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Exercise 5 (1+1+0,5+0,5+1 = 4 points)

(a) Let (X, d) be a metric space and let ∅ 6= Y ⊂ X be equipped with the relative metric dY .

Show that:

(i) A subset U ⊆ Y is open in (Y, dY ) if and only if there is a set V open in (X, d) such

that U = V ∩ Y .

(ii) A subset A ⊆ Y is closed in (Y, dY ) if and only if there is a set B closed in (X, d) such

that A = B ∩ Y .

(b) Give an example of a metric space (X, d) and subsets ∅ 6= A ( Y ⊂ X such that:

(i) A is open in (Y, dY ) but not open in (X, d).

(ii) A is closed in (Y, dY ) but not closed in (X, d).

(iii) A is open and closed in (Y, dY ).

Exercise 6 (1,5+1,5+1=4 points)

Let (X, d) be a complete metric space and let A : X → X be a function such that there is a

constant θ ∈ [0, 1) with

d(Ax,Ay) ≤ θd(x, y) (x, y ∈ X).

Given x0 ∈ X, let the sequence (xn)n in X be defined inductively by xn+1 = Axn (n ∈ N). Show

that:

(a) For all n, k ∈ N the inequality d(xn+k, xn) ≤

(
n+k−1∑
j=n

θj

)
d(x1, x0) holds.

(b) The sequence (xn)n converges to an a ∈ X with A(a) = a.

(c) The fix point a of A is unique, that is if ã ∈ X is further point with A(ã) = ã, we can deduce

ã = a.
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Exercise 7 (1+1+2+1∗+2∗ = 4 + 3∗ points)

Let (X, d) a metric space.

(a) Let f : [0,∞) → [0,∞) be strictly increasing and subadditive (i.e we have f(s + t) ≤
f(s) + f(t) for all s, t ∈ R) with f(0) = 0. Show that f ◦ d defines a metric on X.

(b) Show that d̃ : X ×X → R, d̃(x, y) = d(x,y)
1+d(x,y) defines a metric on X.

(c) Show that (X, d) and (X, d̃) have the same open sets.

(d) ∗ Find a set X 6= ∅ and metrics d, d̃ on X such that (X, d) and (X, d̃) have the same open

sets but not the same bounded sets.

(e) ∗ Let Y = { 1n ;n ∈ N∗} be equipped with the discrete metric d respectively the relative

metric dY of (R, d|·|). Show: (Y, d) and (Y, dY ) have the same open sets but (Y, dY ) is not

complete.

Exercise 8 (4 points)
Let (X1, d1), (X2, d2) be complete metric spaces, let (X, d) be a further metric space and let

i1 : X → X1, i2 : X → X2 be isometries with dense image. Show: There is a unique isometric

bijection Φ : X1 → X2 with i2 = Φ ◦ i1.

Exercise 9∗ (2∗+2∗=4∗ points)
Let (X, d) be a metric space and let x0 ∈ X be a given point. For x ∈ X, define the function

fx : X → R by

fx(t) = d(x, t)− d(x0, t).

Show:

(a) j : X → `∞(X), j(x) = fx is an isometry between metric spaces.

(b) Give a different proof for the existence of the completion of X (i.e. a proof which does not

use an equivalence relation).

Exercise 10∗ (2∗+2∗=4∗ points)

Let ((Xn, dn))n∈N be a sequence of metric spaces and let X =
∞∏
n=0

Xn be the Cartesian product

of the sets Xn.

(a) Show that

d : X ×X → R, d((xn)n, (yn)n) =

∞∑
n=0

2−n
dn(xn, yn)

1 + dn(xn, yn)

defines a metric on X.

(b) Show that the metric space (X, d) is complete if and only if all the spaces (Xn, dn) are

complete.
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