

Exercises for the lecture topology Winter term 2019/2020

Sheet 11

Exercise 41

Let X be a topological space and let (Y,d) be a metric space. Consider a net $(f_{\alpha})_{\alpha \in A}$ in $C(X,Y) = \{g : X \to Y; g \text{ continuous}\}$ and a function $f : X \to Y$ such that

$$\sup_{x \in X} d(f_{\alpha}(x), f(x)) \stackrel{\alpha}{\longrightarrow} 0.$$

Show that $f \in C(X, Y)$.

Exercise 42

Let X be a locally compact Hausdorff space, $K \subset X$ compact and $U \subset X$ an open set such that $K \subset U$. Show that there is a continuous function $f : X \to [0,1]$ with compact support $\operatorname{supp}(f) \subset X$ such that $f|_K \equiv 1$ and $\operatorname{supp}(f) \subset U$.

(Hint : Choose an open set V with compact closure such that $K \subset V \subset \overline{V} \subset U$ and apply Urysohn's lemma to $K \cup \partial V \subset \overline{V}$.)

A subset A of a topological space is called a G_{δ} -set if A is a countable intersection of open sets.

Exercise 43

Let X be a normal topological space and let $A \subset X$ be a subset. Show that there is a continuous function $f: X \to [0, 1]$ with $f^{-1}(\{0\}) = A$ if and only if $A \subset X$ is a closed G_{δ} -set.

(Hint : Define $f = \sum_{n=1}^{\infty} 1/2^n f_n$ with functions f_n constructed with the help of Urysohn's lemma.)

Let $A \subset X$ be a closed subset of a topological space X. Denote by X/A the set $\{[x]; x \in X\}$ of all equivalence classes with respect to the equivalence relation

 $x \sim y : \iff x, y \in A \text{ or } x = y.$

and define $q: X \to X/A, x \to [x]$. The topology (Exercise 27) on X/A defined by

 $\tau = \{ U \subset X/A; \ q^{-1}(U) \subset X \text{ is open} \}$

is called the quotient topology of X/A.

Exercise 44*

 $(1^{*}+1^{*}+1^{*}+2^{*}=5^{*}$ Points)

Let $A \subset X$ be a closed subset of a Hausdorff topological space (X, t). Let X/A be equipped with its quotient topology. With the notation from above show that:

(4 Points)

(4 Points)

(4 Points)

Deadline: 01.14.2019

(please turn over)

- (a) Each one-point set $\{[x]\} \subset X/A \ (x \in X)$ is closed.
- (b) If $M \subset X$ is a set with $A \subset M$ or $M \cap A = \emptyset$, then $M = q^{-1}(q(M))$.
- (c) If $F \subset X/A$, then $A \subset q^{-1}(F)$ or $q^{-1}(F) \cap A = \emptyset$.
- (d) X is normal, then X/A is normal.

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html