

## Exercises for the lecture topology Winter term 2019/2020

Sheet 10

#### Exercise 37

For  $i \in I$ , let  $(X_i, t_i)$  be a topological space and let  $\emptyset \neq Y_i \subset X_i$  be subsets. Let t be the product topology on  $X = \prod_{i \in I} X_i$ . Show that the relative topology  $t|_Y$  of t on  $Y = \prod_{i \in I} Y_i \subset X$  coincides with the product topology of the relative topologies  $t_i|_{Y_i}$ .

## Exercise 38

## (1+1+2=4 Points)

(a) Show that subspaces of topological Hausdorff spaces (equipped with the relative topology) are always again Hausdorff spaces.

Let now X be a locally compact Hausdorff space and let the subset  $\emptyset \neq Y \subset X$  be equipped with the relative topology. Show:

- (b) If Y is open or closed, then Y is locally compact.
- (c) The topological space Y is locally compact if and only if there is an open subset  $U \subset X$  and a closed subset  $F \subset X$  such that  $Y = U \cap F$  holds. (*Hint* : If Y is a locally compact topological space, one can show that  $Y \subset \overline{Y}$  is open.)

For locally compact Hausdorff spaces X, Y we call  $f : X \to Y$  a proper map if and only if for every compact set  $K \subset Y$  the preimage  $f^{-1}(K) \subset X$  is also compact.

#### Exercise 39

(2+2=4 Points)

Let X, Y be locally compact Hausdorff spaces with one-point compactifications  $\hat{X} = X \cup \{\infty\}$ and  $\hat{Y} = Y \cup \{\infty\}$ .

(a) Let  $f: X \to Y$  be a continuous map. Show that f is proper if and only if the continuation  $\hat{f}: \hat{X} \to \hat{Y}$  of f defined by

$$\hat{f}(x) = \begin{cases} f(x) & \text{,falls } x \in X \\ \infty & \text{,falls } x = \infty \end{cases}$$

is continuous.

(b) Show that every proper map  $f: X \to Y$  is closed.



Deadline: 01.07.2019

A locally compact Hausdorff space is called countable at infinity if it is the union of countable many compact subsets.

#### Exercise 40\*

# $(3^{*}+1^{*}=4^{*}$ Points)

Let X be a locally compact Hausdorff space with one-point compactification  $\hat{X} = X \cup \{\infty\}$ . Show:

- (a) X is countable at infinity if and only if there is a sequence  $(U_n)_{n \in \mathbb{N}}$  of open sets in X such that:
  - (i)  $\overline{U_n}$  is compact for all  $n \in \mathbb{N}$ .
  - (ii)  $\overline{U_n} \subset U_{n+1}$  for all  $n \in \mathbb{N}$ .
  - (iii)  $X = \bigcup_{n \in \mathbb{N}} U_n.$

(Hint : Choose the sets  $U_n$  recursively using Corollary 7.10)

(b) X is countable at infinity if and only if the point  $\infty$  has a countable neighbourhood base in  $\hat{X}$ .

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html