Winter term 2019/2020

A Hausdorff topological space X is called a topological m-manifold if the topology of X possesses a countable basis and if each point $x \in X$ possesses an open neighbourhood that is homeomorphic to an open subset of \mathbb{R}^m .

Exercise 49

Sheet 13

Let X be a compact topological m-manifold. Show that there is a number N such that there exists a topological embedding (=homeomorphism onto its range) $f: X \to \mathbb{R}^N$.

(*Hint*: Choose an open cover $(U_i)_{i=1}^n$ of X such that there are homeomorphisms $g_i: U_i \to V_i \subset \mathbb{R}^m$ and use a continuous partition of unity relative to $(U_i)_{i=1}^n$ to construct a topological embedding $f: X \to \mathbb{R}^{n+nm}$.)

Exercise 50

Show that a compact Hausdorff space is metrizable if and only if it is second countable.

Subsets A, B of a topological space X are said to be separated if $A \cap \overline{B} = \emptyset = \overline{A} \cap B$.

Exercise 51

Let $A, B \subset X$ be connected non-empty subsets of a topological space. Show that $A \cup B$ is connected if and only if A and B are not separated

Exercise 52

Let $A \subset X$ be a subset of a topological space X. Decide which of the following implications are true:

A is connected \Leftrightarrow Int(A) is connected

A is connected \Leftrightarrow A is connected A is connected $\Leftrightarrow \partial A$ is connected.

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html

Exercises for the lecture topology

(4 Points)

(4 Points)

(4 Points)

Deadline: 01.28.2019

Saarland University FACULTY 6.1 – MATH Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

