Universität des Saarlandes Fakultät 6.1 – Mathematik

Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

Übungen zur Vorlesung Funktionentheorie II (Hardyräume)

Wintersemester 2020/2021

Blatt 5

Abgabedatum: Mittwoch 09.12.2020

Sei m das Lebesguemaß auf \mathbb{R}^n . Für ein reguläres komplexes Borelmaß $\mu \in M(\mathbb{R}^n)$ sei die Maximalfunktion von μ definiert durch

$$M\mu \colon \mathbb{R}^n \to [0, \infty], \quad M\mu(x) = \sup_{\delta > 0} \frac{|\mu|(B_\delta(x))}{m(B_\delta(x))}.$$

Aufgabe 13

(1+3=4 Punkte)

Sei $\mu \in M(\mathbb{R}^n)$ ein reguläres komplexes Borelmaß auf \mathbb{R}^n und m das Lebesguemaß auf \mathbb{R}^n . Zeigen Sie:

- (a) $\frac{m(B_{3\delta}(x))}{m(B_{\delta}(x))} = 3^n$ für alle $x \in \mathbb{R}^n$, $\delta > 0$.
- (b) Für alle t > 0 ist

$$m(\{x \in \mathbb{R}^n; \ M\mu(x) > t\}) \le 3^n \|\mu\|/t.$$

Hinweis zu (b): Argumentieren Sie wie im Beweis von Satz 4.7. Sie dürfen dabei ohne Beweis benutzen, dass $M\mu$ nach unten halbstetig ist und dass eine sinnvoll modifizierte Version des Covering Lemmas 4.6 gilt.

Aufgabe 14

(3x2=6 Punkte)

Für $f \in \mathfrak{L}^1(\mathbb{T})$ sei $T_f \colon \mathbb{T} \to [0, \infty]$ definiert durch

$$T_f(x) = \lim_{\delta \downarrow 0} \sup_{0 < \eta < \delta} \frac{1}{\lambda(K_{\eta}(z))} \int_{K_{\eta}(z)} |f(\xi) - f(z)| \ d\lambda(\xi).$$

Zeigen Sie, dass für $f, f_1, f_2 \in \mathfrak{L}^1(\mathbb{T})$ und $h \in C(\mathbb{T})$ gilt:

- (i) $T_{f_1+f_2} \leq T_{f_1} + T_{f_2}$,
- (ii) $T_f(z) \le |f(z)| + M(\lambda_{|f|})(z)$ für alle $z \in \mathbb{T}$,
- (iii) $T_h \equiv 0$.

Sei $\Omega \subset \mathbb{C}$ offen. Eine Funktion $u \colon \Omega \to [-\infty, \infty)$ heißt subharmonisch, falls u nach oben halbstetig ist und

$$u(z_0) \le \frac{1}{2\pi} \int_{-\pi}^{\pi} u(z_0 + re^{it}) dt$$

für jedes $z_0 \in \Omega$ mit $u(z_0) > -\infty$ und jede reelle Zahl r > 0 mit $\overline{D}_r(z_0) \subset \Omega$ gilt. (Die Existenz des Lebesgue-Integrals wird mit verlangt).

(Bitte wenden)

Aufgabe 15 (4 Punkte)

Sei $u\colon G\to [-\infty,\infty)$ eine subharmonische Funktion auf einem Gebiet $G\subset\mathbb{C}$. Zeigen Sie: Gibt es ein $a\in G$ mit $u(z)\leq u(a)$ für alle $z\in G$, so ist $u\equiv u(a)$. (Hinweis: Betrachten Sie die Menge $\{z\in G;\ u(z)=u(a)\}$.)

Sie können die Übungsblätter auch auf unserer Homepage finden:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS2021/ft2/