UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Exercises for the lecture topology

Winter term 2017/18

Deadline: Wednesday, 29/11/2017, just before the lecture

Special Exercise

Sheet 5

Please give anononymous feedback for the lecture and the exercise group on

www.math.uni-sb.de/ag/eschmeier/lehre/WS1718/top/evaluation.html

Exercise 20

 $(1+1+2+2^*=4+2^* \text{ points})$

Let X be a non-empty set and let

 $\tau = \{ U \subset X; \ U = \emptyset \text{ or } X \setminus U \text{ finite} \}$

be the topology from Exercise 16.

- (a) Let A be a subset of X. What is the closure of A with respect to τ ?
- (b) Which sets are compact in (X, τ) ?
- (c) Show that a function $f: (X,\tau) \to (X,\tau)$ is continuous if and only if it is constant or $f^{-1}(\{x\})$ is finite for all $x \in X$.
- (d) * Let $(x_n)_n$ be a sequence in X and let

 $\Gamma = \{ x \in X; \ x = x_n \text{ for infinitely many } n \in \mathbb{N} \}.$

Show: If $\Gamma = \emptyset$ the sequence $(x_n)_n$ converges to every point $x \in X$. If Γ consists of exactly one point $x \in X$ then the sequence $(x_n)_n$ converges (only) to this point x. In any other case, the sequence $(x_n)_n$ does not converge.

Exercise 21

Let $X \neq \emptyset$ be a set. Show that a collection $\mathcal{B} \subset \mathcal{P}(X)$ of subsets of X is the basis of a topology τ on X if and only if the following conditions hold:

- (i) For every $x \in X$ there is $B \in \mathcal{B}$ with $x \in B$.
- (ii) For every $B_1, B_2 \in \mathcal{B}$ and every $x \in B_1 \cap B_2$ there is $B_0 \in \mathcal{B}$ such that $x \in B_0 \subset B_1 \cap B_2$.

Show also that in this case, the following holds:

$$\tau = \{ U \subset X; \ \forall x \in U \ \exists B \in \mathcal{B} \text{ with } x \in B \subset U \}$$

=
$$\bigcap_{t \text{ topology on } X \text{ with } \mathcal{B} \subseteq t} t.$$

(bitte wenden)

(0 points)

(3 points)

(1+1+1+1+1=5 points)

 $(2^*+1^*+1^*=4^* \text{ points})$

- (a) Let $X \neq \emptyset$ be a set and let τ_1, τ_2 be topologies on X. Show:
 - (i) If $\mathcal{B}_1, \mathcal{B}_2$ are bases of τ_1 respectively τ_2 , we have:

$$\tau_1 \subseteq \tau_2 \Leftrightarrow \forall B_1 \in \mathcal{B}_1 : \forall x \in B_1 : \exists B_2 \in \mathcal{B}_2 : x \in B_2 \subseteq B_1$$

(ii) If S_1, S_2 are subbases of τ_1 respectively τ_2 , we have:

$$\tau_1 \subseteq \tau_2 \Leftrightarrow \forall S \in \mathcal{S}_1 : \forall x \in S : \exists S_1, ..., S_n \in \mathcal{S}_2 : x \in \bigcap_{i=1}^n S_i \subseteq S.$$

(b) Let (X, τ_1) , (Y, τ_2) be topological spaces, S_2 a subbase of τ_2 and $f : X \to Y$ a function. Show that f is continuous if and only if $f^{-1}(S) \in \tau_1$ holds for all $S \in S_2$.

Exercise 23

Let

$$\mathfrak{B} = \{[a, b); a, b \in \mathbb{R} \text{ mit } a < b\}$$

be the collection of half-open intervals. Show:

- (a) \mathfrak{B} is a basis of a Hausdorff topology τ on \mathbb{R} .
- (b) We have $\tau_{|\cdot|} \subsetneq \tau$.
- (c) A sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{R} converges with respect to τ to an $x \in \mathbb{R}$, if and only if it converges in $(\mathbb{R}, \tau_{|\cdot|})$ to x and we additionally have $x_n \ge x$ for almost every $n \in \mathbb{N}$.
- (d) (\mathbb{R}, τ) is separable and first countable.
- (e) (\mathbb{R}, τ) is not metrizable (i.e. there is no metric d on \mathbb{R} such that $\tau = \tau_d$).

Exercise 24*

For $a, b, x \in \mathbb{Z}$, we write as usual

$$x \equiv b \mod a,$$

if there is $k \in \mathbb{Z}$ such that x - b = ka. For all $b \in \mathbb{Z}$, $a \in \mathbb{Z} \setminus \{0\}$ we set

$$V(a,b) = \{ x \in \mathbb{Z}, x \equiv b \mod a \}.$$

(a) Show that

$$\mathcal{B} = \{ V(a, b); b \in \mathbb{Z}, a \in \mathbb{Z} \setminus \{0\} \}$$

is a base of a topology τ on \mathbb{Z} .

- (b) Show that the sets V(a, b) $(b \in \mathbb{Z}, a \in \mathbb{Z} \setminus \{0\})$ are closed in (\mathbb{Z}, τ) .
- (c) Use a) and b) to show that there are infinitely many prime numbers.