(4 Points)

Exercises for the lecture topology

Winter term 2019/2020

Exercise 13

Let K be a compact metric space and let $\rho: K \to K$ be a mapping with

$$d(\varrho(x), \varrho(y)) < d(x, y)$$

for all $x, y \in K$ with $x \neq y$. Show that:

(a) Each sequence in K has a convergent subsequence.

(b) There is a unique point $x_0 \in K$ with $\rho(x_0) = x_0$.

(Hint : Approximate $\inf\{d(\varrho(x), x); x \in K\}$ by a sequence.)

Exercise 14

Show that there is no sequence $(U_n)_{n\in\mathbb{N}}$ of open sets $U_n \subset \mathbb{R}$ with

(Hint : Use also the sets
$$V_q = \mathbb{R} \setminus \{q\}$$
 $(q \in \mathbb{Q})$ and apply Baire's theorem.)

Exercise 15

(a) Let $f: X \to X$ be a function on a metric space X. Define

$$U_n = \bigcup (U \subset X \text{ open}; \operatorname{diam} f(U) < \frac{1}{n}) \ (n \in \mathbb{N}^*).$$

 $\mathbb{Q} = \bigcap_{n \in \mathbb{N}} U_n.$

Show that $\bigcap_{n=1}^{\infty} U_n$ is the set of all points $x \in X$ such that f is continuous in x.

(b) Show that there is no function $f : \mathbb{R} \to \mathbb{R}$, which is continuous in each $x \in \mathbb{Q}$ and discontinuous in each $x \in \mathbb{R} \setminus \mathbb{Q}$.

Exercise 16

Let $K = \bigcup_{i \in I} U_i$ be an open cover of a compact metric space (K, d). Show that there is a real number $\delta > 0$ such that each set $A \subset K$ with diam $(A) < \delta$ is completely contained in one of the sets U_i $(i \in I)$.

(*Hint*: Otherwise there were sets $A_n \subset K$ with $diam(A_n) < 1/n$ and $A_n \cap U_i^c \neq \emptyset$ for all $i \in I$. Choose points $x_n \in A_n$ and apply Exercise 13(a).)

(3+1=4 Points)

(4 Points)

Deadline: 11.12.2019

(2+2=4 Points)

Saarland University FACULTY 6.1 – MATH Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

Sheet 4

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html