Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

Übungen zur Vorlesung Funktionentheorie II (Hardyräume)

Wintersemester 2020/2021

Blatt 3

Abgabedatum: Mittwoch 25.11.2020

Aufgabe 7 (4 Points)

Sei $\Omega \subset \mathbb{C}$ offen und $u \colon \Omega \to \mathbb{C}$ stetig. Zeigen Sie, dass u harmonisch ist genau dann, wenn für alle $a \in \Omega$ und R > 0 mit $\overline{D}_R(a) \subset \Omega$ gilt:

$$u(a) = \frac{1}{\pi R^2} \int_{\overline{D}_R(a)} u(x+iy) \ dx \ dy$$

(Hinweis: Benutzen Sie für "⇒ "Polarkoordinaten, argumentieren Sie für "← "wie im Beweis von Korollar 2.10.)

Aufgabe 8 (1+2+1=4 Points)

Sei $u: \mathbb{C} \to \mathbb{C}$ harmonisch und beschränkt. Seien $a \in \mathbb{C}$ und r > |a|. Zeigen Sie:

- (a) $(D_r(a) \cup D_r(0)) \setminus (D_r(a) \cap D_r(0)) \subset D_{r+|a|}(0) \setminus D_{r-|a|}(0)$.
- (b) $|u(a) u(0)| \le \frac{1}{\pi r^2} \int_{(D_r(a) \cup D_r(0)) \setminus (D_r(a) \cap D_r(0))} |u(x + iy)| dx dy.$

(Hinweis: Benutzen Sie Aufgabe 7.)

(c) u ist konstant.

Aufgabe 9 (3x2=6 Points)

Zeigen Sie:

- (a) Für $f: \mathbb{D} \to \mathbb{C}$ sind äquivalent:
 - (i) f ist holomorph mit Re(f) > 0.
 - (ii) Es gibt ein Maß $\mu \in M^+(\mathbb{T})$ und ein $\alpha \in \mathbb{R}$ mit

$$f(z) = \int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\mu(\zeta) + i\alpha \quad (z \in \mathbb{D}).$$

- (b) Für $f: \mathbb{D} \to \mathbb{R}$ harmonisch sind äquivalent:
 - (i) $(||f_r||_1)_{0 \le r \le 1}$ ist beschränkt.
 - (ii) Es existieren $g, h \colon \mathbb{D} \to [0, \infty)$ harmonisch mit f = g h.

(Bitte wenden)

- (c) Für $f \colon \mathbb{D} \to \mathbb{C}$ harmonisch sind äquivalent:
 - (i) $(||f_r||_1)_{0 \le r < 1}$ ist beschränkt.
 - (ii) Es existiert $u \colon \mathbb{D} \to [0, \infty)$ harmonisch mit $|f| \le u$.

(Hinweis zu (b) und (c): Benutzen Sie die Jordan-Zerlegung von komplexen Maßen.)

Sie können die Übungsblätter auch auf unserer Homepage finden:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS2021/ft2/