:z, €U.

(iv) f is called continuous in x, if VV € U(f(x))3U € z) : f(U) C V. f
is called continuous if: VYV € T’ : f~1(V) € T. This holds if and only
if f is continuous in every z € X. f is called sequentially continuous, if
Vo€ XV(z,) € XN, = z: f(z,) — f(x) holds.

Lemma 4.5: Let (X, %) be a topological space, A, B C X. Then all the assertions
from (1.10) hold.

Remark 4.6: (i) Continuous functions between topological spaces are sequen-
tially continuous, but the reverse implication doesn’t hold in general.

(ii) For a topological space (X,%T) and Y C X,
Ty ={UNY |U e T}

defines a topology on Y, the relative topology.

(iii) Compositions of continuous mappings are continuous due to

FHe (V) = (gog) (V)
for f: X —=>Y,g:Y—>ZandV C Z.
(iv) If 1, %, are topologies on a set X # {}, the identity mapping
id : (X,Tl) — (X,(Sg)

is continuous if and only if To C ¥;. In particula, there continuous bijections with
non-continuous inverse functions.

Definition 4.7: A bijective mapping f : X — Y between topological spaces (X, %),
(Y, %) is called a homeomorphism, if f and f~! are continuous.

Lemma 4.8: Let {} #Y C X, ACY, K C X. We have
(i) A is closed in (Y, %|y) if and only if there is B C X closed: BNY = A,
(ii) A is compact in (Y, Z|y) if and only if A is compact in (X, T),

(iii) K is compact if and only if for every family (F;)icr of sets closed in (K, %| k)
with f with finite intersection property, we have (\;c; Fi # {}.
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4 Topologic spaces

Proof: (i) Let A € Ty. A is closed in (Y, %y ) if and only if 3U C X open,
such that Y\ A = U NY and this holds if and only if 3U C X open, such that
(X\U)NY =Y\ (UNY) = A.

(ii) “=": Let (U;)icr be an open cover in (X,%). Then A C {J,.,(U;NY) is
an open cover in (Y, %y ). Because A is compact in (Y, Ty ), there exist i1,..., i,

such that . .
AclJw, ny)cJu,.
j=1 j=1

“«<" is shown similarly to the other direction.

(iii) For a family (U;);er in P(K) and the family of its complements (F;);er =
(K \ Uj)ier we have a collection of facts: U; C K are open for all i € I if and
only if F; C K are closed for all 4 € I. Furthermore K = [J,.; U; holds if and
only if (,c; F; = {}, because if K is compact, there are iy,...,i, € I, such that
K = Uj-, Ui, which holds if and only if (;_, F;; = {}. With these facts, (iii)
follows from contraposition. |

Lemma 4.9: Let {} # K C X be compact, A C K.
(i) If A C K is closed, A is compact.
(if) If (X, %) is Hausdorff, then K C X is closed.
(iii) If f : X = Y is a continuous space to another topological space (Y,%'), then
f(K) is compact.

Proof: (i) Let (U;)icr be an open cover of A in (K,T|k). Because A C K is
closed in (K,¥k), K\ Ais open in (K,%|k). Thus K = J,c; U; U (K \ A) is an
open cover. Due to the compactness of K, there are i1,...,4, € I, such that

k- (uomn

Then A C U;;l Ui, , hence A is compact.

(ii) We will show, that X\ K C X isopen. Let z € X\ K. For every y € K, there
are open neighbourhoods Uy € (), V, € t(y) such that U,NV, = {}. Obviously,
K C UyeK Vy. Since K is compact, there finitely many points y1,...,y, € K,
such that .

Let U, = (=, Uy, € U(z) open in (X, f) with

U.NK C (n]Uy]nOVyk: Lnj (((n]ij)ﬂVyk> ={}

j=1 k=1 k=1 N j=1

thus U, C X \ K. Finally, it holds: X \ K = U:L’EX\K U, C X is open.

| ﬂ
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(iii) Let (Vi)ier be an open cover of f(K) in (Y,¥'). Then K C U, f~H(V;
is an open cover of (X,¥). Because K is compact, there are i1,...,4, € I: K C
U;'L:1 f_1<Vij ), therefore

FE) S J Ut v < U v

j=1 j=1 |

Corollary 4.10: If f : X — Y is a bijective continuous function to a Hausdorff
space (Y, %) and (X, %) is compact, then f is a homeomorphism.

Proof: Let A C X be closed. By (i), A then is compact. Due to
(iii), f(A) is open. Now, (i) that (f~1)"Y(A) = f(A) CY
is closed, hence f~!:Y — X is continuous. |

Remark 4.11: (i) If {} # X and %;,%, are two topologies on X such that
(X, %) is compact and (X, %5) is Hausdorff and T, C ¥y, then T; = Ts.

(ii) The finer a topology, the more open and closed sets it has, the fewer com-
pact sets, the fewer convergent sequences, the smaller its closures, the bigger its
interiors, more continuous functions on the space, the less continous functions to
this space.

Example 4.12: Let X = R (or any uncountable set) and let
T={UCX|U={}or X\U is at most countable}.
Let (z,) € XN, x € X. Then, z,, — = for n — oo if and only if (z,,) is eventually
constant (else, U = X \ {xy,z, # 2} € () is open with: VN € NIn > N :
Tn #x,i.e.x ¢ U, so (z,) cant converge to x). In particular,
A={z| I(z,) € AN: 2, -z}

for all A C X, but A # cl(A) in general (e.g. for A =R\ IN, then X \ (X \ 4) =
A =R\ N is not at most countable, so X \ A is not open, so A C X is not closed.
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5 Bases, subbases and countability

Definition 5.1: Let (X, ) be a topological space.
(i) A collection of sets B C ¥ is called a base of T, if for every U € ¥, we have
v= |J B
BCU,BE®
following the convention gy S = {}-
(if) A collection of sets & C ¥ is called a subbase of ¥, if

B={SN---NS,|nelN,5y,...,5, €S}
is a base of T, following the convention ﬂ(;:l S; = X.

Example 5.2: (i) The collection of sets & = {(—o0,b) | b € R}U{(a,00) | a € R}
are a subbase for ). on R. Indeed, every open set U C R can be written as a
union of open intervals (a,b) C R with a,b € R,a < b, which can be written as a
finite intersection of elements from &.

(ii) The collection of sets B = {I]"_,(a;,b;) | a1,...,an,b1,...,b, € Q} is a
(countable) base for (R™, ) ).

Theorem 5.3: Let {} # X, & C PB(X). Then, there is a unique topology on X,
which has & as a subbase. ¥ is the coarsest topology on X which contains &:

T = N g
T’ topology on X
sCc’
Then ¥ is called the topology generated by &.

Proof: Let B={S1N---NS, |neN,S5,...,5, €&} and

SZ{UQX;U: U B}:{UBZ-:(BZ-)Z-GIE%I7Bi§UVieI}
BeB,BCE icl
={UCX|VzeU:3IBeB:z€ BCU}.
Then, {},X € ¥ by convention. That ¥ is stable under unions is clear by the
second way we wrote T. If Uy = [J,; Bi(l), Us=U,es B](.Q) € %, thus
Uuint= |J BYnB?)ex.
(4,4)€IxJ

By induction, ¥ is stable under finite intersections. Let ¥’ be another topology on
X with & C %', Then, due to the properties of a topology, we have B C T’ and
therefore € C ¥'. If & is even a subbase of T/, similarly ¥ C ¥ holds. [ ]
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Definition 5.4: Let (X, T) be a topological space.
(i) Let € X. Then B C (z) is called a neighbourhood base at x, if: VU €
U(z)IBeB: 2 € BCU.

(i) (X, %) is called first-countable, if every point has a countable neighbourhood
base.

(iii) (X, %) is called secound-countable, if it has a countable base.
(iv) (X, %) is called separable, if there is a countable set M C X with cl(M) = X.

Lemma 5.5: Let (X,T) be a topological space, B a base of T and x € X. Then
B(z):={BeB|zeB}
s a neighbourhood base at x.

Proof: Let U € $(x). Then there exists V' C X open, such that x € V C U.
Because B is a base of ¥, there exists B € 9B, such that z € B C V C U. So,
Be®B(z)witheze BCU. [ ]
Lemma 5.6: (i) Second-countable topological spaces are first-countable,

(ii) Metric spaces are first-countable,

(iii) A metric space is second-countable if and only if X is seperable (for a topo-
logical space, “<=” doesn’t hold!).

(iv) If (X, %) is a second-countable topological space, (U;)icr a family in T. Then,
there is a sequence (U, )nen tn T, such that

U U, =\ |u.

(Lindeléf’s Theorem,)

(v) If (X,%) is second-countable and B is a base of T, there exists B’ C ¥,
which is a countable base for T with B’ C B.

Proof: (i) See

(ii) For # € X, the collection of sets {B.(x) | k € N} is a neighbourhood base
at x.

(iii) “=": Let B € T be a countable base. For {} # B € B, we choose x5 € B
and put M = {zp | {} # B € B}. M then is countable. Let z € X and U € L(x),
then there is B € B : x € B C U, hence zg € BN M C UnN M, and thus
c(M)* = X.

“<=”: Now, let (X,d) be a metric space and M C X countable and dense.
Because M is countable, we can write M = {z,, | n € N}. Then

B :={Bi(z,) | n €N keN\{0}}
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5 Bases, subbases and countability

is countable. Let {} # U C X open and = € U. Then there is k € IN'\ {0}, such
that Bi(z) € U, thus 3n € N : 2, € Ba (x). Then z € By (2n) C U (the
inclusion holds due to the triangular inequality), thus B is a base for ¥.

(iv) Let (X, %) be second-countable and B = {By, | £ € IN} a countable base
for T. Let {} #4U C T. Set

J={keN3Ueu:B, CU}CN.

For k € J, choose Uy € U with By, C Uy. We will show, that (J,cn Un = Upey U-
“C”: This inclusion is clear. “D”: Let U € 4 and x € U. Then there is k € N,
such that z € By C U, hence there is a k € J, such that x € By, C U C Une]N Uy.
(v) Let (X,%) a topological space, B a base for ¥ and B’ = {By; | k € N} a
countable base for €. For all £ € IN, we have that

By, = U B.

BeB
BCBy,

Via (iv), for all k € N3 (B™),.ci in B such that By, = U, .y BU"™. Now, for all

U € %, we can write U as

v-Um-y ys

nelN

kEN kEN neN
B, CU B, CU
hence By = {Bl(cn) | n,k € N} C 9B is a countable base for ¥. [ |

Corollary 5.7: Let (X, d) be a separable metric space, M C X any subset. Then
(M,d|nr) is separable.

Proof: If (X, d) is separable, (X, d) is secound-countable via (iii). If B
is a base for (X,d), BN M ={BNM | B € B} is a base for (M,d|r). Then
(M, d|pr) is second-countable and via (iii), (M, d|pr) is separable. W

Lemma 5.8: Let (X, T) be first-countable, (Y,T') another topological space, A C X.
Let f: X =Y be a mapping. Then the following holds:

(i) cl(A) ={z € X | 3(zp)nen € AV : 2, — 2},

(ii) f is sequentially continuous if and only if f is continuous.

Proof: (i) “2": Let o = lim,,_,, 2, for a sequence (7, )nen € AN, without loss
of generality U € U(x) open. Then there isn € N : x,, € UN A, hence x € cl(4).

“C”: Let x € cl(A) and let B(z) = {Br(z) | k € N} be a countable neighbour-
hood base at x. Then there is k € IN, such that Jxp € Bo(z) N--- N Bg(x) N A.
Then, let U € (z) and N € IN such that By(z) C U, thus Yk > N : x) €
By(z)N---N Bi(z) C By(x) CU, and thus 2, — x for k — oo.
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(if) “«<=": Refer to (Remark 4.6) (i) and (Theorem 3.2).

“=7" Let x € X and V € U(f(x)). Let’s assume YU € U(z) : f(U) ¢ V.
Let B(z) = {Br(z) | k € N} be a countable neighbourhood base at z. Then
Vk € N: Jxp € Bo(z) N --- N Bi(z), such that f(zr) ¢ V held. As in (i), this
sequence (zy)ren converged to x, but f(xy) ¢ V for all k € IN, thus f(xg) A f(x)
for k — oo held, which is a contradiction. |

Example 5.9: (i) R" and C" with T, are separable due to R" = cl(Q") and
C=c(Q+iQ).

(i) RY with the metric as in (Example 1.2) (iv) is separable, because
M = {(zn)nen € QN | INeN:z,=0Vn> N}
is countable (via |J,cn Q) and dense in (RN, d): Let # = (#n)new € RY and for

n>1and k=0,...,n, choose

n 1 1
x,(C)EQﬂ<xk—n,$k+>

n

and for n > 1 let
(™ = (acé”), coT

with 2(") — z with respect to d where n — oo by (Example 2.6), thus cl(M) = RN,

(M) 0,...,00e M

n

(iii) For any 1 < p < oo, (¢, d,) is separable with
M = {(zp)nen € (Q+iQN | INEN: 2, =0¥Vn> N} C P

is dense and countable.

(iv) Let {} # X be equipped with the discrete metric. Then cl(A) = A for all
A C X, thus X is countable if and only if X is countable.

(v) Let {} # M be a set. Then (£>°(M),dys) is separable if and only if M is
finite.

Proof: “=": Let M = {mq,...,my} and
O : ((M),drr) — (C",d)
[ (f(mi))i<i<n

is an isometric isomorphism. Thus (¢°(M), das) is separable by (i).
“<”: Let M be infinite, (z,)nen in M with z,, # z,, for n # m. Set

L:={fet*(M)]f(M)C{0,1}, flran\{z, jnen = 0}
Since

PB(N) = L
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5 Bases, subbases and countability

- c L= Tn,
A+—><f:M~>C,:El—>{1 ncdCN:z=z )

0 else.

Then L is uncountable. Now, dps|r, is the discrete metric, hence (L,dar|r) is not
separable and therefore £°°(M) is not separable. [ |

26



6 Product topologies

Theorem 6.1: Let {} # X be a set, (X;,%;)icr a family of topological spaces. For
1 €1, let f; + X — X; be a function. Then, there is a topolgoy ¥ on X with
subbase

S={fYU)|UecTicl}
Then the following statements hold:

(i) T is the coarsest topology, for which all the f; : (X,%) — (X;,%;) are con-
tinuous.

(i) If (Y,%') is another topological space, then a function g : (Y,%') — (X, %)
is continuous if and only if fiog: (V,¥') = (X;,%;) is continuous for all
1€l.

Proof: (i) That the f; are continuous for all ¢ € I is clear. Let il be another
topology on X with this property, then & C 4 holds and thus ¥ C L.

(if) “=": This is clear via (Remark 4.6)(iii).
“«7: Check that 4 := {U C X | g~} (U) € T'} defines a topology on X. Because
all compositions f; o g are continuous, & C & holds (¢~ (f;(U)) = (fi o 9)~"(U)

holds). Since g : (Y,T') — (X, 4) is continuous, g : (Y, %) — (X, %) is continuos,
too. |

Definition 6.2: In the context of , ¥ is called the weak topolgy gener-
ated by the f; for i € 1.

Definition 6.3: Let (X;,T;)ie; be a family of topological spaces, X = [];c; X;.
Then, the weak topolgy generated by the projections (j € I)

Tt X — Xj
(Ti)ier — x5
is called the product topology on X.

Theorem 6.4: Let (X;,T;)icr be a family of topological spaces and X = [],.; X; be
equipped with the product topology. Let (Y,T') be another topological space. Then
the following statements holds:

(i) The collection of sets
G:={m (V) |ieLVeg;}

:{U:HUZ-|Uieiiwe],EioeI:Ui:X,»VieI\{io}}
el
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6 Product topologies

is a subbase for ¥ and

B :{U:HUAUie‘INieI: HJQI,#(J)<oo:Ui:XNieI\J}
iel

is a base for .

(i) f: (Y, %) — (X,%) is continuous if and only if f; == mof : (Y1) = (X;, %)
are continuous for all i € I.

(iii) A sequence ((scgk))ig)kem is convergent in (X, %) to some x = (z;)icr € X
if and only if Vi e I:z® = z; in (X;,T).

(iv) Let (X;,d;)N, be metric spaces. Then, the product topology on X =[], X;

is induced by the metric

d: X xX —1R

AN ()N (@5, Ui
()i, (Wi)iza) 7 max di(ei, yi),

or by equivalent metrics.
Proof: (i) This follows directly from (Theorem 6.1) and the fact, that products
interchange with intersections.

(if) This stateent is proven in (Theorem 6.1)(ii).

(iii) “=”: This follows from (Theorem 6.1)(i), because m;(z(™) = xETL)Vi €
I,VneN and m;(z) = ;.

“<=”: Let U € U(x). By (i) and (Lemma 5.5), there is a finite J = {j1,...,jn} C
I and a base element B = H?:1 U; withU; C X; openforalli € [ andU; = X; Vi €
I\J :xz € BCU. Thisimplies, that IN e N: Vi=1,...,nVn > N : ac;?) c Uy,
thus Vn € N: 2™ € B C U. This shows, that (™ =z asn — oco.

(iv) The product topology and T4 have the base

N
B | @)y € Xoe > 0 = { [ B @) : (w)Ls.e > 0},

so they are the same (for the other metric, show as in Analysis I, that is equivalent
to the maximum metric). [ |

Definition 6.5: Let (X,T) be a topological space.

(i) Let A be a quasi-ordered set (that is, there is a relation “<” on A which is
reflexive and transitive). A is called directed if for all a, f € A thereisy € A
such that a <~,8 <.

(ii) A net in X is a family (z4)aca with a directed index set A # {}.
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For the rest of the definition, let (x4)aca and (y;)icr be nets in X, z € X.

(iii) (xa)aca converges to x if VU € U(z) : Jag € AVa > ap: xq € U.

(iv) (za)aca has a cluster point it VU € (z) : Va € A€ A:B>a: 25 €
U.

(v) The net (y;);ecr is called a subnet of (z4)aeca if there is a function ¢ : I —
A,i — «a; such that

(2) i,jel,i<j=a;<a
(3) VaeA: Fiel:a; > a.

We often write (4, )ier for the subnet (y;)icr.

Note that #(I) > #(A) might occur.

Remark 6.6: (i) Exactly as for sequences, one shows that limits of nets are
unique in Hausdorff spaces.

(ii) Let (X, %) be a topological space, € X. Then the set of neighbourhoods
of x, tl(x), is directed by “U <V < U D V” —for U,V € {(x) is a common upper
bound.

(iii) Let a,b € R with a < b and let

F = {((p07"'7pn>7(£1a"'7£n)) |n€]Na
a<py<--<p,<bpi1<&E<pVi=1,...,n}

be directed by

((p07 cee 7pn)7 (gla s 7§n)) < ((QO7 s 7Q'm)a (nla s a”?n)) <
F(Ga)izy € {1,...,m}"Vi=1,...,n:p; = q,,& = nx for some j; <k < jiq1.
If f:[a,b] — R is Riemann-integrable, one can show that

b n—1
/ fx)de = (« lim Z|Pi+1 = pil f(&ir1),

PoseesPn ) (E150056n)) i1

in particular, properties like additivity, monotonocity, . ..can be derived from more
general results.

Theorem 6.7: Let (X, %) be a topological space, (Y,T') a topological space, A C X,
r€Xand f: X =Y. Then:

(i) cl(A) ={z € X | I(;)ier € AT 1 2; — 2},
(ii) f is continuous in x if and only if for any net (v;);c; € X! with x; — x:

f(xi) = f(=).
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6 Product topologies

iii) Let (X;,%;)ier be topological spaces, X = ||, i be equipped with the prod-
iii) Let (X;, % b l l X icr Xi b d with th d
uct topology. A net (z(®) in X (with z(®) = :UE?I

x = (zi)ier € X if and only if a:l(a) -z Vae A.

for o € A) converges to

Proof: (i) “D”: Let x = lim;es @; for a net (z;)ier in A, U € U(x), there is
io €IVi>ip:x; € UNA, in particular, U N A # {}.

“C™ Let x € cl(A). For U € U(x), choose zy € U N A. Then (zv)yeu) is
anet in A. For any U € U(z) and V € H(x) with V > U: xy € V C U, thus
Ty — T € A.

(ii) “=7: Let (z;)icr be a net in X with z; — x and let V € U(f(z)). Then,
there is U € U(z) : f(U) C V, thus there is ig € I : Vi > iy : x; € U and thus
Vi>io: f(x;) € f(U) CV, hence f(z;) = f(x).

“<=”. Let f fulfill the right side and assume, there is V' € U(f(z)) : YU €
(x) : f(U) € V. Then, for U € U(x) choose xzy € U with f(zy) ¢ V. As in (i):
xy — x. But due to f(zy) ¢ VVU € U(x), f(zu) A f(z).

(iii) “=7": This follows from (ii) and (Theorem 6.1)(i).

“e”: Let U € (x). By (Theorem 6.4)(i) and (Lemma 5.5), there are a finite
J={j1;--,jny Clanda B =[[,.,; U; withU; € T;Vi € Tand U; = X; Vi € I\J
such that x € B C U. Then Vi=1,....,n: 3oy € A: Va > a; : arga) c Uy,.
Because A is directed, we can show via induction, that there is ap € A : o <
agVi=1,...,n such that Va > ayVi=1,...n: x§a) € Uj,, thus Va > ap :
z(® € BCU. Thus z(® — 7. [ |

Theorem 6.8: Let (X,,, T )nen be a sequence of metrizable topological spaces (i. e.
there are metrics d; fori € IN) such that ¥ = %4,). Then, X =] X,, with the
product topology ¥ is metrizable with the metric

nelN

d: X xX —R

(<x”)n€]N’ (yn)nE]N> — Z ! dn(w"’yn)
n=0

Proof: Let f : (X,%Ty) — (X,%),z — 2. We have for a net (2(*))qea =
((g;(.a))iel)aeA in X and = = (x;);er € X it holds

?

(@ &x@zga) 2y VieNs @ 2 g
T T Ta

By (Theorem 6.7) (ii), f is a homeomorphism, thus T, = %. [ |
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7 Compact sets

Definition 7.1: A topological space (X, T) is called sequentially compact, if every
sequence (2, )new € XN has a convergent subsequence (x,,, )zen. K C X is called
sequentially compact, if (K,%|k) is sequentially compact.

Theorem 7.2: Let (X,d) is a metric space. Then: (X,T4) is compact if and only
if (X,%q) is sequentially compact.

Proof: “=": Let (x,)nen be a sequence in X. For m € IN, let
K, =cl({z, | n >m}).

Then the sequence of sets (K,;,)men has the finite intersection property, so there
is 2 € ey Km- Thus, for all & > 1,n € N : By, ()N {x | I > n} # {}.
Inductively: there is a monotonly increasing sequence (ng)gen in IN such that
Ty, € By (r)VEk > 1. Therefore, (2, )r>1 is a subsequence of (z,)new with
Tpn, — T as k — oo.

“<”: Let (U;)ier be an open cover for X. Via (Lemma 5.6) (ii), there is a
sequence (in)nen such that X = J, o Ui, Assume Vn € N3z, € X\U;,U---U
Ui, . By assumption, the sequence (z,,)nen has a convergent subsequence (2, ) ken
to some x € X. Then VI € N : 2 = lim, o0 k31 Tny, € X \ (U, U---UU;,), thus

X\ (Ui U---UU;) € X is closed which contradicts X =, Ui |

n*

Theorem 7.3: Let (X, %) be a topological space. Then X is compact if and only if
every net in X has a converging subnet if and only if every net in X has a cluster
point.

Proof: The second equivalence follows immediately from Exercise 33 e).

“=7: Let (a)aca be a net in X. For § € A, let Kg = cl{z, | « > G}
Then (Kg)gea is a family of sets closed in (X, ¥) which has the finite intersection
property since A is directed. By (Lemma 4.9) (iii) there is € (54 K. Let
I={(U,a) e U(z)x A|zq € U}. I is non-empty due to (X, ) € I for all o € A.
I can be directed by

U,a)<(V,B) &= UDVanda<g

because: Let (U, ), (V,8) € I, then UNV € 4(x) and thereis vy € A: o, 5 < 7.
By choice of x there is v/ € A such that v/ > ~ and =z, € U NV, therefore
{UnV,y)el.

For (U,a) € I, let yy,a) = To. Then (yw,a))(v,a)er is a subnet of (4)aca. Let
any U € H(x) be given and let o € A with (U, «) € I. Then for all (V,3) > (U, «)
it holds yv,, =g € V C U. Hence y,a) — .
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7 Compact sets

“=": Let {} # § C P(X) be a collection of non-empty closed subsets of X with
finite intersection property. Define

Ql::{Flﬁ~-~ﬂFn|n€]N,F17...Fn€3}.

Because F has the finite intersection property, for all F' € 2 there is xp € F. Then
(zF)Feu is a net where 2 is directed by F' < G < F D (. By assumption there is
a subnet (x5, )icr of (zF)Fear, such that zp, — x for some © € X. Let Fyy € §, then
there is 49 € I such that F;, > Fy and thus z = lim;c; zp, = limier,i>i, TF, € Fo
since z; € F; C F;, for any @ > g, z;, € F;, C Fy and Fj is closed. |

Remark 7.4: By passing to subnets (respectively subsequences) repeatedly and
using (Theorem 7.3), one can show that finite products of compact (respectively
sequentially compact) topological spaces X are compact (respectively sequentially
compact) again. With a diagonalization trick, one can even show that count-
able products of sequentially compact topological spaces are sequentially compact
again.

Definition 7.5: Let {} # M be a partially ordered’ set and {} # C' C M a subset.

(i) C is called a chain or totally ordered if: z,y € C:ax <yVy< .
(ii) An upper bound of C' is an element z € M with z < zVz € C.
(iii) A maximal element is an element z € M such that (x € M,z <z =z = z).

With this, one can show the following Theorem (it is even equivalent to the
axiom of choice in ZFC).

Theorem 7.6 (Zorn’s Lemma): Every partially ordered set in which every chain
has an upper bound, has a maximal element.

Theorem 7.7 (Tychonoff’s Theorem®”): Let (X;,%T;)icr be a family of compact topo-
logical spaces and let X = [],.; Xy be equipped with the product topology ¥. Then
(X, %) is compact.

Proof: For J C I, let X; =[], ; X; be equipped with the product topology. Let
(x(a))aeA =z be anet in X. For J C I, we call an element g € X, a partial
cluster point (z)aca, if ¢ is a cluster point of z|; = (2(*)|;)aca.

Then, let

$:={g| g€ X, is partial cluster point of x,J C I}
be partially ordered by

(gi)ie] < (hi)ieK = JCK Ng; = h;VieJ.

I There is an antisymmetric quasi-ordering “<” on M.
2Tchonoff’s Theorem can be shown to be equivalent to the axiom of choice.
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$ is non-empty since for ig € I, (xgs‘)
identify X;, = Hie{io X;.

Let ¢ = {gV) = (gzo))ie]A | A € A} be a chain in (9,<). Now, let J =
Useadr € T and G € [[,o, Xi by Gi = ¢ if i € Jy. This is well-defined: If
i € Jy, i € J,, without loss of generality g™ < ¢ but then gf’\) = 9£H)~

Next, let o € A, U € U(G). Without loss of generality U = [[,.,; U;, U; C X;
open Vie J, IF Cgn J: U; = X;Vie J\F. Now Vfe F: 3 \feA: fe
= I €A\, SV SfEF, thus FC Jy,. Thus 338 > a: Vie F:
ml(ﬁ) € U;, thus 2% € U. Thus, G € $ = G is an upper bound for €. Via Zorns
Lemma, there exists a maximal element g = (g;)ics € 9.

Assume, J C I. Let k € I'\ J. Since g € §, g is a cluster point of (z(%)|;)aea.
By Exercise 33 e) we know that there is a subnet (z%*|;)ter of x|; such that

x|y — g. Because (X}, %) is compact, the net (z3*);er has a cluster point
p € Xi. Forie JU{k}, let

Jaca has a cluster point g € X;, where we

Uy ifi=k.
Futhermore let h = (h;)icjuqry- Let o € A, U € U(h). Without loss of gernerality
U =1licjopy Ui with U; € X; open for all i and 3F Can JU{k} : U; = X; Vi €
JU{k}\ F. Therefore 3t € T : oy > cvand Yt > tf: 2| ; € [[;, Ui € U(g).

Thus Jay, > a: 2. € U;Vi € F. Thus 2% |, € U. Thus, h € § which is
a contradiction.

Therefore J = I. Thus, g is already a cluster point. Thus, by (Theorem 7.3),
(X, %) is compact. [ |

Corollary 7.8: Let K C R", R" equipped with % . Then K is compact if and
only if it is closed in R™ and bounded.

Proof: “=7: Let K C R" be compact. Then, via (Theorem 4.10) (ii), K C R" is
closed. Since K C (J,,cy Bn(0) is an open cover, there are finitely many i1, ..., 1,
such that K C U?:I By, (0). Then K C Braxi<j<n i (0) and thus bounded.

“<”. Let K C R"™ be closed and bounded. Then there is L € R such that
K C Br(0) = [[i-,[-L, L]. By Tychonoff, [;",[—L, L] is compact. [ |

Definition 7.9: A topological space (X, ¥) is called locally compact, if every x € X
has a compact neighbourhood K € (x).

Example 7.10: (i) (R", %)) and (C", %) are locally compact by (Corol-
lary 7.9). For z € R", cl(B,(x)) is a compact neighbourhood of z.

(ii) Differentiable manifolds (and even more generally topological manifolds) are
locally compact, because every point has a neighbourhood homeomorphic to an
open set in some R"™.
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7 Compact sets

(i) RN = [],cn R with the product topology (also induced by a metric) is
not locally compact. Assume, a point z € RN had a compact neighbourhood K.
Then there existed U = Ug X --- x Uy X HZO:NH R with U; C R open for all
0 < U; < N such that z € U C K held. Via (Theorem 4.10), cl(U) C K was
compact. But then, the image of cl(U) under the N + 1-th continuous projection
mn+1(cl(U)) = R was compact, which is a contradiction.

(iv) (E,||-|]) is locally compact if and only if it is finite-dimensional by Func-
tional Analysis, as cl(B¢(z)) is not compact for infinite-dimensional normed spaces.

Theorem 7.11 (Alexandroff-Extension®’): Let (X, %) be a Hausdorff space, oo ¢ X,
X = X U{oc}. Then,

T=TU{X\K|KCX compact} U{X}
defines a topology on X such that
(i) ZA“|X =T, X C X is open,
(i) ()?,g) is compact.
If (X,AT) is locally compact, ()/f,§) is Hausdorff. If X is not compact, then
(X)X =X,

Proof: First, we want to show that T is indeed a topology. That {} X € % holds
is clear. Let now U € ¥, K, L C X compact. Then

UNX\K)=UN(X\K)eTCT (X\K)N(X\L)=X\(KUL) €<%,

thus via induction, T is closed under finite intersections. Let (K;)ier be a family
of compact subsets of X, U € ¥, K C X compact. Then

UX\Ki=X\(NKeZ

icl i€l

holds, because there is ig € I such that (),.; K; C K;, and

iel
UUX\K=X\(KNX\U)€eg,
as K N X \U is closed and contained in K.
(i) It holds
Ty ={VNX|VeT}=FU{X\K|KC X compact} U{X} =%,

and X € ¥ C T. Next, let X = Uic; Ui be an open cover, then there is ig € I
such that oo € U, thus U;; = X \ K;, for some K;, C X compact. Hence

3This theorem is also called Alezandroff-Compactification or One-point-compactification.
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Uien (i3 (Ui N X) is an open cover in (X, T). Now, there are iy,...,i, € I such
that K C U7_, (Ui, N X), therefore X = K;, UX \ K, = U}, Us,. Thus, (X,%)
is compact. N

Next, let (X, %) in addition be locally compact and let z,y € X,z # y and
without loss of generality, let y = co. Then K € Us(z) C Uz (x) is compact in
(X,). Then, K and X \ K are disjoint neighbourhoods of z, y.

Now let X be not compact, U € ${(cc0). Then, there is K C X compact such
that X \ K C U. In particular, UNX D X\ KNX = X\ K # {}. [ |

Theorem 7.12: Let (X,T) be a Hausdorff space. Then (X, T) is locally compact if
and only if Vo € XVU € U(x)IK € U(x) compact such that x € K CU.

Proof: “«<”: This is clear.

“=7 Let x € X, W € U(z), without loss of generality let W C X be open.
Then there is K € i(z) compact. Let A := KNX\W C K. Then A is closed
because X is Hausdorff and via (Theorem 4.10) (i) A is compact.

For any y € A, let U, € U(x), V, € Y(z) open in X with U, NV, = {}. Then
AC UyGA V, is an open cover. Because A is compact, there are yi,...,y, € A
such that A C U, V,, =1 V. Let U = N, U,,, U € $(x) is open in X and
unv={}

Let {} # K' = UNInt(K) € (z) open (K’ is non-empty because Int(K) # {})
with

c(K') =cl(UnNInt(K)) Ccl(U)NK
CX\VNK
CX\ANK=(X\KUW)NK=WNK

Thus cl(K’) € 4(z) is compact by (Theorem 4.10) (i) and cl(K') C W. |

Corollary 7.13: Let (X, %) be a locally compact Hausdorff space, K C X compact,
U C X open and K C U. Then there exists V. C X open such that cl(V) is
compact and K CV Ccl(V)CU.

Proof: By (Theorem 7.12), for all € K there is V,, € #(x) open such that
cl(V), compact and cl(V), C U. Therefore there are x1,...,x, € K such that
K C UV, = Visopenin X with (V) =, cl(V),, € U and (V) =
Ui, cl(V),, is compact. [ |

Definition 7.14: A topological space (X, %) is called a Baire space if for every
sequence (Fy,)nen of sets closed in X with Int(lJ, o Fn) # {}, there is ng € N,
such that Int(F,,) # {}.

Theorem 7.15 (Baire’s theorem”): Let (X, T) be a locally compact Hausdorff space.
Then (X,%) is a Baire space.

4Note that this is neither a generalization nor a special case of (Theorem 2.13).
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7 Compact sets

Proof: Let Int(lJ,cn Fn) # {}. Assume for all n € IN it held Int(F,) = {}. Let
z € Int(U,cn Fr) and U € U(z) open and compact in X, with z € U C with
r €U C U,en Fn. Put 2o := x and By := U. Because Int(F,) # {}, it held
that Int(By) N X \ Fo # {}. Then we could choose z; € Int(By) N X \ Fy and
B; C Int(Bg) N X \ Fo. We could continue this inductively and get a sequence
(zn)nen in X and a sequence (By,)nen of compact sets such that for all n € IN it
held B, (z) € U(x,) and for all n > 1 it held B,, C B,,—1 N X \ F},_1. By the finite
intersection property of (B;)nen, there is

HAS mBng ﬂBng mX\Fn—lzX\UFn’

nelN n>1 n>1 neN

but » € By € |, ¢y Fn which is a contradiction. [ |
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8 Separation Theorems

Definition 8.1: A topological space (X,%) is called normal if for all F,G C X
closed, disjoint, there are U,V C X open, disjoint, with FF C U and G C V.

Remark 8.2: Let X be a normal topological space, F' C X closed, W C X open
with FF C W. Because X is normal, there are U,V C X open, disjoint such that
FCU, X\W CV. In particular F CU Ccl(U) C X\ V CW, because X \ V
is closed.

Lemma 8.3: (i) Compact Hausdorff spaces are normal.

(ii) Metric spaces are normal.

Proof: (i) Let X be a compact Hausdorff space and F,G C X closed, disjoint.
By (Lemma 4.9) F' and G are compact. Exactly as in the proof of (Lemma 4.9)
(ii) we see that the following holds: Vz € F: 3U, € #(z) openin X and V,, C X
open such that G C V, and U, NV, = {}. Then, F C |J, . U, is an open cover.
Because F' is compact, there are x1,...,x, € F such that F' C U?zl Uy, =2 U.
Then V := (N, Vo, C X is open with G C V and

UﬂV:O(ﬁU@MQ):QG%ﬂé%J:G.

i=1 j=1

(if) The proof of this part is Exercise 15 d). [

Theorem 8.4 (Urysohn’s Lemma): Let X be a normal topological space, F,G C X
closed and disjoint. Then there is a continuous function f : X — [0,1] such that

flr =0, fla =1.

Proof: Let F,G C X be closed and disjoint. Put U; := X \ G C X, then U; is
open and F' C U;. By (Remark 8.2) there is another set U/, € X open such that
FCU C cl(Uy,) € Up. By (Remark 8.2), there are sets Uy, Us;,, C X open
such that

C dl(Uy) €Uy Cel(Uy) € Uy,

1
2

For n € N, let D, = {35 | 1 <n < 2"} and let D = (J,,cy Dn. Inductively for
d € D, define an open set Uy C X such that for all d,e € D with d < e, it holds

F CU,; Ce(Uy) CU, C(U,) C U
Now define f : X — [0,1] via

f(z) = 0 7 € Naep Ua
sup{d € D |z ¢ Uy} else.
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8 Separation Theorems

Then we have by definition: f|r = 0 due to F' C (;cpUq and fl|g = 1 since
G C X\ U, for all d € D. Next consider the subbase

S ={[0,0) | 0<e<1}U{(c,1]|0<ec< 1}
of the topology of [0,1]. Let ¢ € (0,1). For z € X, we have
fx)<ce Ft<c:z el

for “=7 choose t € (f(x),c) N D, for “<” use Uy C UsVs > t and therefore
f(z) <t < c. We also have

fl@)>ce Tt >c:x ¢ c(Uy),

for “«<” use that f(x) >t > c and for “=" use that there is s > ¢ : x ¢ U, thus
for all t € (¢,s) N D it holds z € cl(Uy). Hence

ey = |J vex
t<c,teD
is open as an arbitrary union of open sets and
e = |J X\ cXx
t>c,teD

is open as arbitrary union of open sets. By Exercise 22 d) we conclude that f is
continuous. [}

Theorem 8.5 (Tietze Extension Theorem): Let X be a normal topological space,
A C X closed, [a,b] C R a perfect interval and f : (A, T|a) — [a,b] continuous.
Then there is a continuous function F : X — [a,b] with F|a = f.

Proof: Without loss of generality we may assume a = —1 and b = 1, since

¢ :la,b] — [-1,1]
2(t —a)
b—a

t—

is a homeomorphism.

Claim 1: For r > 0 and h : A — [—7r,7] continuous, there is H : X — [—%, £]
continuous with [[h — H|l4 < 2%.

Consider the disjoint subsets A_ = h=!([—r,—%]), Ay = h=!([%,7]) C X that
also are closed. By Urysohn’s Theorem, there is H : [-%, ] continuous with
H|s_ = —% and H|a, = £, thus

Ih = H|a < 2z.

Claim 2: There is a sequence (gn)nen\{o} of continuous functions g, : X — R
(for n > 1) such that
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i) llgnll < (%)" for alln > 1,
(i) IIf =Xy gilla < (3)" for alln > 1.

We prove our claim via induction. For n = 1 with h = f and r = 1, the function
g1 = H from claim 1 meets our conditions. (different target space!).

For the inductive step, let g1, ..., g, be already constructed. Via claim 1 with
r=(2)"and h = (f— 31", gi)|a, there is a function g, 1 : X — [-3(3)", 3(3)"]

3 3 7 3\3
n 2 n+1
Hf—zgi —9n+1H < <3) .
i=1

with

Claim 3: The function F : X — R, F(z) = Z;il gj(x) is well-defined and
continuous with F|a = f.

The well-definedness follows as |g; ()| < ||lg;[lx < (3)7 for all z € X — then the
dominated convergence theorem does the job.

Next, for all x € X, we have

. . Y
LCEWEESWITES ) (2) o

thus [[F =37 gjllx <3°72,11(3)7 = 0asn — co. Via Exercise 39, we conclude
that F' is continuous.

Furthermore for all x € A : |f(z) — 2?11 gi(@)] < (3)™ = 0 as n — oo, thus
flx) =272, gj(x) = F(x) for all z € A. [ |

Corollary 8.6: Let (X,T) be a normal topological space, A C X closed and f :
(A, %)a) — R be continuous. Then there is an extension F : X — R that is
continuous with Fla = f.
Proof: Consider
T
A — [——, —]
g 272
x — arctan(f(z)).

Via Tietzes extension theorem, there is Gy : X — [~7, 5] continuous such that
Gola = g. By Urysohn’s Lemma there is a function 6 : X — [0,1] such that
0|G51({7%’%}) =0, 0|4 = 1. Let G = 0Gg. Then
T
G: X —[-2.7]
2°2
is continuous with G|a = g, G(X) C (=3, %), thus F: X — R, 2 — tan(G(x)) is
continuous with F|4 = f. [ |
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8 Separation Theorems

Definition 8.7: Let X be a topological space, f : X — C. Then

supp(f) := cl({z € X | f(z) # 0})

is called the support of f.

Definition 8.8: Let X be a topological space and (U, )qc4 be an open cover of X.
A family (04)aca of continuous functions O, : X — [0,1] (for a € A) is called
continuous partition of unity, if the following conditions hold:

(i) supp(©q) C U, for all a € A,

(ii) (supp(©q))aca is locally finite, i.e. for all z € X there is U € U(x) such
that {a« € A | supp(©, NU = {}} is finite,

(iii) > pen Oalr)=1forallz e X.

Theorem 8.9: Let (X, T) be a normal topological space, Uy, ..., U, C X open with
X = UL, U;. Then, there exists a continuous partition of unity (©)"_, with
respect to (U;)_;.

Proof: By (Remark 8.2), there is V; C X open such that
X\ (Ju) cvicam) cu,
i=2

in particular it holds that X = V; U U?:z U;. Inductively there are Vi,...,V,, C X
open such that cl(V;) CU; for 1 <i<mnand X = U?:l V.

Analogeously we find Wy, ..., W,, C X open such that cl(W;) CV; for1 <i<n
and X = [J;_, W;. By Urysohns Lemma, for 1 < i < n there are f; : X — [0, 1]
continuous with flew,) = 1 and fi|x\y, = 0. Then, for 1 < i < n it holds that
supp(fi) € cl(V;) € U;.

Since Z?Zl fi(z) > 1 for all z € X, for 1 <i < n the functions

are well-defined, continuous and satisfy supp(©;) C supp(f;) C U; as well as
Sor 1 0i(z)=1forall z € X. [ |

Remark 8.10: If (X, %) is a normal topological space, A C C(X) closed under
finite sums and quotients and for F,G C X closed, there is f € A with f|p = 1,
fle = 0, a careful analysis of the proof of (Theorem 8.9) shows that (6;)"_; can
even be chosen in A.
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Definition 8.11: A topological space (X, ) is called regular if it is Hausdorff and
the following holds:

VF C X closed Vx € X\ F: 33U,V C X open, disjoint : F C U,z € V.
Theorem 8.12: Second-countable reqular spaces are normal.

Note that normal spaces are always regular.

Proof: Let (X,%) be second-countable, regular, F,;G C X closed and disjoint.
With the same arguments as in (Remark 8.2), for all € X there is U, € $l(x),
U, open such that z € U, C cl(U,) C X \ G. Analogously for all x € G there
is V, € $(x) open in X such that cl(V,) N F = {}. By Lindelofs Theorem there
are sequences (Up)nen in {Um | z € F}, (Vp)nen in {Vy | © € G} such that
FgUnG]NU"“ GCU
For all n € IN, let

n€]N

U,=U,n(X\cl(Vi),  Vi=Van[)X\cl(U))
i=0

=0

Then, let U = J,,cn Uy V = U,ew Vi € X, U,V then are open in X with 7 C U,
G CV by constructlon

Assume there was x € UNV. If there was x € U NV, there were n,m € IN
such that it held x € U],z € V,), held. Without loss of generality we could assume
n < m. Itthenheldthat:ce U’ CUp,andz e V), CNL, X\cl(U;) C X \cl(Uy),
which is a contradiction, thus U NV = {}. |

Lemma 8.13: Locally compact Hausdorff spaces are regular.

Proof: Let (X, ) be a locally compact Hausdorff space, F C X closed and (X, @)
the one-point compactification of X. As (X, ‘I) is Hausdorff, {z} and FU{oc} C X
are closed. By (Lemma 8.3) (i), there are U V C X open, disjoint such that
zeU,FU{oc} CV. ThenU = UNX,V =VNX are open, disjoint and it holds
zxeUFCV. [ |

Theorem 8.14 (Urysohn’s metrization theorem'): Let (X, T) be a second-countable,
regular space. Then there is a homeomorphism f : X — f(X) C RN. In particular
(X, %) is metrizable.

Proof: Let B be a (at most) countable base for T. Then, the set

M = {(Bo, B1) € B2 | cl(By) C By}

n german, the name “Urysohns Einbettungssatz” which translates to Urysohns embedding
theorem, is also used.
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is also at most countable, let

po:IN— M
n+— (B, B™)

be a surjection. By Urysohn’s Lemma and (Theorem 8.12), for all n € IN there is
fn : X = [0,1] continuous with f,| ; oy = 1, fal ) = 0. Let
c(B{™) X\B¢

ff: X — RN

T (fn(x))nelNu

then, since (m,0 f')“="f, (target space!) for alln € IN, f’ is continuous. It remains
to be shown, that for a net (z4)aca in X and x € X such that f'(z) — f'(x), it
holds that z, — x. Let U € i(z). Via (Lemma 5.5), there is By € B such that
x € By CU. As X is regular, there is V' C X open such that z € V C cl(V) C V1,
thus by (Lemma 5.5) there is By € B such that x € By C cl(By) C cl(V) C Bs.
Let n € IN be such that ¢(n) = (Bg, B1). Then f,(z4) — fn(z) =1, thus there is
zo € A such that for all & > ay it holds that f,(za) € (3,2). Then for all a > g
it holds that z, € By C U. |

Lemma 8.15: (i) Subspaces and products of Hausdorff spaces are Hausdorff,

(ii) Subspaces and products of reqular spaces are regular.

Proof: (i) Let (X,%) be a Hausdorff space, Y C X and z,y € Y with = # y.
Then there are U, V C X open, disjoint such that z € U,y € V. ThenUNY,VNY C
Y are open, disjoint and x € UNY,y € VNY. That products of Hausdorff spaces
are Hausdorff was shown in Exercise 30 (a).

(ii) Let (X,%) be regular, Y C X, F CY closed and z € Y \ F. Via (Lemma
4.9) (i), there is F' C X closed such that F = F'NY. Asxz € X \ F', there
are U', V' C X open, disjoint such that x € U’, F/ C V'. Then U = U'NY,
V =V'NY are open, disjoint such that x e U, F=F'NY CV'NY =V.

Let (X4, %i)icr be a family of regular spaces, X = [];.; X; equipped with the
product topology. Let F C X be closed, © = (z;)ic; € X \ F. Then there is
J Can I and U; C X; open for ¢ € I such that U; = X; for all 4 € T\ J and
7 € [[;e; Ui € X\ F. Because X is normal, for all i € J there is V; C X; open
such that ; € V; C cl(V;) C U;. Let now

V=X\UEWWMWD§X, U= e x

Then V,U are open and U NV = {}, furthermore x € U by the choice of V; and
FC X\ [LierUs © X\ Mgy mi  (A(V2)). u
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Remark 8.16: Subspacs and (even finite) products of normal spaces need not be
normal; refer to Munkres: Topology. A first course, Ex 2 in paragraph 4.2.

Corollary 8.17: For a topological space (X,T), the following is equivalent:

(i) X is a metrizable and second-countable,

)
(i)
)
)

X is metrizable and separable,

(iii) X is regular and second-countable,
X

(iv is homemorphic to a subspace of RN.

Proof: “(i) = (ii)” is (Lemma 5.6) (iii), “(ii) = (iii)” is (Lemma 8.3) and (Lemma
5.6) (iii), “(iii) = (iv)” is (Theorem 8.14) and finally for “(iv) = (i)”: Via (Theorem
6.8), RN is metrizable and therefore X is metrizable; via (Example 5.9) (i) RN
is separable, therefore by (Corollory 5.7) X is separable and thus by (Lemma 5.6)
(iii) X then is second-countable. [ |

Remark 8.18: There are several other notions of separability... Diagrams missing.
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