UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Übungen zur Vorlesung Topologie

Wintersemester 2017/18

Blatt 10

Abgabetermin: Mittwoch, 10.01.2018, vor der Vorlesung

Eine Teilmenge $A \subset X$ eines topologischen Raumes X heißt G_{δ} -Menge (F_{σ} -Menge), falls sie Durchschnitt (Vereinigung) von abzählbar vielen offenen (abgeschlossenen) Teilmengen von X ist.

Aufgabe 42 (4 Punkte)

(Charakterisierung von G_{δ} -Mengen in normalen Räumen)

Sei X ein normaler topologischer Raum und seien $A, B \subset X$ abgeschlossene disjunkte Mengen in X. Zeigen Sie: Es gibt genau dann eine stetige Funktion $f: X \to [0,1]$ mit $f^{-1}(\{0\}) = A$ und $f(B) = \{1\}$, wenn $A \subset X$ eine G_{δ} -Menge ist.

(Hinweis: Benutzen Sie das Lemma von Urysohn und eine geeignete Funktionenreihe.)

Aufgabe 43 (4 Punkte)

(Normalität, Lemma von Urysohn und der Fortsetzungssatz von Tietze sind äquivalent)

Sei (X,τ) ein topologischer Hausdorff-Raum. Zeigen Sie, dass äquivalent sind:

- (i) (X, τ) ist normal,
- (ii) Zu je zwei disjunkten, abgeschlossenen Teilmengen $F, G \subseteq X$ gibt es eine stetige Funktion $f: X \to [0,1]$ mit $f|_F = 0$ und $f|_G = 1$,
- (iii) Zu je zwei disjunkten, abgeschlossenen Teilmengen $F, G \subseteq X$ gibt es eine stetige Funktion $f: X \to \mathbb{R}$ mit $f|_F = 0$ und $f|_G = 1$,
- (iv) Ist $A \subseteq X$ abgeschlossen und $f: (A, \tau|_A) \to [a, b]$ $(a, b \in \mathbb{R} \text{ mit } a < b)$ stetig, so gibt es eine stetige Funktion $F: X \to [a, b]$ mit $F|_A = f$,
- (v) Ist $A \subseteq X$ abgeschlossen und $f: (A, \tau|_A) \to \mathbb{R}$ stetig, so gibt es eine stetige Funktion $F: X \to \mathbb{R}$ mit $F|_A = f$

(bitte wenden)

Aufgabe 44 (4 Punkte)

(In lokalkompakten Hausdorffräumen kann man immer noch gewisse Trennungssätze zeigen)

Sei X ein lokalkompakter Hausdorffraum und seien $K \subset X$ kompakt und $U \subset X$ offen mit $K \subset U$. Zeigen Sie, dass eine stetige Funktion $f \colon X \to [0,1]$ mit kompaktem Trger $\mathrm{supp}(f) \subset U$ existiert, so dass $f|_K \equiv 1$ ist.

(Hinweis: Laut Vorlesung gibt es eine offene Menge $V \subset X$ mit kompaktem Abschluss, so dass $K \subset V \subset \overline{V} \subset U$ ist. Wenden Sie Urysohns Lemma auf $K, \partial V \subset \overline{V}$ an.)

Definition: Für topologische Räume X, Y sei $C(X, Y) = \{f : X \to Y; f \text{ ist stetig}\}.$

Aufgabe 45 (2+1+1=4 Punkte)

(Injektivität und Surjektivität dualer Abbildungen hängt in einem sehr allgemeinen Setting von den entsprechenden Eigenschaften der Abbildung selbst ab)

Seien X, Y normale topologische Räume und sei $f: X \to Y$ stetig. Weiter sei die Abbildung $f^*: C(Y, \mathbb{R}) \to C(X, \mathbb{R})$ durch $f^*(\varphi) = \varphi \circ f$ für $\varphi \in C(Y, \mathbb{R})$ definiert. Zeigen Sie:

- (a) f^* ist injektiv genau dann, wenn $Bild(f) \subseteq Y$ dicht ist.
- (b) Ist f^* surjektiv, so ist f injektiv.
- (c) Ist f injektiv und abgeschlossen, so ist f^* surjektiv.

Aufgabe 46^* $(2^* + 2^* = 4^* \text{ Punkte})$

(Mehr Eigenschaften der Quotiententopologie)

- (a) Sei $f: X \to Y$ eine Abbildung zwischen topologischen Räumen und sei $B \subseteq Y$. Zeigen Sie: Ist f abgeschlossen (offen), so gibt es für jede offene (abgeschlossene) Menge $D \subseteq X$ mit $D \supseteq f^{-1}(B)$ eine offene (abgeschlossene) Menge $E \subseteq Y$ mit $B \subseteq E$ und $f^{-1}(E) \subseteq D$.
- (b) Sei X ein kompakter Hausdorffraum und \sim eine Äquivalenzrelation auf X, für die

$$R = \{(x, y) \in X \times X; x \sim y\} \subseteq X \times X$$

abgeschlossen ist. Zeigen Sie, dass X/\sim versehen mit der Topologie aus Aufgabe 35 ein kompakter Hausdorffraum ist. (Hinweis: Nutzen Sie, dass X auch normal ist.)