Saarland University

FACULTY 6.1 - MATH
Prof. Dr. Jörg Eschmeier
M.Sc. Manuel Kany

Exercises for the lecture topology

Winter term 2019/2020
Sheet 5
Deadline: 11.19.2019

Exercise 17

(4 Points)
Let $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function with $|K(x, y)|<1$ for all $x, y \in[0,1]$. Show that there is a unique continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that the equation

$$
f(x)+\int_{0}^{1} K(x, y) f(y) d y=e^{x^{2}}
$$

holds for all $x \in[0,1]$.

Exercise 18

Let $X \neq \emptyset$ be a set. Decide whether the following collections of sets $t_{i} \subset \mathcal{P}(X)(i=1,2,3)$ define topologies on X and under which circumstances they are Hausdorff spaces:

$$
\begin{array}{lll}
U \in t_{1} & \Leftrightarrow & U=\emptyset \text { or } X \backslash U \text { is finite } \\
U \in t_{2} & \Leftrightarrow U=\emptyset \text { or } X \backslash U \text { is countable } \\
U \in t_{3} & \Leftrightarrow & U=\emptyset \text { or } U=X \text { or } X \backslash U \text { is not finite. }
\end{array}
$$

Exercise 19

Let (X, t) be a topological space and let $\emptyset \neq Y \subset X, A \subset Y, K \subset X$ be subsets. Show the following assertions:
(a) A is closed in $\left(Y,\left.t\right|_{Y}\right)$ if and only if there is a closed set $F \subset X$ with $A=F \cap Y$.
(b) A is compact in $\left(Y,\left.t\right|_{Y}\right)$ if and only if A is compact in X.
(c) K is compact if and only if, for every family $\left(F_{i}\right)_{i \in I}$ of closed sets F_{i} in $\left(K,\left.t\right|_{K}\right)$ which has the finite intersection property the intersection $\bigcap_{i \in I} F_{i}$ is nonempty.

Exercise 20

Let X, Y be topological spaces and let $X=A \cup B$ be the union of closed (or of open) subsets. Furthermore let $f_{A}: A \rightarrow Y$ and $f_{B}: B \rightarrow Y$ be continuous maps (with respect to the relative topology on X) such that $f_{A}=f_{B}$ on $A \cap B$. Show that the map $f: X \rightarrow Y$ defined by

$$
f(x)= \begin{cases}f_{A}(x), & \text { for } x \in A \\ f_{B}(x), & \text { for } x \in B\end{cases}
$$

is continuous.

You can also find the exercise sheets on our homepage:
https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html

