(1+1+2=4 Points)

Exercises for the lecture topology

Winter term 2019/2020

A map $\Phi: X_1 \to X_2$ between metric spaces $(X_1, d_1), (X_2, d_2)$ is called *isometric* if $d_2(\Phi(x), \Phi(y)) = d_1(x, y)$ for all $x, y \in X_1$.

Exercise 9

Sheet 3

Let $(X_1, d_1), (X_2, d_2)$ be two complete metric spaces and let $i_1 : X \to X_1, i_2 : X \to X_2$ be isometric maps with dense range from a metric space (X, d) into X_1 and X_2 . Show that there is a unique isometric and bijective map $\Phi : X_1 \to X_2$ with $i_2 = \Phi \circ i_1$.

Exercise 10

Let (X, d) be a metric space and let $x_0 \in X$ be arbitrary. For every $x \in X$, denote by $f_x : X \to \mathbb{R}$ the mapping defined by

$$f_x(t) = d(x, t) - d(x_0, t).$$

Show that:

(a) $j: X \to l^{\infty}(X), j(x) = f_x$, defines an isometric map between metric spaces.

(b) Use part (a) to give an alternative proof for the existence of the completion of X.

Exercise 11

Let (X, d) be a metric space. Suppose that, for each sequence of closed subsets $\emptyset \neq A_k \subset X$ with $A_{k+1} \subset A_k$ for all $k \in \mathbb{N}$ and

diam (A_k) := sup $\{d(x, y); x, y \in A_k\} \xrightarrow{k \to \infty} 0$,

there is an element $x \in X$ with $\bigcap_{k \in \mathbb{N}} A_k = \{x\}$. Show that (X, d) is complete.

Recall that a set $K \subset X$ in a metric space (X, d) is called **compact** if, for each family $(U_i)_{i \in I}$ of open sets $U_i \subset X$ with $K \subset \bigcup_{i \in I} U_i$, there are finitely many indices $i_1, \ldots, i_r \in I$ with $K \subset U_{i_1} \cup \cdots \cup U_{i_r}$.

Exercise 12

Let (X, d) be a metric space and let $\emptyset \neq Y \subset X$ be a subset equipped with the relative metric d_Y . Show that:

(2+2=4 Points)

Deadline: 11.05.2019

(4 Points)

- (a) A set $U \subset Y$ is open in (Y, d_Y) if and only if there is an open set $V \subset X$ such that $U = V \cap Y$.
- (b) A set $F \subset Y$ is closed in (Y, d_Y) if and only if there is a closed set $A \subset X$ such that $F = A \cap Y$.
- (c) A set $K \subset Y$ is compact in (Y, d_Y) if and only if it is compact in (X, d).

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html