Prof. Dr. Jörg Eschmeier
M. Sc. Sebastian Toth

Exercises for the lecture Functional Analysis I

Winter term 2020/2021
Sheet 4
To be submitted until: Thursday, 03.12.2020, before the lecture

Exercise 13

Let $A, B \subset \ell^{1}$ be defined by

$$
\begin{gathered}
A=\left\{\left(a_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} ; a_{2 n}=0 \text { for all } n \in \mathbb{N}\right\} \\
B=\left\{\left(b_{n}\right)_{n \in \mathbb{N}} \in \ell^{1} ; b_{2 n}=2^{-n} b_{2 n+1} \text { for all } n \in \mathbb{N}\right\} .
\end{gathered}
$$

Show that:
(a) A and B are closed linear subspaces of ℓ^{1}.
(b) $A+B \subset \ell^{1}$ is not closed.
(Hint: Consider the sequences $\left(x_{k}\right)_{k \in \mathbb{N}},\left(y_{k}\right)_{k \in \mathbb{N}}$ in ℓ^{1} defined as $x_{k}=e_{1}+e_{3}+\ldots+e_{2 k+1}$ and $y_{k}=$ $e_{0}+2^{-1} e_{2}+\ldots+2^{-k} e_{2 k}+x_{k}$ for $k \in \mathbb{N}$, where $e_{i}=\left(\delta_{i, n}\right)_{n \in \mathbb{N}}(i \in \mathbb{N})$.)

Exercise 14

Let $(E,\|\cdot\|)$ be a normed space and let $E_{0} \subset E$ be a closed linear subspace. Let E / E_{0} be the quotient vector space of E modulo E_{0}. Write the elements of E / E_{0} as $[x]=x+E_{0} \in E / E_{0}$. Show that:
(a) $\|[x]\|=\inf \left\{\|x-y\| ; y \in E_{0}\right\}$ defines a norm on E / E_{0}.
(b) The quotient map $q: E \rightarrow E / E_{0}, q(x)=[x]$ is continuous linear and open.
(c) If E is complete, then E / E_{0} is complete.
(Hint : Show that each absolutely convergent series in E / E_{0} converges.)

Exercise 15

Let E be an infinite-dimensional vector space over $K=\mathbb{R}$ or $K=\mathbb{C}$. Show that there is a discontinuous linear map $u: E \rightarrow K$.

Let $E=C[0,1]$ be equipped with the norm $\|f\|_{\infty}=\sup \{|f(t)| ; t \in[0,1]\}$ and $F=C[0,1]$ equipped with the norm $\|f\|_{1}=\int_{0}^{1}|f(t)| d t$. Decide whether the following linear maps are continuous. If they are continuous, calculate their norm.
(a) $T: E \rightarrow E,(T f)(t)=\int_{0}^{1} e^{s t} f(s) d s$,
(b) $T: F \rightarrow F,(T f)(t)=f\left(t^{2}\right)$,
(c) $T: E \rightarrow F,(T f)(t)=\int_{0}^{t} s f(s) d s$.

You may submit the solutions for the exercise sheets in groups up to three participants, belonging to the same tutorial group. "But please avoid to meet in person. To be admitted to the exam, you need 50% of the points achievable in the homework assignments. Homework marked with a star allows you to achieve additional points. Only two of the four exercises are corrected: This time Exercise 14 and a second exercise chosen randomly.

You can also find the exercise sheets on our homepage:

