Prof. Dr. Jörg Eschmeier
M. Sc. Sebastian Toth

Exercises for the lecture Functional Analysis I

Winter term 2020/2021
Sheet 2
To be submitted until: Thursday, 19.11.2020, before the lecture

Exercise 5

Let (X, t) be a topological space and $\emptyset \neq Y \subset X$ a subset equipped with the relative topology $\left.t\right|_{Y}$. Show:
(a) A set $A \subset Y$ is closed in $\left(Y,\left.t\right|_{Y}\right)$ if and only if there is a closed set F in (X, t) with $A=F \cap Y$.
(b) A set $A \subset Y$ is compact in $\left(Y,\left.t\right|_{Y}\right)$ if and only if A is compact in (X, t).
(c) A set $K \subset X$ is compact if and only if, for each family $\left(F_{i}\right)_{i \in I}$ of closed sets F_{i} in $\left(K,\left.t\right|_{K}\right)$ with finite intersection property, the intersection $\bigcap_{i \in I} F_{i}$ is non-empty.

Exercise 6

Let $U \subset \mathbb{R}^{n}$ be open and convex. Show that each function $f \in C^{1}(U)$ with:

$$
\left\|\frac{\partial f}{\partial x_{i}}\right\|_{U}<\infty \quad(i=1, \ldots, n)
$$

admits a continuous extension $F \in C(\bar{U})$.
(Hint : Use Theorem 1.16.)

Exercise 7

Let (X, d) be a metric space. Given a subset $\emptyset \neq Y \subset X$ show that:
(a) The topology on Y induced by the restricted metric $\left.d\right|_{Y \times Y}$ coincides with the relative topology $\left.t\right|_{Y}$ of the topology t induced by d on X.
(b) If (X, d) is complete, then $Y \subset X$ is closed if and only if $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete.

Exercise 8

Let $\left(X_{i}, t_{i}\right)$ be topological spaces $(i \in I)$. Equip $X=\prod_{i \in I} X_{i}$ with its product topology. For $i \in I$, let $A_{i} \subset X_{i}$ be subsets. Define $A=\prod_{i \in I} A_{i}$. Show that:
(a) If all $A_{i} \subset X_{i}(i \in I)$ are closed, then $A \subset X$ is closed.
(b) $\bar{A}=\prod_{i \in I} \overline{A_{i}}$,
(c) $\operatorname{Int}(\mathrm{A}) \subset \prod_{\mathrm{i} \in \mathrm{I}} \operatorname{Int}\left(\mathrm{A}_{\mathrm{i}}\right)$.

Decide whether equality holds in (c)! (Proof or counterexample.)

You may submit the solutions for the exercise sheets in groups up to three participants, belonging to the same tutorial group. "But please avoid to meet in person. To be admitted to the exam, you need 50% of the points achievable in the homework assignments. Homework marked with a star allows you to achieve additional points.
Only two of the four exercises are corrected: This time Exercise 6 and a second exercise chosen randomly.

You can also find the exercise sheets on our homepage:

