

Exercises for the lecture topology

Winter term 2019/2020

Sheet 12

Exercise 45

Let X be a Hausdorff topological space. Show the equivalence of:

- (i) X is normal.
- (ii) For any two disjoint non-empty closed sets $F, G \subset X$, there is a continuous function $f: X \to [0,1]$ such that $f|_F \equiv 0, f|_G \equiv 1$.
- (iii) For any two disjoint non-empty closed sets $F, G \subset X$, there is a continuous function $f: X \to \mathbb{R}$ such that $f|_F \equiv 0, f|_G \equiv 1$.
- (iv) For each closed set $A \subset X$ and each continuous function $f: A \to [a, b]$ $(a, b \in \mathbb{R}$ with a < b, there is a continuous function $F : X \to [a, b]$ with $F|_A = f$.
- (v) For each closed set $A \subset X$ and each continuous function $f: A \to \mathbb{R}$, there is a continuous function $F: X \to \mathbb{R}$ with $F|_A = f$.

Exercise 46

Let X be a normal topological space and let $A \subset X$ be a closed set. Show that for each bounded continuous function $f: A \to \mathbb{C}$, there is a bounded continuous function $F: X \to \mathbb{C}$ with $F|_A = f$ and $||f||_A = ||F||_X$.

Exercise 47

Let X be a Hausdorff topological space such that, for each open cover $\mathcal{U} = (U_i)_{i=1}^n$ of X, there is a continuous partition of unity $(\theta_i)_{i=1}^n$ with respect to \mathcal{U} . Show that X is normal.

Exercise 48*

Let X be a locally compact Hausdorff space and let $K \subset U_1 \cup \cdots \cup U_n$ be an open cover of a compact set $K \subset X$. Show that:

- (a) There are open sets $V_1, \ldots, V_n \subset X$ with compact closures $\overline{V}_i \subset X$ such that $K \subset V_1 \cup \cdots \cup V_n$ and $V_i \subset U_i$ for $i = 1, \ldots, n$.
- (b) Show that there are continuous functions $f_1, \ldots, f_n : X \to [0,1]$ with $\operatorname{supp}(f_i) \subset U_i$ for $i = 1, \ldots, n$ and $\sum_{i=1}^{n} f_i(x) = 1$ for all $x \in K$ (Hint: Use Exercise 42).

(4 Points)

(4 Points)

$(2^{*}+2^{*}=4^{*}$ Points)

Deadline: 01.21.2019

(3 Points)

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html