Exercises for the lecture topology

Winter term 2019/2020

Exercise 41

Let X be a topological space and let (Y, d) be a metric space. Consider a net $\left(f_{\alpha}\right)_{\alpha \in A}$ in $C(X, Y)=\{g: X \rightarrow Y ; g$ continuous $\}$ and a function $f: X \rightarrow Y$ such that

$$
\sup _{x \in X} d\left(f_{\alpha}(x), f(x)\right) \xrightarrow{\alpha} 0 .
$$

Show that $f \in C(X, Y)$.

Exercise 42

Let X be a locally compact Hausdorff space, $K \subset X$ compact and $U \subset X$ an open set such that $K \subset U$. Show that there is a continuous function $f: X \rightarrow[0,1]$ with compact support $\operatorname{supp}(f) \subset X$ such that $\left.f\right|_{K} \equiv 1$ and $\operatorname{supp}(f) \subset U$.
(Hint: Choose an open set V with compact closure such that $K \subset V \subset \bar{V} \subset U$ and apply Urysohn's lemma to $K \cup \partial V \subset \bar{V}$.

A subset A of a topological space is called a G_{δ}-set if A is a countable intersection of open sets.

Exercise 43

Let X be a normal topological space and let $A \subset X$ be a subset. Show that there is a continuous function $f: X \rightarrow[0,1]$ with $f^{-1}(\{0\})=A$ if and only if $A \subset X$ is a closed G_{δ}-set.
(Hint: Define $f=\sum_{n=1}^{\infty} 1 / 2^{n} f_{n}$ with functions f_{n} constructed with the help of Urysohn's lemma.)

Let $A \subset X$ be a closed subset of a topological space X. Denote by X / A the set $\{[x] ; x \in X\}$ of all equivalence classes with respect to the equivalence relation

$$
x \sim y \quad: \Longleftrightarrow \quad x, y \in A \text { or } x=y
$$

and define $q: X \rightarrow X / A, x \rightarrow[x]$. The topology (Exercise 27) on X / A defined by

$$
\tau=\left\{U \subset X / A ; q^{-1}(U) \subset X \text { is open }\right\}
$$

is called the quotient topology of X / A.
Exercise 44*

$$
\left(1^{*}+1^{*}+1^{*}+2^{*}=5^{*} \text { Points }\right)
$$

Let $A \subset X$ be a closed subset of a Hausdorff topological space (X, t). Let X / A be equipped with its quotient topology. With the notation from above show that:
(a) Each one-point set $\{[x]\} \subset X / A(x \in X)$ is closed.
(b) If $M \subset X$ is a set with $A \subset M$ or $M \cap A=\emptyset$, then $M=q^{-1}(q(M))$.
(c) If $F \subset X / A$, then $A \subset q^{-1}(F)$ or $q^{-1}(F) \cap A=\emptyset$.
(d) X is normal, then X / A is normal.

You can also find the exercise sheets on our homepage:
https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html

