Exercises for the lecture topology Winter term 2019/2020

Sheet 9

Exercise 33

Let I be an uncountable index set and let (X_i, t_i) $(i \in I)$ be given topological spaces such that $t_i \neq \{\emptyset, X_i\}$ for each $i \in I$. Show that the product topology t on $X = \prod_{i \in I} X_i$ is not first countable. (*Hint* : Choose open sets $U_i \subsetneq X_i$ and elements $x_i \in U_i$ and show by contradiction that $x = (x_i)_{i \in I}$ cannot possess a countable neighbourhood base.)

Exercise 34

Equip $\{0,1\}$ with its discrete topology and $X = \prod_{A \subset \mathbb{N}} \{0,1\} (= \{0,1\}^{\mathcal{P}(\mathbb{N})})$ with its product topology. Show that X is compact, but not sequentially compact. (Hint : Consider the sequence $(x^{(n)})_{n \in \mathbb{N}}$ in X defined by: $x_A^{(n)} = 1$: \iff $n \in A$ and the number of elements in $\{k \in A; k < n\}$ is even.

Exercise 35

Let X, Y be topological spaces, let $\emptyset \neq K_1 \subset X, \emptyset \neq K_2 \subset Y$ be compact sets and let $W \subset X \times Y$ be open in the product topology such that $K_1 \times K_2 \subset W$. Show that there are open sets $U \subset X$, $V \subset Y$ with $K_1 \subset U, K_2 \subset V$ and $U \times V \subset W$.

Exercise 36

Let X be a topological space and let K be a compact Hausdorff space. Show that a mapping $f: X \to K$ is continuous if and only if its graph $G_f = \{(x, f(x); x \in X) \subset X \times K \text{ is closed}\}$ with respect to the product topology. (Hint : Argue for "\equiv "by contradiction as in the proof of theorem 6.7.)

You can also find the exercise sheets on our homepage:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS1920/top/index.html

Deadline: 12.17.2019

(4 Points)

(4 Points)

(4 Points)

(4 Points)