# UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer



## Übungen zur Vorlesung Topologie

Wintersemester 2017/18

Abgabetermin: Wednesday, 3/1/2018, just before the lecture

Exercise 39

Blatt 9

### (4 points)

#### (Uniform limits of nets of continuous functions are continuous)

Let  $(X, \tau)$  be a topological space, (Y, d) a metric space and  $(f_{\alpha})_{\alpha \in A}$  a net in

 $C(X,Y) = \{f : X \to Y; f \text{ is continuous } \}.$ 

Show: If  $(f_{\alpha})_{\alpha \in A}$  converges uniformly to a function  $f: X \to Y$ , i.e. if

 $\sup_{x \in X} d(f(x), f_{\alpha}(x)) \xrightarrow{\alpha} 0$ 

holds, f is continuous

For topological spaces X, Y, a continuous mapping  $f : X \to Y$  is called proper, if the preimage  $f^{-1}(K) \subset X$  of every comapct set  $K \subset Y$  is also compact.

#### Exercise 40

 $(3+3+2+2^*=8+2^* \text{ points})$ 

### (Connection of the properties 'proper', 'closed', 'open', 'continuous')

(a) Find a subset  $A \subseteq \mathbb{R}$  and a function  $f: (A, \tau_{|\cdot|}) \to (\mathbb{R}, \tau_{|\cdot|})$  such that:

- (i) f is continuous, but not proper
- (ii) We have that  $f^{-1}(K)$  is compact for all compact sets  $K \subseteq \mathbb{R}$ , but f is not proper,
- (iii) f is closed, but the preimage  $f^{-1}(K)$  is not compact for all compact sets  $K \subseteq \mathbb{R}$ .

Now, let X, Y be locally compact Hausdorff spaces with one-point compactifications  $\hat{X} = X \cup \{\infty\}$  and  $\hat{Y} = Y \cup \{\infty\}$ .

(b) Let  $f: X \to Y$  be continuous. Show that f is proper if and only if its extension  $\hat{f}: \hat{X} \to \hat{Y}$  given by

$$\hat{f}(x) = \begin{cases} f(x) & \text{, if } x \in X \\ \infty & \text{, if } x = \infty \end{cases}$$

is continuous.

- (c) Show that every proper function  $f: X \to Y$  is closed.
- (d) \* Find a mapping between topological spaces which is proper, but not closed.

A topological space is called  $\sigma$ -compact if it is a countable union of compact sets.

### Exercise 41

### (3+1 = 4 points)

#### (Compact exhaustion of $\sigma$ -compact spaces)

Let X be a locally compact space with one-point compactification  $\hat{X} = X \cup \{\infty\}$ . Show:

- (a) X is  $\sigma$ -compact if there is a sequence  $(U_n)_{n\in\mathbb{N}}$  of sets open in X such that
  - (i)  $\overline{U_n}$  is compact for all  $n \in \mathbb{N}$ .
  - (ii)  $\overline{U_n} \subset U_{n+1}$  holds for all  $n \in \mathbb{N}$ .
  - (iii)  $X = \bigcup_{n \in \mathbb{N}} U_n$ .

(Hint: Corollary 7.13)

(b) X is  $\sigma$ -compact if and only if  $\infty$  has a countable neighbourhood base in  $\hat{X}$ .