

(4 Points)

Deadline: 11.19.2019

Exercises for the lecture topology Winter term 2019/2020

Sheet 5

Exercise 17

Let $K : [0,1] \times [0,1] \to \mathbb{R}$ be a continuous function with |K(x,y)| < 1 for all $x, y \in [0,1]$. Show that there is a unique continuous function $f : [0,1] \to \mathbb{R}$ such that the equation

$$f(x) + \int_{0}^{1} K(x, y) f(y) \, dy = e^{x^2}$$

holds for all $x \in [0, 1]$.

Exercise 18

(4 Points)

Let $X \neq \emptyset$ be a set. Decide whether the following collections of sets $t_i \subset \mathcal{P}(X)$ (i = 1, 2, 3) define topologies on X and under which circumstances they are Hausdorff spaces:

 $\begin{array}{lll} U \in t_1 & \Leftrightarrow & U = \emptyset \text{ or } X \setminus U \text{ is finite} \\ U \in t_2 & \Leftrightarrow & U = \emptyset \text{ or } X \setminus U \text{ is countable} \\ U \in t_3 & \Leftrightarrow & U = \emptyset \text{ or } U = X \text{ or } X \setminus U \text{ is not finite.} \end{array}$

Exercise 19

(1+1+2=4 Points)

Let (X,t) be a topological space and let $\emptyset \neq Y \subset X, A \subset Y, K \subset X$ be subsets. Show the following assertions:

- (a) A is closed in $(Y, t|_Y)$ if and only if there is a closed set $F \subset X$ with $A = F \cap Y$.
- (b) A is compact in $(Y, t|_Y)$ if and only if A is compact in X.
- (c) K is compact if and only if, for every family $(F_i)_{i \in I}$ of closed sets F_i in $(K, t|_K)$ which has the finite intersection property the intersection $\bigcap_{i \in I} F_i$ is nonempty.

Exercise 20

Let X, Y be topological spaces and let $X = A \cup B$ be the union of closed (or of open) subsets. Furthermore let $f_A : A \to Y$ and $f_B : B \to Y$ be continuous maps (with respect to the relative topology on X) such that $f_A = f_B$ on $A \cap B$. Show that the map $f : X \to Y$ defined by

$$f(x) = \begin{cases} f_A(x), & \text{for } x \in A \\ f_B(x), & \text{for } x \in B \end{cases}$$

is continuous.

(please turn over)

(4 Points)

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html