UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Exercises for the lecture topology

Winter term 2017/18

Sheet 13

Deadline: Wednesday, 31/1/2018, just before the lecture

This additional exercise sheet can serve you as a mock exam. The exercises are approximately as difficult as is to be expected in an exam. Only exercise 56 b) could be a bit harder than a typical exercise in an exam. The choice of topics will also be similar in the exam, but of course not exactly the same.

Exercise 56*

(2+6 = 8 points)

- (a) Let (X, d) be a metric space and let $f : X \to (\mathbb{R}, \tau_{|\cdot|}), g : X \to (\mathbb{R}, \tau_{|\cdot|})$ be uniformly continuous functions. Show that the function $h : X \to (\mathbb{R}^2, \tau_{\|\cdot\|_1}), x \mapsto (f(x), g(x))$ is also uniformly continuous.
- (b) Let (X, d) be a metric space. Show that (X, d) is complete if and only if every sequence (x_n)_{n∈ℕ} in X for which the series ∑_{n=0}[∞] d(x_n, x_{n+1}) converges, is convergent itself. (*Hinweis: For one implication, it might be prudent to pass from an arbitrary Cauchy sequence to an approbriate subsequence.*)

Exercise 57^*

 (6^* points)

Let (K, d) be a compact metric space, $\varphi : K \to K$ a function such that

$$d(\varphi(x),\varphi(y)) < d(x,y)$$

holds for all $x, y \in K$ with $x \neq y$. Show that there is exactly one $x_0 \in K$ such that $\varphi(x_0) = x_0$.

Exercise 58*

 $(2^*+4^*+2^*+2^*+3^*=13^* \text{ points})$

- (a) Let (X, τ) be a topological space and let $A \subseteq X$. Show that A is the intersection of a set closed in (X, τ) and a set open in (X, τ) if and only if for every $x \in A$, there is a neighbourhood $U_x \in \mathcal{U}(x)$ such that $U_x \cap A \subseteq U_x$ is closed.
- (b) Let (X, τ) be a topological Hausdorff space and let $F \subseteq X$ be finite. Show that $F \subseteq X$ is closed.

(please turn the page)

- (c) Let (X, τ) be a topological space and let $A, B \subseteq X$ be compact subsets. Show that $A \cup B$ is compact in (X, τ) .
- (d) Let (X,τ) be a topological Hausdorff space and let $A, B \subseteq X$ be compact subsets. Show that $A \cap B$ is compact in (X, τ) .
- (e) Let (X,τ) , (Y,t) be topological spaces, let $\mathcal{B} \subseteq \tau$ be a base for τ and let $f: X \to Y$ be a surjective, continuous and open map (open means that f maps open sets to open sets). Show that $f(\mathcal{B})$ is a base for t.

Exercise 59*

$(4^*+4^*=8^* \text{ points})$

- (a) Let (X,τ) be a topological space. Show that (X,τ) is Hausdorff if and only if for every $x \in X$, we have $\{x\} = \bigcap_{U \in \mathcal{U}(x)} U$.
- (b) Let (X,τ) be a topological space such that for every $x \in X$, there is a continuous function $f: X \to (\mathbb{R}, \tau_{|\cdot|})$ with $f^{-1}(\{0\}) = \{x\}$. Show that (X, τ) is Hausdorff.

Exercise 60*

Let (X, τ) be a compact topological space, (Y, t) a topological space and let the cartesian product $X \times Y$ be equipped with the product topology. Show that the projection $\pi_2 : X \times Y \to Y, (x, y) \mapsto$ y is closed (i.e. it maps closed sets to closed sets).

Exercise 61*

Let (X, τ) be a topological space, (Y, t) a compact Hausdorff space and let the cartesian product $X \times Y$ be equipped with the product topology. Show that the function $f: X \to Y$ is continuous if and only if its graph $\Gamma_f = \{(x, f(x)); x \in X\} \subseteq X \times Y$ is closed. (Hinweis: For the implication \Leftarrow , use a proof by contradiction.)

Exercise 62*

Let (X, τ) be a topological space such that $|X| < \infty$ and such that for all $x, y \in X$ with $x \neq X$, there are neighbourhoods $U \in \mathcal{U}(x), V \in \mathcal{U}(y)$ such that $y \notin U, x \notin V$. Show that we have $\tau = \mathcal{P}(X)$ in this case.

Exercise 63*

(a) Let (X, τ) be a connected topological space and let $f: X \to \mathbb{R}$ be a locally constant function, i.e.

$$\forall x \in X : \exists U \in \mathcal{U}(x) : \exists c \in \mathbb{R} : \forall y \in U : f(y) = c.$$

Show that f is constant.

(b) Find a topological space (X,τ) and a locally constant function $f: X \to \mathbb{R}$ which is not constant.

 (4^* points)

$(4^*+3^*=7^* \text{ points})$

 (8^* points)

 (6^* points)