UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Exercises for the lecture topology

Winter term 2017/18

Sheet 4

Deadline: Wednesday, 22/11/2017, just before the lecture

For a metric space (X, d) and $\emptyset \neq A \subset X$, we call

$$l(x, A) = \inf\{d(x, y); y \in A\}$$

the distance of an element $x \in X$ to the set A.

Exercise 15

$(1+1+1+1+1^* = 4 + 1^* \text{ points})$

Let (X, d) be a metric space, let $M \subseteq X$ be a nonempty subset and let $A, B \subseteq X$ be closed, nonempty subsets. Show that:

- (a) $d_M: X \to \mathbb{R}, x \mapsto d(x, M)$ is continuous,
- (b) $\overline{M} = \{x \in X, d(x, M) = 0\},\$
- (c) If A and B are disjoint, there is a continuous function $f: X \to [0, 1]$ such that we have for all $x \in X$:

 $f(x) = 0 \Leftrightarrow x \in A$ und $f(x) = 1 \Leftrightarrow x \in B$,

- (d) If A and B are disjoint, there are disjoint open subsets $U, V \subseteq X$ such that $A \subseteq U$ and $B \subseteq V$,
- (e) * There is a sequence $(U_n)_{n\in\mathbb{N}}$ of open sets $U_n\subseteq X$ $(n\in\mathbb{N})$ such that

$$A = \bigcap_{n \in \mathbb{N}} U_n.$$

Exercise 16

(4 points)

Let $X \neq \emptyset$ be a set. Show under which conditions the following collections of subsets $\tau_i \subset \mathcal{P}(X)$ (i = 1, 2, 3) are topologies on X and under which conditions they are Hausdorff:

 $\begin{aligned} \tau_1 &= \{ U \subseteq X; X \setminus U \text{ is finite} \} \cup \{ \emptyset \}, \\ \tau_2 &= \{ U \subseteq X; X \setminus U \text{ is countable} \} \cup \{ \emptyset \}, \\ \tau_3 &= \{ U \subseteq X; X \setminus U \text{ is infinite} \} \cup \{ \emptyset \} \cup \{ X \}. \end{aligned}$

Exercise 17

(4 points)

Let (X, τ_X) , (Y, τ_Y) be topological spaces, $f : X \to Y$ a function and $(U_i)_{i \in I}$ be a family of open sets $U_i \subseteq X$ $(i \in I)$ such that $X = \bigcup_{i \in I} U_i$. Show that:

f is continuous $\Leftrightarrow \forall i \in I : f|_{U_i} : (U_i, \tau_X|_{U_i}) \to Y$ is continuous

(please turn the page)

Let (X, τ_X) , (Y, τ_Y) be topological spaces and $f: X \to Y$ a function. Show that:

- (a) f is continuous if and only if for all $V \subseteq Y$, we have $\overline{f^{-1}(V)} \subseteq f^{-1}(\overline{V})$,
- (b) f is continuous if and only if for all $V \subseteq Y$, we have $f^{-1}(\operatorname{Int}(V)) \subseteq \operatorname{Int}(f^{-1}(V))$,
- (c) f is continuous if and only if for all $U \subseteq X$, we have $f(\overline{U}) \subseteq \overline{f(U)}$.
- (d) Now, let f be bijective in addition. Show that f is a homeomorphism if and only if for all $U \subseteq X$, we have: $f(\overline{U}) = \overline{f(U)}$.

Exercise 19*

 $(3^*+1^*=4^* \text{ points})$

Let \mathbb{R} be equipped with $d = d_{|\cdot|}, f : \mathbb{R} \to \mathbb{R}$ be a functions and for $n \in \mathbb{N}^*$ let

$$U_n = \bigcup \left(U; \ U \subset \mathbb{R} \text{ open with } \operatorname{diam} f(U) < \frac{1}{n} \right).$$

Show that:

- (a) $\bigcap_{n \in \mathbb{N}} U_n$ is the set of those real numbers in which f is continuous.
- (b) There is no function $f : \mathbb{R} \to \mathbb{R}$, which is continuous exactly in the rational numbers.