UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier M. Sc. Sebastian Toth

Übungen zur Vorlesung Analysis III

Wintersemester 2019/2020

Blatt 2

Abgabetermin: Mittwoch, 30.10.2019, vor der Vorlesung

Aufgabe 5

(2+1+1=4 Punkte)

Sei \mathfrak{M} eine σ -Algebra auf einer Menge X und sei $\mu: \mathfrak{M} \to [0, \infty]$ eine Funktion mit $\mu(\emptyset) = 0$ und $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathfrak{M}$ mit $A \cap B = \emptyset$. Zeigen Sie für $A, B \in \mathfrak{M}$:

- (a) $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$,
- (b) Ist $A \subset B$, so gilt $\mu(A) \leq \mu(B)$,
- (c) Ist $A \subset B$ und $\mu(A) < \infty$, so gilt $\mu(B \setminus A) = \mu(B) \mu(A)$.

Insbesondere besitzt jedes Maß μ auf \mathfrak{M} die Eigenschaften (a), (b) und (c).

Aufgabe 6 (6 Punkte)

Seien X, \mathfrak{M} und μ wie in Aufgabe 5. Wir betrachten die folgenden Aussagen:

- (i) μ ist ein Maß.
- (ii) Für jede Folge $(A_n)_n$ in \mathfrak{M} mit $A_n \uparrow A$, $A \in \mathfrak{M}$, ist $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- (iii) Für jede Folge $(A_n)_n$ in \mathfrak{M} mit $\mu(A_0) < \infty$ und $A_n \downarrow A, A \in \mathfrak{M}$, ist $\lim_{n \to \infty} \mu(A_n) = \mu(A)$.
- (iv) Für jede Folge $(A_n)_n$ in \mathfrak{M} mit $\mu(A_0) < \infty$ und $A_n \downarrow \emptyset$ ist $\lim_{n \to \infty} \mu(A_n) = 0$.

Zeigen Sie, dass die Implikationen

$$(i) \Leftrightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv)$$

immer erfüllt sind, und dass (ii) \Leftarrow (iii) ebenfalls gilt, falls $\mu(X) < \infty$ ist.

(bitte wenden)

Aufgabe 7 (4 Punkte)

Sei $\mu: \mathcal{B}(\mathbb{R}) \to [0,1]$ ein Maß mit $\mu(\mathbb{R}) = 1$.

Zeigen Sie, dass die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \mu(]-\infty, x]$ monoton wächst und dass gilt:

(i)
$$\lim_{x \to -\infty} f(x) = 0, \lim_{x \to \infty} f(x) = 1,$$

(ii)
$$\lim_{x\downarrow a} f(x) = f(a) \text{ für alle } a\in\mathbb{R}.$$

Aufgabe 8 $(5\times1=5 \text{ Punkte})$

Sei (X, \mathfrak{M}) ein messbarer Raum und sei $f: X \to \mathbb{R}$ eine Funktion. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (i) f ist messbar.
- (ii) Für alle $a \in \mathbb{R}$ ist $\{x \in X \mid f(x) \ge a\} \in \mathfrak{M}$.
- (iii) Für alle $a \in \mathbb{R}$ ist $\{x \in X \mid f(x) > a\} \in \mathfrak{M}$.
- (iv) Für alle $a \in \mathbb{R}$ ist $\{x \in X \mid f(x) \le a\} \in \mathfrak{M}$.
- (v) Für alle $a \in \mathbb{R}$ ist $\{x \in X \mid f(x) < a\} \in \mathfrak{M}$.

Aufgabe 9* (4* Punkte)

Sei $f:\mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion. Zeigen Sie, dass die Ableitung

$$f': \mathbb{R} \to \mathbb{R}, x \mapsto f'(x)$$

Borel-messbar ist, das heißt messbar als Funktion auf dem messbaren Raum $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Sie können die Übungen in Gruppen von bis zu 3 Personen bearbeiten. Diese Gruppen müssen aus Teilnehmern einer Übungsgruppe bestehen und dürfen sich nicht ständig ändern. Die Abgabe der Übungsblätter erfolgt in die Briefkästen vor dem Zeichensaal in Gebäude E 2.5.

Bremser	Briefkasten
Sascha Blug	05
Marcel Scherer	09

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre