Universität des Saarlandes Fakultät 6.1 – Mathematik

Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

Übungen zur Vorlesung Funktionentheorie II (Hardyräume)

Wintersemester 2020/2021

Blatt 2

Abgabedatum: Mittwoch 18.11.2020

Sie können die Übungen in Gruppen von bis zu 3 Personen bearbeiten. Zur Zulassung für die Abschlussprüfung müssen mindestens 50 Prozent der Übungspunkte erreicht werden.

Aufgabe 4

(1+2+1+2*=5+2* Points)

(a) Sei $f: \overline{\mathbb{D}}\setminus\{0\} \to \mathbb{R}$ stetig, beschränkt und harmonisch auf $\mathbb{D}\setminus\{0\}$ und sei $g = H(f|_{\mathbb{T}})$. Für $\varepsilon > 0$ seien

$$h_{\varepsilon}(z) = g(z) - f(z) + \varepsilon \cdot \log|z|, \qquad \tilde{h}_{\varepsilon}(z) = f(z) - g(z) + \varepsilon \cdot \log|z|.$$

Zeigen Sie:

- (i) $\lim_{z \to 0} h_{\varepsilon}(z) = -\infty = \lim_{z \to 0} \tilde{h}_{\varepsilon}(z)$.
- (ii) $h_{\varepsilon} \leq 0$ und $\tilde{h}_{\varepsilon} \leq 0$ auf $\mathbb{D} \setminus \{0\}$.
- (iii) f = g auf $\overline{\mathbb{D}} \setminus \{0\}$.

(Hinweis: Benutzen Sie, dass $\log |z|$ harmonisch auf $\mathbb{C}\setminus\{0\}$ ist und denken Sie an das Maximumsprinzip.)

(b)* Beweisen Sie eine Version des Riemannschen Hebbarkeitssatzes für harmonische Funktionen.

Aufgabe 5 (4 Points)

Sei $\Omega \subset \mathbb{C}$ offen und sei $(u_n)_{n \in \mathbb{N}}$ eine Folge harmonischer Funktionen $u_n \colon \Omega \to \mathbb{C}$, die kompaktgleichmäßig auf Ω gegen eine Funktion $u \colon \Omega \to \mathbb{C}$ konvergiert. Zeigen Sie: u ist harmonisch.

Aufgabe 6 (2+2=4 Points)

- (a) Seien $u, v: \Omega \to \mathbb{C}$ harmonische Funktionen auf einem Gebiet $\Omega \subset \mathbb{C}$ so, dass die Menge $\{z \in \Omega; \ u(z) = v(z)\}$ nicht-leeres Inneres hat. Zeigen Sie: u = v. (Hinweis: Aufgabe 1)
- (b) Sei $u \colon \Omega \to \mathbb{R}$ eine harmonische Funktion auf einer offenen Menge $\Omega \subset \mathbb{C}$. Zeigen Sie, dass die Nullstellenmenge $Z(u) = \{a \in \Omega; \ u(a) = 0\}$ keine isolierten Punkte besitzen kann. (Hinweis : Für $a \in Z(u)$ und $D_r(a) \subset \Omega$ ist $u\left(\overset{\bullet}{D_r}(a)\right) \subset \mathbb{R}$ wegzusammenhängend, also ein Intervall.)

Sie können die Übungsblätter auch auf unserer Homepage finden: