UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Exercises for the lecture topology Winter term 2017/18

Deadline: Wednesday, 24/1/2018, just before the lecture

Exercise 51

((Path-)Connectedness is preserved by continuous functions; Path-Connectedness implies connectedness)

Let (X, τ) , (Y, t) be topological spaces and let $f: X \to Y$ be continuous. Show that:

- (a) If X is connected, so is f(X).
- (b) If X is path-connected, so is f(X).
- (c) If X is path-connected, X is connected.

Exercise 52

(Are interior, closure and boundary of connected subsets connected?)

Let (X, τ) be a topological space and $A \subseteq X$. Which of the following six implications hold? (Proof or counterexample)

- (a) A connected \Leftrightarrow Int(A) connected,
- (b) A connected $\Leftrightarrow \overline{A}$ connected,
- (c) A connected $\Leftrightarrow \partial A$ connected.

Exercise 53

(Products of (path-)connected spaces)

Let $(X_i, \tau_i)_{i \in I}$ be a family of topological spaces and let $X = \prod_{i \in I} X_i$ be equipped with the product topology. Show that:

- (a) X is path-connected if and only if every X_i $(i \in I)$ is path-connected.
- (b) For a point $a = (a_i)_{i \in I}$, the set $\{x = (x_i)_{i \in I}; x_i = a_i \text{ for almost every } i \in I\} \subseteq X$ is dense.
- (c) X is connected if and only if every X_i $(i \in I)$ is connected.

(please turn the page)

(2+2=4 points)

(1+1+2 = 4 points)

(4 points)

Sheet 12

Exercise 54

Let (X, τ) be a topological space. Show that

(a) For every subset $A \subseteq X$ and every connected subset $Y \subseteq X$, we have

 $Y \cap A \neq \emptyset$ and $Y \cap (X \setminus A) \neq \emptyset \quad \Rightarrow \quad Y \cap \partial A \neq \emptyset$.

- (b) The following assertions are equivalent:
 - (i) X is connected,
 - (ii) For all $\emptyset \neq A \subsetneq X$, we have $\partial A \neq \emptyset$,
 - (iii) There is no subset $\emptyset \neq A \subsetneq X$ such that $A \subseteq X$ is open and closed.

Subsets A, B of a topological space are called seperated if $A \cap \overline{B} = \overline{A} \cap B = \emptyset$ holds.

Exercise 55^*

(4^* points)

(Can one characterize when unions of connected subspaces are connected?)

Sei X be a topological space and let $A, B \subset X$ be non-empty, connected subsets of X. Show that the following equivalence holds:

 $A \cup B$ is connected $\Leftrightarrow A, B$ are not separated.