Saarland University

FACULTY 6.1 - MATH
Prof. Dr. Jörg Eschmeier
M.Sc. Manuel Kany

Exercises for the lecture topology
Winter term 2019/2020
Sheet 1
Deadline: 10.22.2019

Remark: Please deliver your solution of the exercise sheet on Tuesday just before the lecture.

Exercise 1

Let (X, d) be a metric space and let $p \in X$ be an element. For $x, y \in X$ we define

$$
\tilde{d}(x, y)= \begin{cases}d(x, p)+d(p, y), & x \neq y \\ 0, & x=y\end{cases}
$$

(a) Show that \tilde{d} defines an additional metric on X.
(b) Calculate for $x \in X$ and $\varepsilon>0$ the (open) ε-ball around x corresponding to \tilde{d}. Hereby distinguish the cases $\varepsilon \leq d(x, p)$ and $\varepsilon>d(x, p)$.
(c) Characterize the open sets corresponding to \tilde{d}.

For a metric space (X, d) and a nonempty subset $A \subset X$ we denote by

$$
d(x, A)=\inf \{d(x, y) ; y \in A\}
$$

the distance between the element $x \in X$ and the set A.

Exercise 2

Let (X, d) be a be a metric space and $\emptyset \neq A \subset X$.
(a) Show that the equation

$$
|d(x, A)-d(y, A)| \leq d(x, y)
$$

holds for all $x, y \in X$.
(b) Show that the function

$$
d_{A}: X \rightarrow \mathbb{R}, \quad x \mapsto d(x, A)
$$

is continuous.
(c) Show that we have $d(x, A)=0$ if and only if x is an element of \bar{A}.
(d) Let $A_{1}, A_{2} \subset X$ be closed and disjoint sets. Show that there exists a continuous function $f: X \rightarrow[0,1]$ with $\left.f\right|_{A_{1}} \equiv 0$ and $\left.f\right|_{A_{2}} \equiv 1$. (Hint : Use (b) and (c).)

A metric space (X, d) is called complete, if every Cauchy sequence in X converges.

Exercise 3

Consider the following metric on the real line \mathbb{R} :

$$
d(x, y)=|x-y| \quad \text { und } \quad \tilde{d}(x, y)=|\arctan (x)-\arctan (y)| .
$$

(a) Prove that \tilde{d} defines a metric on \mathbb{R}.
(b) Show that (\mathbb{R}, d) and (\mathbb{R}, \tilde{d}) have the same open sets.
(c) Show that (\mathbb{R}, \tilde{d}) is not complete.

Exercise 4

Let $\left(\left(X_{n}, d_{n}\right)\right)_{n \in \mathbb{N}}$ be a sequence of metric spaces and let $X=\prod_{n=0}^{\infty} X_{n}$ be the Cartesian product of the sets X_{n}.
(a) Prove that

$$
d: X \times X \rightarrow[0, \infty), \quad\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right) \mapsto \sum_{n=0}^{\infty} 2^{-n} \frac{d_{n}\left(x_{n}, y_{n}\right)}{1+d_{n}\left(x_{n}, y_{n}\right)}
$$

defines a metric on X.
(b*) Show that the metric space (X, d) is complete if and only if all $\left(X_{n}, d_{n}\right)$ are complete.

You can also find the exercise sheets on our homepage:
https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html

