Prof. Dr. Jörg Eschmeier M.Sc. Manuel Kany

(2+2=4 Punkte)

Übungen zur Vorlesung Funktionentheorie II (Hardyräume)

Wintersemester 2020/2021

Blatt 8

Abgabedatum: Mittwoch 13.01.2021

Aufgabe 22

Sei $\varphi \colon \mathbb{D} \to \mathbb{D}$ holomorph mit $\varphi(0) = 0$. Zeigen Sie:

(a) Ist $u: \mathbb{D} \to [-\infty, \infty)$ subharmonisch, so gilt

$$\int_{-\pi}^{\pi} u(\varphi(re^{it})) dt \le \int_{-\pi}^{\pi} u(re^{it}) dt \quad (0 \le r < 1).$$

 $({\it Hinweis: Lemma\ von\ Schwarz\ aus\ der\ Funktionen theorie\ und\ Beweis\ von\ Satz\ 6.14.})$

(b) Ist $f \in H^p$ $(1 \le p \le \infty)$, so ist auch $f \circ \varphi \in H^p$ und

$$||f \circ \varphi||_p \le ||f||_p$$

Aufgabe 23

(2+2+1+1+1=7 Punkte)

Sei $f \in \mathcal{O}(\mathbb{D})$ nullstellenfrei mit $s := \sup_{0 \le r < 1} \int_{\mathbb{T}} \log^+ |f_r| \ d\xi < \infty$.

Zeigen Sie nacheinander:

- (a) $\sup_{0 \le r < 1} \int_{\mathbb{T}} \log^{-}|f_{r}| d\xi < \infty$. Benutzen Sie dabei die Mittelwerteigenschaft der Funktion $\log |f|$.
- (b) Es gibt ein reelles Maß $\mu \in M(\mathbb{T})$ mit $\log |f| = P[\mu]$.
- (c) Die Funktionen $h_{\pm} \colon \mathbb{D} \to \mathbb{C}$, $h_{\pm}(z) = \int_{\mathbb{T}} \frac{\xi + z}{\xi z} d\mu^{\pm}(\xi)$ sind holomorph mit Re $h_{\pm} \geq 0$ auf \mathbb{D} . $(\mu^{\pm}$ seien wie in Satz 1.4 definiert.)
- (d) $G = e^{-h_-}$, $H = e^{-h_+}$ sind Funktionen in H^{∞} mit |G/H| = |f|.
- (e) Es gibt Funktionen $g, h \in H^{\infty}$ mit f = g/h.

Aufgabe 24 (3 Punkte)

Sei $f \in H^p$ $(1 \le p \le \infty)$. Zeigen Sie:

$$\sup_{0 \le r < 1} \int_{\mathbb{T}} \log^+ |f_r| \ d\xi < \infty.$$

Sie können die Übungsblätter auch auf unserer Homepage finden:

https://www.math.uni-sb.de/ag/eschmeier/lehre/WS2021/ft2/