

Exercises for the lecture topology Winter term 2019/2020

Sheet 8

Exercise 29

(1+2+1=4 Points)

Deadline: 12.10.2019

Let $X \neq \emptyset$ be a non-empty set. Show that:

(a) If t and t' are topologies on X, then t = t' if and only if the equivalence

 $\lim_{\alpha} x_{\alpha} = x \text{ in } (X, t) \iff \lim_{\alpha} x_{\alpha} = x \text{ in } (X, t')$

holds for each net $(x_{\alpha})_{\alpha \in A}$ in X and each $x \in X$.

- (b) The assertion of part (a) does not hold in general if nets are replaced by sequences. (*Hint* : Consider \mathbb{R} equipped with the topology $t = t_2$ from Exercise 18 and the discrete topology $t' = \mathcal{P}(\mathbb{R})$).
- (c) There are sequentially continuous maps which are not continuous.

Exercise 30

(1+1+2=4 Points)

Let (X_i, t_i) $(i \in I)$ be topological spaces. Equip $X = \prod_{i \in I} X_i$ with its product topology t. Let $A = \prod_{i \in I} A_i$ be the cartesian product of subsets $A_i \subset X_i$. Show that

- (a) If each $A_i \subset X_i$ $(i \in I)$ is a closed subset, then also $A \subset X$ is closed.
- (b) $\overline{A} = \prod_{i \in I} \overline{A_i}.$
- (c) $\operatorname{Int}(A) \subset \prod_{i \in I} \operatorname{Int}(A_i)$. Decide whether equality holds here.

A mapping $f : X_1 \to X_2$ between topological spaces is called open (closed) if $f(M) \subset X_2$ is open (closed) for every set $M \subset X_1$ that is open (closed).

Exercise 31

(2+2=4 Points)

Let (X_i, t_i) $(i \in I)$ be topological spaces and let t be the product topology on $X = \prod_{i \in I} X_i$. Show that:

- (a) (X, t) is Hausdorff if and only if each of the spaces (X_i, t_i) $(i \in I)$ is a Hausdorff space.
- (b) The projections

$$\pi_j: X \to X_j, \ (x_i)_{i \in I} \mapsto x_j \ (j \in I)$$

are open but in general not closed.

Exercise 32

(4 Points)

Let (X_i, t_i) $(i \in I)$ be separable topological spaces. Show that $X = \prod_{i \in I} X_i$ equipped with the product topology is a separable topological space.

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html