

Exercises for the lecture topology

Winter term 2019/2020

Exercise 21

Let $(X_n, d_n)_{n=1}^{\infty}$ be a sequence of separable metric spaces. Show that the cartesian product $X = \prod_{n=1}^{\infty} X_n$ equipped with the metric d from Exercise 4 is separable.

Exercise 22

Let (X, t) be a topological space and let $\emptyset \neq Y \subset X$ be a set equipped with the relative topology $t|_Y$. Show:

- (a) If the topology t is generated by a metric d on X, then the topology $t|_{Y}$ is generated by the relative metric d_Y .
- (b) If \mathcal{B} is a base of t, then the collection of subsets $\mathcal{B}|_Y = \{B \cap Y; B \in \mathcal{B}\}$ is a base of $t|_Y$.
- (c) In the case of $Y \in t$ we have $t|_Y = \{U \in t; U \subset Y\}$.
- (d) If t is generated by a metric d and (X, t) is separable, then $(Y, t|_Y)$ is also separable.

Exercise 23

Let $X \neq \emptyset$ be a set. Show the following assertions:

A system $\mathcal{B} \subset \mathcal{P}(X)$ of subsets of X defines a base of a topology t on X if and only if the following two conditions are fulfilled:

- 1. For every $x \in X$ there is a set $B \in \mathcal{B}$ with $x \in B$.
- 2. For all $B_1, B_2 \in \mathcal{B}$ and all $x \in B_1 \cap B_2$ there is a $B_0 \in \mathcal{B}$ with $x \in B_0 \subset B_1 \cap B_2$.

In this case we get

$$t = \{ U \subset X; \ \forall x \in U \ \exists B \in \mathcal{B} : \ x \in B \subset U \}$$
$$= \bigcap (\mathcal{O}; \ \mathcal{O} \text{ is a topology on } X \text{ with } \mathcal{B} \subset \mathcal{O} \}.$$

(4 Points)

(1+1+1+1=4 Points)

(please turn over)

Deadline: 11.26.2019

Sheet 6

Exercise 24

Let

$$\mathcal{B} = \{ [a, b); a, b \in \mathbb{R} \text{ with } a < b \}.$$

- (a) Show that \mathcal{B} is the base of a Hausdorff topology σ on \mathbb{R} .
- (b) Show that a sequence $(x_n)_{n \in \mathbb{N}}$ of real numbers converges in (\mathbb{R}, σ) to a real number $x \in \mathbb{R}$ if and only if it converges to x in \mathbb{R} equipped with the standard topology and additionally $x_n \geq x$ holds for almost all $n \in \mathbb{N}$.
- (c) Show that (\mathbb{R}, σ) is separable and that the first countability axiom is fulfilled.
- (d) Does the second countability axiom hold in (R, σ) ? Is (\mathbb{R}, σ) metrizable?

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html