UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Sebastian Langendörfer

Additional notes supplementing the exercises for the lecture topology

Winter term 2017/18

Sheet 9

Deadline: -

Exercise 39

This is a quite general version of the corresponding result in Analysis I. It can be generalised even further if one knows about uniform spaces (which generalize metric spaces).

Note that

$$\tilde{d}(f,g) = \sup_{x \in X} d(f(x),g(x)) \quad (f,g \in C(X,Y))$$

does not define a metric on C(X, Y) since it need not be finite for all $f, g \in C(X, Y)$.

Exercise 40

Note that no implications hold between the properties 'preimage of compact sets is compact', 'closed', 'open', 'continuous':

preimage of compact sets compact \implies closed: cf. part d)

preimage of compact sets compact \Rightarrow open: cf. part d)

preimage of compact sets compact \implies open: cf. part a) ii)

closed \implies preimage of compact sets compact: cf. part a) iii)

closed \Rightarrow open: $f : \mathbb{R} \to \mathbb{R}, x \mapsto x^2$, since $f(\mathbb{R}) = [0, \infty)$, but $\sqrt{\cdot} : [0, \infty), x \mapsto \sqrt{x}$ is a continuous inverse function of $\tilde{f} : \mathbb{R} \to [0, \infty), x \mapsto f(x)$.

closed \Rightarrow continuous: $f : \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 0, & \text{falls } x < 0 \\ 1, & \text{falls } x \ge 0 \end{cases}$, since f(A) is finite, hence compact

in \mathbb{R} for all $A \subseteq \mathbb{R}$.

open \Rightarrow preimage of compact sets compact: $\pi_1 : \mathbb{R}^2 \to R, (x, y) \mapsto x$, since $\pi_1^{-1}(\{0\}) = \{0\} \times \mathbb{R}$. open \Rightarrow closed $\pi_1 : \mathbb{R}^2 \to R, (x, y) \mapsto x$, since $\pi_1(\{(x, y) \in \mathbb{R}^2; xy = 1\}) = \mathbb{R} \setminus \{0\}$.

open \Rightarrow continuous: $f: S_1 = \{(\cos(x), \sin(x)) \in \mathbb{R}^2, x \in (-\pi, \pi]\} \rightarrow]-\pi, \pi], (\cos(x), \sin(x)) \rightarrow x$, which is open since its inverse function is continuous, but not continuous in (-1, 0) since $(\cos(-\pi + \frac{1}{n}), \sin(-\pi + \frac{1}{n})) \xrightarrow{n \rightarrow \infty} (-1, 0) = (\cos(\pi), \sin(\pi)), \text{ but } -\pi + \frac{1}{n} \xrightarrow{n \rightarrow \infty} -\pi \neq \pi.$

continuous \implies preimage of compact sets is compact: constant functions $\mathbb{R} \to \mathbb{R}$.

continuous \implies closed: $f : \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x}$ since $f([0, \infty)) = [0, 1)$.

 $\text{contunuous} \ \not \Longrightarrow \ \text{open:} \ f: \mathbb{R}^{\rightarrow} \mathbb{R}, x \mapsto x^2 \text{ since } f((-1,1)) = [0,1).$

I tried to give counterexamples which are as basic, but also as non-pathological as possible. Hence only very few apperances of discrete /indiscrete topology which provide much more counterexamples.

Exercise 36

Note that $(\mathbb{R}, \tau_{|\cdot|})$ and $(\mathbb{C}, \tau_{|\cdot|})$ are σ -compact and sequences $(U_n)_{n \in \mathbb{N}}$ as in part b) are often used in applications.