Exercises for the lecture topology

Winter term 2019/2020

A set $K \subset X$ in a topological space (X,t) is called sequentially compact if each sequence $(x_n)_{n \in \mathbb{N}}$ in K has a convergent subsequence with limit in K.

Exercise 25

Sheet 7

Let (X, t) be a first countable topological space, let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X and $x \in X$ an arbitrary point. Show that:

- (a) If $(x_n)_{n\in\mathbb{N}}$ has no subsequence that converges to x, than there is a neighborhood $U \in \mathfrak{U}(x)$ of x such that the set $\{n \in \mathbb{N}; x_n \in U\}$ is finite.
- (b) Each compact set $K \subset X$ is sequentially compact.

Exercise 26

Let (X, t) be a second countable topological space. Show that each sequentially compact set $K \subset X$ is compact. (*Hint* : Use Lindelöf's theorem.)

Exercise 27

Let $X \neq \emptyset$ be a set and let I be an arbitrary index set. For $i \in I$ let (X_i, t_i) be a topological space and let $f_i : X_i \to X$ be a map. Show that:

- (a) The system $t = \{U \subset X; f_i^{-1}(U) \in t_i \forall i \in I\}$ defines a topology on X.
- (b) The topology t is the strongest topology on X such that the mappings $f_i : (X_i, t_i) \to (X, t)$ are continuous for every $i \in I$.
- (c) A mapping $g: (X,t) \to (Y,\tau)$ into a topological space (Y,τ) is continuous if and only if $g \circ f_i: (X_i, t_i) \to (Y,\tau)$ is continuous for each $i \in I$.

Deadline: 12.03.2019

(2+2=4 Points)

(4 Points)

(3x2=6 Points)

Exercise 28

Let σ be the topology on \mathbb{R} defined in Exercise 24 and let $\tau = \sigma \times \sigma$ be the product topology on \mathbb{R}^2 . Show that:

- (a) (\mathbb{R}^2, τ) is separable.
- (b) The set $D = \{(x, -x); x \in \mathbb{R}\} \subset \mathbb{R}^2$ equipped with the relative topology $\tau|_D$ is not separable. (*Hint*: Consider the sets $([x, x+1) \times [-x, -x+1)) \cap D$.)

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html