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Introduction

Suppose that p1, . . . , pr are homogeneous polynomials in d variables with complex
coefficients, and consider the system of equations

pi(a1, . . . , ad) = 0 (i = 1, . . . , r). (1)

In (projective) complex algebraic geometry, the set of all complex scalars a1, . . . , ad
which satisfy (1) is studied. The problem, however, makes sense whenever the ai
are assumed to be pairwise commuting elements of a unital complex algebra. For
example, one can seek for solutions where the ai are pairwise commuting matrices, or,
more generally, pairwise commuting bounded linear operators on a complex Hilbert
space. It is a remarkable fact that in the realm of operators on a Hilbert space, (1)
admits a universal solution in some sense, provided one adds a certain contractivity
condition.
To explain this phenomenon, it is helpful to consider for the moment the most

basic case, where d = 1 and the only polynomial in (1) is the zero polynomial. For
d = 1, our contractivity condition is just that the solution is a contraction. So
the solutions we are interested in are precisely all contractions. A famous result
concerning contractions on a Hilbert space is von Neumann’s inequality [vN51].

Theorem 1. Let H be a Hilbert space, and let T be a contraction on H. Then the
inequality

||p(T )|| ≤ ||p||D
holds for all polynomials in one variable, where the right-hand side denotes the supre-
mum norm of p on the closed unit disk.

Observe that the unilateral shift Mz on the Hardy space H2(D) is a contraction
which achieves equality in von Neumann’s inequality for all polynomials. If A1

denotes the unital norm-closed non-selfadjoint subalgebra of L(H2(D)) generated
by Mz, we can therefore restate von Neumann’s inequality as follows:

Theorem 2. For any contraction T on a Hilbert space H, there is a (necessarily
unique) unital contractive algebra homomorphism

Φ : A1 → L(H) with Φ(Mz) = T.
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Introduction

In this sense, the unilateral shiftMz can be thought of as the universal contractive
solution for (1) when d = 1 and there are no relations. We call A1 the universal
operator algebra generated by a contraction. Note that the algebra A1 can be
naturally identified with the disk algebra A(D).
Assume now that d ≥ 1. Let T = (T1, . . . , Td) be a d-tuple of pairwise commut-

ing bounded linear operators on a Hilbert space H. For d ≥ 1, the contractivity
condition we will impose is that T is a row contraction, that is, that the row operator

Hd → H, (xi)
d
i=1 7→

d∑
i=1

Tixi

is a contraction, or, equivalently, that
∑d

i=1 TiT
∗
i ≤ 1. The correct analogue of

von Neumann’s inequality for commuting row contractions was discovered by Drury
[Dru78] and Arveson [Arv98]. In the multivariate setting, the role of the Hardy
space H2(D) is played by the Drury-Arveson space, also known as symmetric Fock
space. It is the reproducing kernel Hilbert space on the open unit ball Bd in Cd with
reproducing kernel

K(z, w) =
1

1− 〈z, w〉Cd
(z, w ∈ Bd).

The coordinate functions zi induce multiplication operators

Mzi : H2
d → H2

d , f 7→ zif,

and the commuting tuple Mz = (Mz1 , . . . ,Mzd) is a row contraction, which is called
the d-shift. Note that for d = 1, the Drury-Arveson space is just the Hardy space
H2(D) and the d-shift is the unilateral shift. If Ad denotes the unital norm-closed
non-selfadjoint subalgebra of L(H2

d) generated by Mz1 , . . . ,Mzd , the multivariate
analogue of Theorem 2 is the following result.

Theorem 3. For any commuting row contraction T = (T1, . . . , Td) on a Hilbert
space H, there is a (necessarily unique) unital completely contractive algebra homo-
morphism

Φ : Ad → L(H) with Φ(Mzi) = Ti for i = 1, . . . , d.

Consequently, we can think of Mz as the universal solution for (1) within the
class of all row contractions when there are no relations. We call Ad the universal
operator algebra generated by a commuting row contraction.
Let us now consider the case when there are actual relations in (1). The existence

of a universal operator algebra when there are no relations easily implies the exis-
tence of a universal object in the case of general homogeneous polynomial relations.
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If I is the ideal generated by the polynomials pi from (1), let us denote the norm-
closure of I in Ad by Ĩ, where we identify a polynomial p with the operator p(Mz).
Then the residue classes of Mzi in Ad/Ĩ satisfy the relations in I, and Theorem 3
has the following consequence.

Corollary 4. Let I ⊂ C[z1, . . . , zd] be a homogeneous ideal. Suppose that T =
(T1, . . . , Td) is a commuting row contraction on a Hilbert space H satisfying p(T ) = 0
for all p ∈ I. Then there is a (necessarily unique) unital completely contractive
algebra homomorphism

Φ : Ad/Ĩ → L(H) with Φ([Mzi ]) = Ti for i = 1, . . . , d,

where Ĩ denotes the closure of I in Ad.

From a certain point of view, this result is not completely satisfactory, since the
algebra Ad/Ĩ is not an algebra of operators on a Hilbert space. In particular, the
equivalence class of the tuple Mz, which is the universal solution of the equations
in I in the above sense, is not an operator tuple. The algebra Ad/Ĩ is, however,
an abstract operator algebra in the sense of Blecher, Ruan and Sinclair (see, for
example, [ER00, Chapter 17]), hence it is completely isometrically isomorphic to a
concrete operator algebra.
There is also a more direct way to identify Ad/Ĩ with an algebra of concrete

operators. To this end, set
FI = H2

d 	 I.
The space FI is co-invariant for the tupleMz, so the compression SI ofMz to FI is a
commuting row contraction. Let AI be the unital norm-closed algebra generated by
SI . Then Ad/Ĩ is completely isometrically isomorphic to AI via a homomorphism
sending [Mzi ] to SIi for each i. Thus, AI is the universal operator algebra generated
by a commuting row contraction subject to the relations in I.
In this Master’s thesis, which is based upon the article [DRS11] by Davidson,

Ramsey and Shalit, the isomorphism problem for the algebras AI is studied. More
explicitly, the following question is considered:

Question 5. Let I, J ⊂ C[z1, . . . , zd] be homogeneous ideals. Under which condi-
tions are the algebras AI and AJ isomorphic?

We will mostly be concerned with radical homogeneous ideals. In this case, there
is a close connection between the structure of the algebra AI and the geometry
of the vanishing locus V (I). Of course, there are several reasonable notions of
isomorphisms between the algebras AI , most notably, topological and isometric
isomorphisms. In the radical case, we will obtain an answer to the above question in
terms of the geometry of the vanishing loci V (I) and V (J) for both these notions.
The main theorem concerning isometric isomorphisms is the following result from
[DRS11]:
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Theorem 6. Let I, J ⊂ C[z1, . . . , zd] be radical homogeneous ideals. The algebras
AI and AJ are isometrically isomorphic if and only if there exists a unitary map U
on Cd which maps V (J) onto V (I).

In the case of topological isomorphisms, we will show the following theorem:

Theorem 7. Let I, J ⊂ C[z1, . . . , zd] be radical homogeneous ideals. The algebras
AI and AJ are topologically isomorphic if and only if there exists an invertible linear
map A on Cd which maps V (J) ∩ Bd onto V (I) ∩ Bd.

Necessity of the existence of a linear map as in the theorem was proven in [DRS11].
The converse was established by the authors of [DRS11] for the case of tractable
varieties, and was conjectured to be true in general. The preceding theorem gives a
positive answer to this conjecture.
We will obtain analogous results for the WOT-closures of the algebras AI . In the

non-radical case, we can at least classify the algebras AI up to isometric isomor-
phism.
In more detail, the contents of this Master’s thesis are as follows: In the first chap-

ter, we study a rather general class of spaces of holomorphic functions on circular sets
in Cd. This class contains in particular the Drury-Arveson space H2

d and the algebra
Ad, which are the main examples we have in mind. We establish Cesàro-convergence
of the homogeneous expansions of functions in those spaces (Proposition 1.6), and
deduce a Nullstellensatz for homogeneous polynomial ideals (Theorem 1.7). In the
case where the space of holomorphic functions is itself an algebra, we prove - un-
der some mild hypotheses - a Nullstellensatz for homogeneous ideals in the algebra
(Theorem 1.22).
The purpose of the second chapter is to recall some well-known facts about the

Drury-Arveson space H2
d , and to explain the identification of Ad/Ĩ and AI (Theorem

2.17), which was alluded to earlier. We show that in the radical case, the algebra
AI is in a natural way an algebra of continuous functions on V (I)∩Bd. In the final
section, we examine the effect of a unitary change of variables on the Drury-Arveson
space and on the algebra Ad. This will already prove one implication of Theorem 6.
The main results of the third chapter are Theorem 3.36 and Theorem 3.28, which

establish necessity of the existence of the linear maps in Theorem 6 and Theorem 7.
To this end, we show that the maximal ideal space of the algebra AI can be identified
with V (I) ∩ Bd, and prove that algebra isomorphisms between AI and AJ induce
biholomorphic maps between V (J)∩Bd and V (I)∩Bd. Those isomorphisms with the
property that the induced biholomorphic map fixes the origin will play an important
role, and they will be called vacuum-preserving. Examining biholomorphic maps on
homogeneous varieties, we will see in Proposition 3.27 that two isomorphic algebras
AI and AJ are isomorphic via a vacuum-preserving isomorphism, and that such a
vacuum-preserving isomorphism is induced by a linear map on Cd.
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In the fourth chapter, we show that the necessary condition for AI and AJ being
topologically isomorphic, established in the third chapter, is also sufficient. We begin
by reducing the problem to the case where the varieties are unions of subspaces, a
fact which was established in [DRS11]. The remaining parts of this chapter are new.
We observe that in order to treat the case of unions of subspaces, it suffices to show
that finite algebraic sums of full Fock spaces over subspaces of Cd are closed. We
achieve this with the help of the notion of the Friedrichs angle. The proof consists
of two main steps, namely the reduction to subspaces with trivial joint intersection
(Lemma 4.36), and the solution of the this case (Theorem 4.46)
The fifth chapter deals with the isomorphism problem for the algebras AI , where

I ⊂ C[z1, . . . , zd] is a homogeneous, but not necessarily radical ideal. Theorem
5.9 is from [DRS11] and classifies the algebras AI up to isometric isomorphism.
For the case of topological isomorphisms, we only obtain partial results. We show
in Theorem 5.13 that if two algebras AI and AJ are isomorphic, then they are
isomorphic via an isomorphism which is induced by an invertible linear map on Cd.
In a very particular case, this allows us to find a necessary and sufficient condition
for AI and AJ being isomorphic in terms of the ideals I and J (Theorem 5.17).
In the sixth chapter, we consider the WOT-closures LI of the algebras AI . We

establish results which are analogous to those from the second chapter for the alge-
bras AI , namely that LI can be identified with a quotient of the multiplier algebra
of the Drury-Arveson space, and that in the radical case, LI is naturally a function
algebra. As in the norm-closed case, we continue by studying the maximal ideal
space of LI , and prove that algebra isomorphisms induce certain biholomorphisms.
The main theorem is Theorem 6.13 which asserts that in the radical case, the iso-
morphism classes of the algebras LI are the same as those of the algebras AI , so
that the results from previous chapters give an answer to the isomorphism problem
for the algebras LI .
As mentioned before, this thesis is based upon the paper [DRS11]. For the most

part, we closely follow the exposition given there. New are Chapter 4 without the
first section and the last section of Chapter 5. The content of the former is submitted
for peer review, and is also available under [Har12].
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1. Spaces of holomorphic
functions on circular sets

1.1. The basic setup

Let f be a holomorphic function on the open unit ball in Cd. Then f admits a locally
uniformly convergent expansion f =

∑∞
n=0 fn, where each fn is a homogeneous

polynomial of degree n. Indeed, this follows by regrouping the terms in the Taylor
expansion of f around the origin. The purpose of this chapter is to establish a global
homogeneous expansion for certain spaces of holomorphic functions. Moreover, we
will deduce a Nullstellensatz for homogeneous ideals. In subsequent chapters, we will
only need these results for the Drury-Arveson space (see Section 2.1) and algebras
of multipliers on this space. Already the authors of [DRS11] observed that the
homogeneous expansion and the Nullstellensatz remain valid in a broader class of
spaces. We will adapt the techniques from [DRS11, Section 6] to the following even
more general situation.
Throughout this chapter, let Ω ⊂ Cd be an open connected set containing the

origin which is circular in the sense that eitz ∈ Ω for all t ∈ R and z ∈ Ω. Suppose
that B is a locally convex Hausdorff space of analytic functions on Ω which satisfies
the following properties:

(a) B is quasi-complete,

(b) for all z ∈ Ω, the evaluation functional B → C, f 7→ f(z), is continuous,

(c) for all f ∈ B and t ∈ R, the function ft defined by ft(z) = f(eitz) for z ∈ Ω
is contained in B, and the map R→ B, t 7→ ft, is continuous.

For the sake of brevity, we will call such a space admissible.
A comment on the assumptions seems to be in order. While (a) and (b) are

quite natural, and are satisfied by most spaces of interest, assumption (c) is more
restrictive in comparison. We will show that every admissible space admits a dense
subspace consisting of polynomials (see Proposition 1.6), so that condition (c) is,
for example, not satisfied by H∞(D), equipped with the sup norm.
We begin by exhibiting some examples of admissible spaces. The following simple

observation is often useful for establishing condition (c).

13



1. Spaces of holomorphic functions on circular sets

Lemma 1.1. Let X be a locally convex Hausdorff space of analytic functions on Ω
with the property that ft ∈ X for all f ∈ X and t ∈ R. Suppose that X admits a
family of seminorms p generating the topology on X which satisfy p(ft) = p(f) for
all f ∈ X and t ∈ R. Then the map

R×X → X, (t, f) 7→ ft

is continuous if and only if for all f ∈ X, the map

R→ X, t 7→ ft

is continuous at 0.

Proof. The non-trivial implication follows from the estimate

p(ft − gs) = p(ft−s − g) ≤ p(ft−s − f) + p(f − g)

for f, g ∈ X and s, t ∈ R.

We write O(Ω) for the space of all holomorphic functions on Ω, equipped with
the topology of locally uniform convergence. Recall that O(Ω) is a Fréchet space,
and in particular complete.

Lemma 1.2. The space O(Ω) is admissible.

Proof. The only requirement of admissible spaces that needs to be proved is the last
one. To this end, let K be a compact subset of Ω. Then

K̂ = {eitz : z ∈ K, t ∈ [0, 2π]}

is again a compact subset of Ω, and it contains K. It is easy to check that for
f ∈ O(Ω) and t ∈ R, we have ||ft||K̂ = ||f ||K̂ . Thus O(Ω) admits a family of
seminorms as in the hypothesis of Lemma 1.1. Since for each f ∈ O(Ω), we have

lim
t→0
||ft − f ||K̂ = 0

by uniform continuity of f on K̂, the assertion follows from Lemma 1.1.

If we know a priori that the polynomials are dense in a Banach space of analytic
functions on Ω, then it is often easy to show that it is admissible. The following
lemma covers for example the Hardy spaces Hp(Bd) and the Bergman spaces Ap(Bd)
for 1 ≤ p < ∞, and also the ball algebra, that is, the algebra of all continuous
functions on the closed unit ball Bd which are holomorphic on the open unit ball
Bd, endowed with the sup norm.

14



1.1. The basic setup

Lemma 1.3. Let E be a Banach space of analytic functions on Ω with continuous
point evaluations such that

(a) the polynomials form a dense subset of E,

(b) for all f ∈ E and t ∈ R, the function ft is contained in E and ||ft|| = ||f ||.

Then E is admissible.

Proof. We infer again from Lemma 1.1 that it suffices to show that the set

A = {f ∈ E : lim
t→0
||ft − f || = 0}

equals E. It is straightforward to prove that A is norm-closed in E. Indeed, if
f ∈ A, ε > 0 and g ∈ A with ||f − g|| < ε

4
, choose δ > 0 such that ||gt − g|| < ε

2
for

all t ∈ R satisfying |t| < δ. Then for all t ∈ R with |t| < δ, we have

||ft − f || ≤ ||ft − gt||+ ||gt − g||+ ||g − f || = 2||f − g||+ ||gt − g|| < ε,

and hence f ∈ A. Moreover, A is obviously a subspace of E. To finish the proof,
we show that the monomials are contained in A. If zα is monomial, then

(zα)t = e|α|itzα,

thus

||(zα)t − zα|| = |e|α|it − 1| ||zα|| t→0−−→ 0,

so zα ∈ A, as asserted.

As mentioned at the beginning of the section, we will mostly be concerned with
spaces that arise in the context of reproducing kernel Hilbert spaces. For the gen-
eral theory of reproducing kernel Hilbert spaces, we refer to Appendix A and the
references therein. A natural condition for a Hilbert function space on Ω is that the
kernel K reflects the symmetry of Ω, that is, that K(z, w) = K(eitz, eitw) for all
z, w ∈ Ω and t ∈ R. In what follows, such a space will be called circular. Lemma
A.5 shows that H is circular if and only if f 7→ ft defines a unitary operator on H
for each t ∈ R.

Lemma 1.4. Let H be a circular reproducing kernel Hilbert space of analytic func-
tions on Ω without common zeros. Then the following assertions hold:

(a) H is admissible.

(b) The multiplier algebra, equipped with the strong or the weak operator topology,
is admissible.

15



1. Spaces of holomorphic functions on circular sets

(c) If the polynomials are multipliers on H, then the norm-closure of the polyno-
mials in Mult(H), equipped with the norm topology, is admissible.

Proof. (a) The first two requirements on admissible spaces are clear. As for the
third, we use again Lemma 1.1 to reduce the problem to showing that t 7→ ft is
continuous at 0 for each f ∈ H. In fact, since ||ft|| = ||f || for all t ∈ R, it suffices
to show that the map is weakly continuous at 0. So let (tn)n be a sequence of real
numbers that converges to 0. Since {K(·, w);w ∈ Ω} is total in H and the sequence
(ftn) is bounded, it even suffices to show that

〈ftn , K(·, w)〉 n→∞−−−→ 〈f,K(·, w)〉

for all w ∈ Ω. But this follows at once from the continuity of f and the identities

〈ftn , K(·, w)〉 = f(eitnw) and 〈f,K(·, w)〉 = f(w).

(b) The observation that Mult(H) is WOT-closed, and hence SOT-closed (see
Lemma A.10), and that point evaluations are WOT-continuous, and hence SOT-
continuous (see Lemma A.9 (c)), establishes the first two requirements on admissible
spaces. To prove the third, let Ut denote the unitary operator on H defined by
Utf = ft, where t ∈ R. If ϕ is a multiplier on H and t ∈ R, then

(UtMϕU−t)f = (ϕ · f−t)t = ϕt · f

for all f ∈ H, so that ϕt ∈ Mult(H) with Mϕt = UtMϕU−t. Part (a) shows that
t 7→ Ut is SOT-continuous, and since multiplication is SOT-continuous on bounded
sets, we deduce that the map

R→ Mult(H), t 7→Mϕt = UtMϕU−t

is SOT-continuous, and, a fortiori, WOT-continuous.
(c) The proof of (b) shows that ||Mϕt || = ||Mϕ|| for ϕ ∈ Mult(H) and t ∈ R, so

that the assertion is an immediate consequence of Lemma 1.3.

Note that the example of H∞(D), which is the multiplier algebra of the Hardy
spaceH2(D), shows that the whole multiplier algebra of a circular reproducing kernel
Hilbert space, endowed with the norm topology, need not be admissible.

1.2. Homogeneous expansion and a Nullstellensatz

In order to obtain a homogeneous expansion of functions in admissible spaces, we
require some results concerning vector valued integration. To set the stage, let K be
a compact Hausdorff space, let µ be a regular Borel measure on K and let X be a

16



1.2. Homogeneous expansion and a Nullstellensatz

locally convex Hausdorff space. Moreover, suppose that f : K → X is a continuous
function. If there exists an element y ∈ X such that

x′(x) =

∫
K

(x′ ◦ f) dµ for all x′ ∈ X ′, (1.1)

then we call x the (weak) integral of f over K and write x =
∫
K
f dµ. Here, X ′

denotes the space of all continuous linear functionals on X. Clearly, the Hahn-
Banach theorem implies that the integral, if existent, is uniquely determined by
(1.1). See also [Rud91, Definition 3.26].

Remark 1.5. Let K,X, and f be as above.

(1) Suppose that
∫
K
f dµ exists, and let p be a continuous seminorm on X. Us-

ing equation (1.1) together with an obvious application of the Hahn-Banach
theorem, we see that

p
(∫
K

f dµ
)
≤
∫
K

(p ◦ f) dµ.

In particular, if V is a closed absolutely convex neighborhood of 0 and if f
takes values in V , then

∫
K
f dµ ∈ µ(K)V .

(2) It is well known that
∫
K
f dµ always exists if X is a Banach space. In fact,

the weak integral is equal to the integral obtained by the familiar construction
using Riemann sums.

(3) For a large class of locally convex Hausdorff spaces, the existence of
∫
K
f dµ

follows from [Rud91, Theorem 2.27]. There, the requirement on X is that
the closed convex hull of a compact subset of X be compact. Rudin shows
in [Rud91, Theorem 3.20 (c)] that all Fréchet spaces meet this condition. It
turns out that this remains true in all quasi-complete locally convex Hausdorff
spaces [Bou87, IV, p.37, Theorem 3].

(4) Although the results in this section are formulated for a rather general class
of function spaces, we will ultimately be only concerned with Banach spaces
of functions and with multiplier algebras of reproducing kernel Hilbert spaces,
endowed with the weak or the strong operator topology. The existence of the
integral in these cases follows from the preceding remarks. However, it seems
worthwhile to give a direct argument for the latter case. That is, we wish to
show that the integral exists if X is a WOT-closed subspace of L(H) for some
Hilbert space H, equipped with the weak or the strong operator topology.

Notice that, by the Hahn-Banach theorem, it suffices to show that the integral
exists in L(H). Moreover, it is well-known that the SOT-continuous linear

17



1. Spaces of holomorphic functions on circular sets

functionals on L(H) coincide with the WOT-continuous ones, and are given
by

L(H)→ C, T 7→
r∑
i=1

〈Txi, yi〉 (1.2)

for some vectors x1, . . . , xr, y1, . . . , yr ∈ H. Since being SOT-continuous is a
stronger condition than being WOT-continuous for a function f : K → X,
it therefore suffices to consider the case where X is endowed with the weak
operator topology.

One way to establish the existence of the integral is to argue that WOT-
compact sets are always norm-bounded by the uniform boundedness principle,
and since the unit ball of L(H) is WOT-compact and convex, the WOT-
closed convex hull of WOT-compact sets is WOT-compact. Thus, we can
apply [Rud91, Theorem 2.27].

A more elementary argument goes as follows: Define a sesquilinear form

(x, y) 7→
∫
K

〈f(t)x, y〉 dµ(t)

on H. Using the uniform boundedness principle, we see that the sesquilinear
form is continuous, so by the Lax-Milgram theorem, there exists an operator
T ∈ L(H) such that

〈Tx, y〉 =

∫
K

〈f(t)x, y〉 dµ(t)

for all x, y ∈ H. Since WOT-continuous linear functionals are of the form
(1.2), we conclude that T =

∫
K
f dµ.

Having justified the use of vector-valued integration in admissible spaces, we can
establish the desired homogeneous expansion of functions in these spaces. To shorten
notation, let us write C[z] instead of C[z1, . . . , zd] if d is understood.

Proposition 1.6. Let B be an admissible space of analytic functions on Ω. Let
f ∈ B, and let f =

∑∞
n=0 fn be the homogeneous expansion of f in a neighborhood

of the origin.

(a) For all n ∈ N, we have

fn =
1

2π

2π∫
0

ft e
−int dt ∈ B. (1.3)

For n < 0, the integral is zero.

18



1.2. Homogeneous expansion and a Nullstellensatz

(b) The series
∑∞

n=0 fn is Cesàro-convergent to f in the topology of B. In partic-
ular, f lies in the closed linear span of its homogeneous components.

(c) B contains B ∩ C[z] as a dense subspace.

Proof. (a) For f ∈ B and n ∈ Z, let Pn(f) denote the right-hand side of equa-
tion (1.3). By the preceding remark, the integral makes sense. So Pn(f) ∈ B is
holomorphic, and since evaluation at a point in Ω is continuous, we have

Pn(f)(z) =
1

2π

2π∫
0

f(eitz)e−itn dt

for all z ∈ Ω, where the integral is just an ordinary complex-valued integral. Since
the homogeneous expansion of f converges uniformly in a small ball Br(0) ⊂ Ω, we
deduce that

Pn(f)(z) =
∞∑
k=0

1

2π

2π∫
0

fk(z)ei(k−n)tdt = fn(z)

for all z ∈ Br(0). The identity theorem shows that Pn(f) = fn on Ω. This observa-
tion finishes the proof of (a).
To show part (b), let

Dk(t) =
k∑

j=−k

e−ijt and Kn(t) =
1

n+ 1

n∑
k=0

Dk(t) =
n∑

j=−n

(
1− |j|

n+ 1

)
eijt

denote the Dirichlet and Fejér kernel, respectively. By part (a), we have

1

2π

2π∫
0

ftDk(t) dt =
k∑
j=0

fj

and

1

2π

2π∫
0

ftKn(t) dt =
1

n+ 1

n∑
k=0

k∑
j=0

fj.

Thus it suffices to show that

lim
n→∞

1

2π

2π∫
0

ftKn(t) dt = f0 = f.

We adjust the proof for the normed case in [Kat68, Lemma I 2.2] to the locally
convex case. First, we recall three properties of the Fejér kernel:
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1. Spaces of holomorphic functions on circular sets

1. Kn(t) ≥ 0 for all t ∈ R and n ∈ N.

2. 1
2π

∫ 2π

0
Kn(t) dt = 1.

3. For all 0 < δ < π,

lim
n→∞

2π−δ∫
δ

Kn(t) dt = 0.

The proof of these well known identities can be found in [Kat68, Lemma I 2.5]. Now,
let p be a continuous semi-norm on B and let ε > 0 be arbitrary. By continuity of
the map t 7→ ft, we find a δ > 0 such that p(ft − f0) < ε

2
for all t with |t| ≤ δ. By

the third property, there is an N ∈ N such that

sup
t∈[0,2π]

p(ft − f0)
1

2π

2π−δ∫
δ

Kn(t) dt <
ε

2

for all n ≥ N . Using this estimate and the second property, we obtain for all n ≥ N

p

 1

2π

2π∫
0

ftKn(t) dt− f0

 = p

 1

2π

2π∫
0

Kn(t)(ft − f0) dt


≤ 1

2π

δ∫
−δ

Kn(t)p(ft − f0) dt+
1

2π

2π−δ∫
δ

Kn(t)p(ft − f0) dt

≤ ε

2
+
ε

2
= ε,

where we have used the estimate from the first part of the preceding remark. This
completes the proof of part (b), and (c) is an immediate consequence of (b).

With the above proposition in hand, we can now deduce a Nullstellensatz for
admissible spaces B of analytic function on Ω. For J ⊂ B, we write

VΩ(J) = {z ∈ Ω; f(z) = 0 for all f ∈ J}.

Conversely, for a set X ⊂ Ω, we define

IB(X) = {f ∈ B; f(z) = 0 for all z ∈ X}.

Theorem 1.7. Let B be an admissible space of functions containing the polynomials,
and let I ⊂ C[z] be a homogeneous ideal. Then

IB(VΩ(I)) =
√
I.
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1.3. Properties of the homogeneous expansion

Proof. One inclusion is elementary. If f ∈
√
I, say fN ∈ I for some N ∈ N, then

fN , and hence also f , vanish on VΩ(I), so f ∈ IB(VΩ(I)). Since evaluation at a point
in Ω is continuous, IB(VΩ(I)) is closed, from which we infer that IB(VΩ(I)) ⊃

√
I.

Conversely, let f ∈ IB(VΩ(I)), and let f =
∑∞

n=0 fn be its homogeneous expansion
in a neighborhood of 0. We will show that each fn vanishes on V (I). Since I is
homogeneous,

CV (I) = V (I).

In particular, given z ∈ VΩ(I) = V (I) ∩ Ω, we have eitz ∈ VΩ(I) for all t ∈ R. It
follows from Proposition 1.6 and continuity of the point evaluations that

fn(z) =
1

2π

2π∫
0

f(eitz)e−int dt = 0.

We conclude that fn vanishes on V (I), so fn ∈
√
I by Hilbert’s Nullstellensatz

(see, for example, [Eis95, Theorem 1.6.]). Another application of Proposition 1.6
shows that f lies in the closed linear span of its homogeneous components, hence
f ∈
√
I.

1.3. Properties of the homogeneous expansion

Let B be an admissible space of analytic functions on a circular set Ω. According
to Proposition 1.6, the homogeneous expansion of a function f in B is Cesàro-
convergent to f in the topology of B. In this section, we will take a closer look at
this homogeneous expansion, and the projections Pn on B sending a function to its
homogeneous component of degree n.
Remark 1.8. By definition of Pn, we have

Pn(f) =
∑
|α|=n

1

α!

∂αf

∂z|α|
(0)zα

for all f ∈ B and n ∈ N. Since C[z]n, the space of homogeneous polynomials of
degree n, is finite-dimensional, it follows that the projections Pn are continuous if
and only if all linear functionals

B → C, f 7→ ∂αf

∂z|α|
(0)

are continuous.
The following lemma shows that the projections Pn are automatically continuous

in many cases. The second part is useful especially in combination with Lemma 1.1.
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1. Spaces of holomorphic functions on circular sets

Lemma 1.9. Let B be an admissible space of functions.

(a) If B is barrelled or bornological, then convergence in B implies locally uniform
convergence on Ω, and all projections Pn are continuous.

(b) If (t, f) 7→ ft is jointly continuous as a map from R × B into B, then all
projection Pn are continuous.

Proof. (a) Since B is quasi-complete, it is barreled in both cases. By continuity of
the functions in B, the point evaluations over a compact set in Ω are point-wise
bounded, hence they are equicontinuous. It follows that convergence in B implies
locally uniform convergence, so the assertion follows from the preceding remark.
(b) By linearity of Pn, it is sufficient to proof continuity at 0. Given a closed

absolutely convex neighborhood U of 0 in B, a simple compactness argument shows
that there is a neighborhood V of 0 in B such that gt ∈ U for all g ∈ V and
t ∈ [0, 2π]. Hence the first part of Remark 1.5 shows that

Pn(g) =
1

2π

2π∫
0

gte
−int dt ∈ U

for all g ∈ V , so that Pn is continuous at 0.

If H is a circular reproducing kernel Hilbert space, then the preceding lemma
shows that the projections Pn are continuous. In fact, a stronger statement holds.

Lemma 1.10. Let H be a circular reproducing kernel Hilbert space. Then the projec-
tions Pn sending a function to its homogeneous component of degree n are orthogonal
projections onto mutually orthogonal spaces, and the series

∑∞
n=0 Pn converges to the

identity in the strong operator topology.

Proof. Equation (1.3) in Proposition 1.6 shows that the projections Pn are contrac-
tive, so they are orthogonal projections. It is clear that PnPm = 0 for n 6= m, hence
the ranges of the projections are mutually orthogonal. It follows that

∑∞
n=0 Pn con-

verges in the strong operator topology to an operator which acts as the identity on
C[z]∩H. Since the latter is a dense subspace of H (see part (c) of Proposition 1.6),
the assertion follows.

Also for the multiplier algebra of a circular reproducing kernel Hilbert space, we
obtain continuity of the projections.

Lemma 1.11. Let H be a circular reproducing kernel Hilbert space containing the
constant function 1. On Mult(H), endowed with the strong or the weak operator
topology, the projections Pn are continuous.
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1.3. Properties of the homogeneous expansion

Proof. On H, all linear functionals

λα : H → C, f 7→ ∂αf

∂z|α|
(0)

are continuous (this follows for example from part (a) in Lemma 1.9). It follows
that

Mult(H)→ C, ϕ 7→ ∂αϕ

∂z|α|
(0) = λα(Mϕ1)

is WOT-continuous, and hence also SOT-continuous. So an application of Remark
1.8 finishes the proof.

If the projections Pn are continuous, then we can go back and forth between
homogeneous ideals of polynomials and their closures.

Lemma 1.12. Let B be an admissible space of functions containing the polynomials,
and suppose that the projections Pn are continuous. Let I ⊂ C[z] be a homogeneous
ideal. If f ∈ I ⊂ B with homogeneous decomposition f =

∑∞
n=0 fn, then fn ∈ I for

all n ∈ N. In particular, I ∩ C[z] = I.

Proof. By homogeneity of I, each Pn maps I into I ∩ C[z]n. Since the Pn are
continuous, and since I ∩C[z]n is finite-dimensional and hence closed in B, each Pn
maps I into I ∩C[z]n, which shows the first assertion, and the second one obviously
follows from this observation.

In the setting of circular reproducing kernel Hilbert spaces, we can again say a
bit more.

Lemma 1.13. Let H be a circular reproducing kernel Hilbert space, and let I ⊂ C[z]
be a homogeneous ideal. If Pn denotes the projection sending a function in H to its
homogeneous component of degree n, then PnPI = PIPn holds for all n ∈ N.

Proof. Lemma 1.12 shows that I is invariant under each Pn. According to Lemma
1.10, each Pn is an orthogonal projection, so that I is reducing for Pn, which proves
the assertion.

We have seen in Proposition 1.6 that the homogeneous expansion of a function f
in B is Cesàro-convergent to f in the topology of B. In general, the series need not
converge itself. Nevertheless, it is possible to establish convergence in some cases.
For example, Lemma 1.10 shows that the series is always convergent in circular
reproducing kernel Hilbert spaces. The following simple lemma is sometimes useful
to deduce convergence of a related series. It asserts that the coefficients of a Cesàro-
convergent series, although possibly unbounded, cannot grow to rapidly.
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1. Spaces of holomorphic functions on circular sets

Lemma 1.14. Let E be a topological vector space and (an)n be a sequence in E such
that

∑∞
n=0 an is Cesàro-convergent. Then

an
n

n→∞−−−→ 0.

Proof. Write

bk =
k∑
j=0

aj and cn =
1

n+ 1

n∑
k=0

bk.

Then bn = (n+ 1)cn− ncn−1 and an = bn− bn−1. Since (cn)n is convergent, we have

bn
n

= cn − cn−1 +
cn
n

n→∞−−−→ 0,

hence limn→∞
an
n

= 0 as well.

As a first application, we show that Proposition 1.6 implies the following complex
analytic fact.

Lemma 1.15. Let Ω ⊂ Cd be a circular connected open set containing the origin.
Let f ∈ O(Ω), and let f =

∑∞
n=0 fn be the homogeneous expansion of f in a neigh-

borhood of the origin. Then the series
∑∞

n=0 fn converges locally uniformly on Ω to
f .

Proof. Recall from Lemma 1.2 thatO(Ω) is admissible, so that Proposition 1.6 shows
that the homogeneous expansion of f is Cesàro-convergent to f in the topology of
O(Ω). To show that the series is itself convergent, let z0 ∈ Ω and r > 0 such that
K = B2r(z0) ⊂ Ω. Then there is a λ > 1 with

λBr(z0) ⊂ B2r(z0).

Now Lemma 1.14 yields constant M > 0 such that

sup
z∈K
|pn(z)| ≤Mn for all n ≥ 1.

Thus for z ∈ Br(z0), we have

|fn(z)| = 1

λn
|fn(λz)| ≤ 1

λn
nM.

Therefore, by the Weierstraß M-test,
∑∞

n=0 fn converges uniformly on Br(z0). We
conclude that the series

∑∞
n=0 fn converges locally uniformly on Ω, and since ordi-

nary convergence implies Cesàro convergence to the same limit, its limit is necessarily
f .
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1.4. Algebras of analytic functions

1.4. Algebras of analytic functions

In this section, we study the situation, when an admissible space B of analytic
functions is in addition an algebra. The goal is to deduce a Nullstellensatz for ideals
in B under suitable conditions. We will consider the following situation: B is an
admissible algebra of functions on a circular set Ω which contains the polynomials
and satisfies the following two properties:

(a) Multiplication in B is separately continuous.

(b) The projections Pn sending a function to its homogeneous component of degree
n are continuous.

We will call such algebras strongly admissible. Note that the space O(Ω) and all
admissible Banach algebras are strongly admissible. This follows from part (a) of
Lemma 1.9.

Condition (a) ensures, roughly speaking, that the multiplicative structure of B is
compatible with the topology on B in some sense, and seems quite natural. Since we
do not require joint continuity of multiplication, also multiplier algebras of circular
reproducing kernel Hilbert spaces, endowed with the strong or the weak operator
topology, are covered, see the lemma below. Condition (b) makes it possible to
recover homogeneous ideals of polynomials from their closures (see Lemma 1.12), and
will thus allow us to go back and forth between homogeneous ideals of polynomials
and closed homogeneous ideals in B.

Lemma 1.16. Let H be a circular reproducing kernel Hilbert space of analytic func-
tions on Ω. Then Mult(H), equipped with the strong or the weak operator topology,
is strongly admissible.

Proof. We know that Mult(H) is admissible in both topologies, and it is well known
that multiplication is separately continuous in both topologies. Continuity of the
projections follows from Lemma 1.11.

We will frequently need the following simple fact, whose proof is a straightforward
application of separate continuity of multiplication.

Lemma 1.17. Let B be a strongly admissible algebra of functions, and let X and
Y be subsets of B. Then X · Y ⊂ X · Y .

The following lemma is a preliminary statement relating ideals in C[z] to ideals in
B. We say that an ideal J ⊂ B is homogeneous, if for every f ∈ J , all homogeneous
components Pn(f) of f are again in J .
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1. Spaces of holomorphic functions on circular sets

Lemma 1.18. Let B be a strongly admissible algebra of functions on Ω. Then the
maps

{homogeneous ideals in C[z]} ↔ {closed homogeneous ideals in B}
I 7→ I

J ∩ C[z] 7→J.

are bijections which are inverse to each other.

Proof. Let I ⊂ C[z] be a homogeneous ideal. Then C[z] · I ⊂ I, and since C[z] is a
dense subset of B by Proposition 1.6, we conclude with the help of Lemma 1.17 that
B · I ⊂ I. Hence I is an ideal in B. Lemma 1.12 shows that I is also homogeneous,
and that I ∩ C[z] = I.
Conversely, let J ⊂ B be a closed homogeneous ideal in B. Then it is obvious

that J ∩ C[z] is a homogeneous ideal in C[z], and as an application of Proposition
1.6, we see that J = J ∩ C[z].

We will see that the correspondence between homogeneous ideals of polynomials
and closed homogeneous ideals in B is compatible with forming radicals. We begin
by showing that radicals of homogeneous ideals are again homogeneous.

Lemma 1.19. In a strongly admissible algebra of functions, radicals of homogeneous
ideals are homogeneous.

Proof. Let B be a strongly admissible algebra, and let J ⊂ B be a homogeneous
ideal. To prove that

√
J is homogeneous, let f ∈

√
J , say fN ∈ J for some natural

number N . If

f =
∞∑
k=n

fk

is the homogeneous decomposition of f in a neighborhood of the origin, where
fn 6= 0, we have to show that each fk belongs to

√
J . For j ∈ N, let Rj denote the

closed homogeneous ideal
⊕∞

k=j C[z]k. As an application of Proposition 1.6, we see
that we can write f = fn+r, where r ∈ Rn+1. Lemma 1.17 shows that RiRj ⊂ Ri+j

for i, j ∈ N, so that fN = fNn + r̃ for some r̃ ∈ RnN+1. Since J is homogeneous,
we deduce that fNn ∈ J , and hence fn ∈

√
J . The homogeneity of

√
J now follows

recursively by considering f − fn.

Showing that radicals of closed homogeneous ideals are again closed is less straight-
forward. In the proof, we will make use of the Noetherian property of the polynomial
ring C[z].

Lemma 1.20. In a strongly admissible algebra of functions, radicals of closed ho-
mogeneous ideals are closed.
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1.4. Algebras of analytic functions

Proof. Let B be a strongly admissible algebra and let J ⊂ B be a homogeneous
ideal. Suppose that f ∈

√
J . We need to show that fN ∈ J for some natural

number N . The main issue is the following: If we approximate f by elements in√
J , then a suitable power of each approximating element lies in J . However, this

process might involve arbitrarily large exponents, so that we cannot immediately
conclude that a power of f is contained in J . We will circumvent this problem by
passing to

√
J ∩ C[z], and using the Noetherian property of C[z].

First, we note that since
√
J is homogeneous by Lemma 1.19, an application of

Proposition 1.6 shows that
√
J =
√
J ∩ C[z].

Moreover, it is elementary that
√
J ∩ C[z] =

√
J ∩ C[z]. Since C[z] is Noetherian,

the ideal I = J ∩ C[z] contains a power of its radical [AM69, Proposition 7.14.],
say
√
I
N ⊂ I for some N ∈ N. Since f ∈

√
I, an obvious inductive application of

Lemma 1.17 thus shows that

fN ∈
√
I
N
⊂ I = J,

as desired.

It is well known that radicals of homogeneous ideals in C[z] are again radical. In
fact, the proof is similar to the one given for ideals in B. Hence both sets in Lemma
1.18 are closed with respect to forming radicals. This allows for a refinement of
Lemma 1.18, from which the desired Nullstellensatz for ideals in B will easily follow.

Proposition 1.21. Let B be a strongly admissible algebra of functions on Ω. Then
the maps

{homogeneous ideals in C[z]} ↔ {closed homogeneous ideals in B}
I 7→ I

J ∩ C[z] 7→J.

are bijections which are inverse to other. These bijections are compatible with form-
ing radicals. In particular, radical ideals in B correspond to radical ideals in C[z].

Proof. In view of Lemma 1.18 and the above discussion, it suffices to show that the
correspondence is compatible with forming radicals. It is clear that

√
J ∩ C[z] =

√
J ∩ C[z]

for all closed homogeneous ideals J ⊂ B. Conversely, let I ⊂ C[z] be a homogeneous
ideal, and set J = I ⊂ B. Then J and

√
J are closed homogeneous ideals in B, the

latter by Lemma 1.19 and Lemma 1.20. Hence Lemma 1.18 shows that
√
I =

√
J ∩ C[z] =

√
J ∩ C[z] =

√
J =

√
I,

which finishes the proof.
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1. Spaces of holomorphic functions on circular sets

We are now in the position to deduce a Nullstellensatz for closed homogeneous
ideals in strongly admissible algebras of functions.

Theorem 1.22. Let B be a strongly admissible algebra of functions on Ω and let
J ⊂ B be a closed homogeneous ideal. Then

IB(VΩ(J)) =
√
J.

Proof. Let I = J ∩ C[z]. Then I is a homogeneous ideal in C[z] satisfying J = I

and
√
J =

√
I by Proposition 1.21. Since the point evaluations are continuous, we

have VΩ(J) = VΩ(I). Hence we infer from the Nullstellensatz (Theorem 1.7) that

IB(VΩ(J)) = IB(VΩ(I)) =
√
I =
√
J.
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2. Universal operator algebras

2.1. The Drury-Arveson space

In this section, we recall the definition and some properties of the Drury-Arveson
space. This space was discovered by Drury [Dru78] and Arveson [Arv98], who put
it into the context of reproducing kernel Hilbert spaces and symmetric Fock space.
It turns out that for many questions in multivariate operator theory, the Drury-
Arveson space, and not the Hardy space on the unit ball, is the “correct” general-
ization of the Hardy space on the unit disk.

Definition 2.1. The Drury-Arveson space H2
d is defined as the reproducing kernel

Hilbert space on the open unit ball Bd in Cd with reproducing kernel

K(z, w) =
1

1− 〈z, w〉
.

The expansion

K(z, w) =
∞∑
n=0

〈z, w〉n

for z, w ∈ Bd shows that K is positive definite in the sense of Definition A.2. so
that there is indeed a Hilbert function space with reproducing kernel K. Note that
if d = 1, then H2

d is the classical Hardy space on the unit disk. It is obvious that
K is invariant under multiplication by complex scalars of modulus one, thus H2

d is
a circular reproducing kernel Hilbert space in the sense of the discussion preceding
Lemma 1.4. A concrete description of the functions belonging to H2

d is given by the
following lemma.

Lemma 2.2. For the Drury-Arveson space H2
d , the following assertions are true:

(a) H2
d is a space of holomorphic functions on Bd, and it contains the polynomials

as a dense subspace.

(b) If f =
∑

α∈Nd aαz
α ∈ O(Bd), then f ∈ H2

d if and only if

||f ||2 =
∑
α∈Nd

|aα|2

γα
<∞,

where γα = |α|!
α!
.
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2. Universal operator algebras

(c) For α, β ∈ Nd, we have γα〈zα, zβ〉 = δαβ. In particular, different monomials
and hence homogeneous polynomials of different degree are orthogonal in H2

d .

Proof. See Section 1 and Lemma 3.8 in [Arv98].

As mentioned before, H2
d is in some sense the right generalization of the Hardy

space on the unit disk for the purposes of multivariate operator theory. The role
of the unilateral shift is played by the operator tuple introduced in the following
lemma. Recall that a d-tuple T = (T1, . . . , Td) of bounded linear operators on a
Hilbert space H is called a row contraction if the row operator

Hd → H, (xi)
d
i=1 7→

d∑
i=1

Tixi

is a contraction. Equivalently,
∑d

i=1 TiT
∗
i ≤ 1.

Lemma 2.3. The coordinate functions zi are multipliers on H2
d , and the com-

muting operator tuple Mz = (Mz1 , . . . ,Mzd) is a row contraction. More precisely,∑d
i=1MziM

∗
zi

= 1 − P0, where P0 denotes the orthogonal projection from H2
d onto

the constant functions.

Proof. See Section 2 in [Arv98].

The tuple Mz is usually called the d-shift. Note that if d = 1, the operator
Mz is just the unilateral shift. In the following, we will denote the unital non-
selfadjoint norm-closed algebra generated by Mz by Ad. Identifying a polynomial
p with p(Mz) = Mp, where Mp is the multiplication operator on H2

d induced by
p, we can regard C[z] = C[z1, . . . , zd] as a subalgebra of Ad. Since the multiplier
norm on H2

d dominates the sup norm on the open unit ball by Lemma A.9 (b), we
can naturally think of elements in Ad as continuous functions on the closed unit
ball. Recall that A1 is the disk algebra A(D). The following generalization of the
celebrated von Neumann inequality is due to Drury [Dru78] and Arveson [Arv98].

Theorem 2.4. Let T = (T1, . . . , Tn) be a commuting row contraction on a Hilbert
space H. Then the algebra homomorphism

C[z]→ L(H), p 7→ p(T1, . . . , Td)

extends to a completely contractive representation of Ad. In particular, if p ∈ C[z],
then

||p(T1, . . . , Td)|| ≤ ||p(Mz)|| = ||p||Mult(H2
d).

Proof. See [Arv98, Theorem 8.1], and also [EP02, Corollary 8,5].
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2.1. The Drury-Arveson space

Recall that the multiplier algebra of the Hardy space H2(D) can be isometrically
identified with H∞(D), so that for d = 1, the last inequality really is von Neumann’s
inequality. For d ≥ 2, however, the multiplier norm on H2

d is in general strictly larger
then the sup norm on Bd (see [Arv98, Theorem 3.3]), which is the multiplier norm
on the Hardy space on the unit ball. In particular, the natural analogue of von
Neumann’s inequality for commuting row contractions T = (T1, . . . , Td), namely

||p(T1, . . . , Td)|| ≤ ||p||Bd
for all polynomials p, does not hold when d ≥ 2. The failure of this inequality for
general d was already observed by Varopoulos [Var74].
The Drury-Arveson space shares another property with the Hardy space on the

unit disk, which the Hardy space on the unit balls fails to fulfill: H2
d is a complete

Nevanlinna-Pick space (see, for example, [AM02, Theorem 7.28]). In fact, H2
∞,

which is defined as the reproducing kernel Hilbert space on the unit ball in `2 with
kernelK(z, w) = (1−〈z, w〉)−1, satisfies a certain universal property among complete
Nevanlinna-Pick spaces (see, for example, [AM02, Theorem 8.2]).
Closely related to the fact thatH2

d is a complete Nevanlinna-Pick space is the pres-
ence of the following commutant lifting theorem. The connection between commu-
tant lifting and Nevanlinna-Pick interpolation goes back to work of Sarason [Sar67].

Theorem 2.5. Let E be a finite dimensional Hilbert space, and let X ⊂ H2
d ⊗E be a

closed subspace which is invariant under each M∗
ϕ ⊗ 1E for ϕ ∈ Mult(H2

d). Suppose
that T ∈ L(X) is a contraction with

TPX(Mϕ ⊗ 1)
∣∣
X

= PX(Mϕ ⊗ 1)T

for all ϕ ∈ Mult(H2
d). Then there exists a multiplier Φ ∈ Mult(H2

d ⊗ E) such that
||Φ|| ≤ 1 and

T = PXMΦ

∣∣
X
.

Proof. See [BTV01, Theorem 5.1], and also [AT02, Theorem 2] for a simplified proof
in the scalar case. A proof using a non-commutative commutant lifting theorem of
Popescu is given in [DP98b, Proposition 4.4].

Arveson [Arv98] observed that the Drury-Arveson space can be identified with the
symmetric Fock space over Cd. This description of H2

d is sometimes more convenient
than the definition as a space of holomorphic functions on the unit ball. To indicate
how this can be done, we need some preliminaries.
Let E = Cd, and let n be a natural number. We denote the symmetric group on

n letters by Sn. For a permutation σ ∈ Sn, let Uσ be the unique unitary operator
on E⊗n satisfying

Uσ(v1 ⊗ . . .⊗ vn) = vσ−1(1) ⊗ . . .⊗ vσ−1(n)

for all v1, . . . , vn ∈ E.
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2. Universal operator algebras

Definition 2.6. The symmetric n-fold tensor power of E is defined by

En = {ω ∈ E⊗n : Uσω = ω for all σ ∈ Sn}.

The Hilbert space

Fs(E) =
∞⊕
n=0

En

is called the symmetric Fock space over E, and

F(E) =
∞⊕
n=0

E⊗n

is called the full Fock space over E.

The orthogonal projection from E⊗n onto the symmetric tensor power En can be
easily expressed as an average of the unitary operators Uσ.

Lemma 2.7. Let E be a finite dimensional Hilbert space, and let n ∈ N. The
orthogonal projection from E⊗n onto En is given by

Qnω =
1

n!

∑
σ∈Sn

Uσω

for ω ∈ E⊗n.

Proof. Clearly Qn acts as the identity on En, and since UσUτ = Uτ◦σ for σ, τ ∈ Sn,
the image of Qn is contained in En. From the identity U∗σ = Uσ−1 for σ ∈ Sn, we
infer that Qn is self-adjoint, which finishes the proof.

We can now describe the identification of H2
d with Fs(Cd). A moment’s reflection

about the respective degree one parts reveals that the natural choice is to make the
isomorphism from H2

d onto Fs(Cd) anti-linear instead of linear. Indeed, homoge-
neous polynomials of degree one act naturally as linear forms on Cd, so that the
degree one part of C[z] should be identified with the dual space of Cd.
We will write Q =

⊕∞
n=0Qn for the orthogonal projection from F(Cd) onto

Fs(Cd). Moreover, for a d-tuple e = (e1, . . . , ed) of vectors in Cd and a multiin-
dex α = (α1, . . . , αd) ∈ Nd, we set eα = Q(e⊗α) = Q(eα1

1 ⊗ . . .⊗ e
αd
d ).

Proposition 2.8. There is a unique anti-unitary operator J : H2
d → Fs(Cd) with

J(〈·, λ〉n) = λ⊗n (2.1)

for all λ ∈ Cd and n ∈ N. The operator J has the following properties:

(a) If e = (e1, . . . , ed) is the usual basis of Cd, then J(zα) = eα for all α ∈ Nd.
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2.1. The Drury-Arveson space

(b) For homogeneous polynomials p and q, we have J(p · q) = Q(J(p)⊗ J(q)).

(c) For a linear map A on Cd and a homogeneous polynomial p of degree n, we
have J(p ◦ A∗) = A⊗n(J(p)).

Proof. Uniqueness follows from the fact that the set of kernel functions

K(·, λ) =
∞∑
n=0

〈·, λ〉n,

where λ ∈ Bd, is total in H2
d (see Lemma A.4 (c)). To establish existence of J ,

set E = Cd. A simple combinatorial argument shows that for α, β ∈ Nd with
|α| = |β| = n, we have

〈eα, eβ〉E⊗n =
∑
σ∈Sn

1

n!
〈Uσ
(
eα1

1 ⊗ . . .⊗ e
⊗αd
d

)
, eβ11 ⊗ . . .⊗ e

αd
d 〉E⊗n

= δαβ
α!

n!
= 〈zα, zβ〉H2

d
,

from which we conclude that there exists a unique anti-unitary operator J from H2
d

onto Fs(Cd) which satisfies property (a).
Next, we show that the just defined operator J satisfies (b). By linearity, it is

enough to prove the assertion if p and q are monomials, say p = zα and q = zβ with
|α| = n and |β| = m. Using the identity QUσ = Q for all σ ∈ Sn+m, we obtain

J(zα+β) = Qe⊗(α+β) = Q(e⊗α ⊗ e⊗β) = Q(eα ⊗ eβ) = Q(J(zα)⊗ J(zβ)),

as desired.
Having established this fact, we can now show that (2.1) holds. So let λ ∈ Cd,

and note that with the usual convention λ⊗0 = 1 ∈ C, the case n = 0 is trivial. By
construction of J , (2.1) is valid for n = 1. Thus part (b) and an obvious inductive
argument show that (2.1) holds for all n ∈ N.
Part (c) now follows by linearity from the identity

J(〈·, λ〉n ◦ A∗) = J(〈·, Aλ〉n) = (Aλ)⊗n = A⊗nJ(〈·, λ〉n)

for λ ∈ Cd and n ∈ N.

As a first application, we show that the multiplier norm coincides with the norm
of H2

d for homogeneous polynomials (compare [SS09, Lemma 9.5]).

Lemma 2.9. For any homogeneous polynomial p, we have ||p||H2
d

= ||p||Mult(H2
d).
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2. Universal operator algebras

Proof. Let us write || · || for the norm in H2
d . The inequality ||p|| ≤ ||p||Mult(H2

d) is
trivial because ||1|| = 1. To establish the reverse inequality, we first note that the
multiplication operator Mp maps C[z]m, the space of homogeneous polynomials of
degree m, into C[z]n+m for all natural numbers m. Since homogeneous polynomials
of different degrees are orthogonal in H2

d , it suffices to show that ||p · q|| ≤ ||p|| ||q||
holds for all homogeneous polynomials q ∈ C[z]m and all m ∈ N. But this follows
at once from part (b) of Proposition 2.8. Indeed,

||p · q|| = ||Q(J(p)⊗ J(q))||En+m ≤ ||J(p)⊗ J(q)||En⊗Em = ||p|| ||q||.

Example 2.10. Of course, the estimate ||p · q|| ≤ ||p|| ||q|| need not be true for non-
homogeneous polynomials p and q, so that in general, ||p||Mult(H2

d) > ||p||. To give a
concrete example, let d = 1 and p = q = 1 + z. Then

||p · q||2 = ||1 + 2z + z2||2 = 6 > 4 = ||p||2 ||q||2.

Remark 2.11. For homogeneous polynomials of degree 1, the statement of the pre-
ceding lemma is also a direct consequence of the fact that Mz is a row contraction
(see Lemma 2.3). To show the non-trivial inequality, let p =

∑d
i=1 aizi with ai ∈ C,

and note that for q ∈ C[z], we have

||p · q||2 =
∣∣∣∣∣∣ d∑

i=1

zi · (aiq)
∣∣∣∣∣∣2 ≤ d∑

i=1

|ai|2 ||q||2 = ||p||2 ||q||2.

2.2. Universal operator algebras for row
contractions

According to Arveson’s von Neumann inequality (Theorem 2.4), the unital non-
selfadjoint norm-closed algebra Ad generated by the d-shift S = Mz on the Drury-
Arveson space H2

d is the universal operator algebra generated by a commuting
row contraction in the following sense: For any commuting row contraction T =
(T1, . . . , Td) on a Hilbert space H, there is a unique unital completely contractive
algebra homomorphism

Φ : Ad → L(H) with Φ(Si) = Ti for i = 1, . . . , d.

Suppose now that I ⊂ C[z1, . . . , zd] is a homogeneous ideal. Theorem 2.4 imme-
diately implies the existence of a universal object for commuting row contractions
subject to the relations in I. Note that if N ⊂ M ⊂ L(H) are closed subspaces
for some Hilbert space H, then the quotient M/N can be endowed with a family of
matrix norms by identifying Mn(M/N) with Mn(M)/Mn(N).
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2.2. Universal operator algebras for row contractions

Corollary 2.12. Let I ⊂ C[z1, . . . , zd] be a homogeneous ideal. Suppose that T =
(T1, . . . , Td) is a commuting row contraction on a Hilbert space H satisfying p(T ) = 0
for all p ∈ I. Then there is a unique unital completely contractive algebra homo-
morphism

Φ : Ad/Ĩ → L(H) with Φ([Si]) = Ti for i = 1, . . . , d,

where Ĩ denotes the closure of I in Ad.

From a certain point of view, this result is not completely satisfactory, since the
algebra Ad/Ĩ is not an algebra of operators on a Hilbert space. In particular, the
equivalence class of the tuple S = Mz, which is the universal row-contractive solution
of the equations in I in the above sense, is not an operator tuple. The algebra
Ad/Ĩ is, however, an abstract operator algebra in the sense of Blecher, Ruan and
Sinclair (see, for example, [ER00, Chapter 17]), hence it is completely isometrically
isomorphic to a concrete operator algebra.
There is also a direct way of identifying Ad/Ĩ with a concrete operator algebra.

To this end, let FI = H2
d 	 I. Note that FI is co-invariant for Mz, so that the

compressions
SIi = PFIMzi

∣∣
FI

form a commuting row contraction SI = (SI1 , . . . , S
I
d) ∈ L(FI)n. If p ∈ I, then Mp

maps H2
d into I, so that

p(SI) = PFIMp

∣∣
FI

= 0,

that is, the d-tuple SI satisfies the relations in I. Let AI denote the unital non-
selfadjoint norm-closed algebra generated by SI . The goal of this section is to show
that there is a completely isometric algebra isomorphism

Φ : Ad/Ĩ → AI with Φ([Si]) = Si for i = 1, . . . , d.

In view of Corollary 2.12, this means that AI is the universal operator algebra
generated by a commuting row contraction subject to the relations in I.
Let us begin by observing that Ad/Ĩ need not be isomorphic to AI for non-

homogeneous ideals I ⊂ C[z].

Example 2.13. Let d = 1 and I = 〈z − 1〉 ⊂ C[z]. It is easy to check that H2
1 	 I =

{0}, thus AI = {0}. On the other hand, A1 is the disk algebra A(D), and

δ1 : A1 → C, f 7→ f(1)

is a non-trivial continuous linear functional on A1. Hence Ĩ ⊂ ker(δ1) 6= A1, that is,
A1/Ĩ 6= {0}.
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2. Universal operator algebras

To show that Ad/Ĩ and AI are isomorphic if I is homogeneous, we will use the
commutant lifting theorem for H2

d (Theorem 2.5), and the following lemma for
approximating multipliers of H2

d by elements in Ad. If f : Bd → X is a map,
where X is a set, and if 0 < r < 1, we define

f(r) : Bd → X, z 7→ f(rz).

For the notion of a vector-valued multiplier, we refer to Section A.3 in the appendix.

Lemma 2.14. Let 0 < r < 1 and let E be a finite dimensional Hilbert space.

(a) Let ϕ ∈ Mult(H2
d). Then ϕ(r) ∈ Ad, and if ϕ =

∑∞
n=0 ϕn is the homogeneous

expansion of ϕ, then the series

ϕ(r) =
∞∑
n=0

rnϕn

converges in the norm of Ad.

(b) If Φ ∈ Mult(H2
d ⊗ E) is a vector-valued multiplier with ||Φ||M ≤ 1, then

Φ(r) ∈ Mult(H2
d ⊗ E) with ||Φ(r)||M ≤ 1.

Proof. (a) By Lemma 1.4 (b) and Proposition 1.6, the series
∑∞

n=0 ϕn is Cesàro-
convergent to ϕ in the strong operator topology. Consequently, Lemma 1.14 shows
that the sequence (ϕn

n
)n converges to zero in the strong operator topology. Therefore,

by the uniform boundedness principle, there is a constant M > 0 such that

||ϕn||M ≤Mn for all n ≥ 1.

We conclude that the series
∑∞

n=0 r
nϕn converges absolutely in the Banach algebra

Mult(H2
d) to a function ψ ∈ Ad. By evaluating ψ at points in Bd, we see that

ψ = ϕ(r).
(b) We will use the characterization of contractive multipliers from Lemma A.12,

and the Schur product theorem (Theorem A.13). So let K(z, w) = (1−〈z, w〉)−1 be
the reproducing kernel of H2

d . Since Φ is a contractive multiplier, the map

Bd × Bd → L(E), (z, w) 7→ K(rz, rw)(1− Φ(rz)Φ(rw)∗)

is positive definite. Moreover,

(z, w) 7→ K(z, w)

K(rz, rw)
=

1− r2〈z, w〉
1− 〈z, w〉

= 1 + (1− r2)〈z, w〉 1

1− 〈z, w〉
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2.2. Universal operator algebras for row contractions

defines a positive definite map from Bd×Bd to C, for example by the Schur product
theorem. Consequently, another application of the (vector-valued) Schur product
theorem shows that

B× B→ L(E), (z, w) 7→K(z, w)(1− Φ(rz)Φ(rw)∗)

=
K(z, w)

K(rz, rw)
K(rz, rw)(1− Φ(rz)Φ(rw)∗)

is also positive definite, so that Φ(r) is a contractive multiplier on H2
d ⊗ E .

Remark 2.15. Part (a) of the preceding lemma is a special case of the following much
more general fact: Any function ϕ : Bd → C which admits a holomorphic extension
to a neighborhood of the closed unit ball is an element of Ad, and if ϕ =

∑∞
n=0 ϕn is

the homogeneous expansion of ϕ, which is uniformly convergent in a neighborhood of
the closed unit ball, then the series ϕ =

∑∞
n=0 ϕn is also convergent in the multiplier

norm of H2
d .

This assertion can be shown using the analytic functional calculus for commuting
tuples of operators (see [EP96, Theorem 2.5.7]). An outline of the proof goes as
follows: The Taylor spectrum of Mz is the closed unit ball (see [GRS05, Proposition
2.6]), so that any function ϕ as above defines a bounded linear operator ϕ(Mz)
on H2

d . The continuity properties of the analytic functional calculus imply that
ϕ(Mz) =

∑∞
n=0 ϕn(Mz) =

∑∞
n=0 Mϕn with convergence in L(H2

d). We conclude that
ϕ(Mz) is a multiplication operator on H2

d , and by evaluating ϕ(Mz)1 at points in
Bd, we see that ϕ(Mz) = Mϕ.

In the discussion following Corollary 2.12, we have used that if I is a homogeneous
ideal, then FI is co-invariant under each Mzi , and that multiplication by elements
in I maps H2

d into I. The following lemma contains more general results along these
lines.

Lemma 2.16. Let I ⊂ C[z] be a homogeneous ideal, and let ISOT denote the SOT-
closure of I in Mult(H2

d).

(a) ISOT ·H2
d ⊂ I and Mult(H2

d) · I ⊂ I.

(b) If ϕ ∈ Mult(H2
d), then PFIMϕ

∣∣
FI

= 0 if and only if ϕ ∈ ISOT . In this case,
ϕ(r) ∈ Ĩ for 0 < r < 1.

(c) If p ∈ C[z] is a polynomial, then p(SI) = 0 if and only if p ∈ I.

Proof. (a) If ϕ ∈ I, then Mϕ(C[z]) ⊂ I, hence Mϕ(H2
d) ⊂ I. The first assertion thus

follows by approximating a multiplier in ISOT by elements in I. The second assertion
is proved similarly: If ϕ ∈ C[z], then Mϕ(I) ⊂ I, hence Mϕ(I) ⊂ I. Since C[z] is
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2. Universal operator algebras

SOT-dense in Mult(H2
d) (see Lemma 1.4 (b) and Proposition 1.6), we conclude that

I is invariant for all multipliers.
(b) The “if”-part follows from the first assertion in (a). Conversely, given a multi-

plier ϕ with PFIMϕ

∣∣
FI

= 0, the operatorMϕ maps FI into I. Combined with the sec-
ond assertion in (b), we infer that Mϕ maps H2

d into I. In particular, ϕ = Mϕ1 ∈ I.
Thus, if ϕ =

∑∞
n=0 ϕn is the homogeneous expansion of ϕ, we have ϕn ∈ I for all

n ∈ N by Lemma 1.12. So the first assertion follows from the fact that the homo-
geneous expansion of ϕ is Cesàro-convergent to ϕ in the strong operator topology
(see Lemma 1.4 (b) and Proposition 1.6). Moreover, Lemma 2.14 (a) shows that

ϕ(r) =
∞∑
n=0

rnϕn ∈ Ĩ

for 0 < r < 1.
Part (c) is an immediate consequence of part (b) and its proof, since for polyno-

mials, the homogeneous expansion is just a finite sum.

We are now in the position to prove that the completely contractive homomor-
phism from Ad/Ĩ into AI given by Corollary 2.12 is a completely isometric isomor-
phism.

Theorem 2.17. Let I ⊂ C[z] be a homogeneous ideal. There is a unique unital
completely isometric isomorphism

Ad/Ĩ → AI

mapping [Mzi ] to SIi for i = 1, . . . , d. It is given by

Ad/Ĩ → AI , [Mϕ] 7→ PFIMϕ

∣∣
FI
.

Proof. Uniqueness is clear. To prove existence, note that

Ad → AI , Mϕ 7→ PFIMϕ

∣∣
FI

defines a unital completely contractive homomorphism, and that its kernel contains
I. Thus it induces a unital completely contractive homomorphism from Ad/Ĩ into
AI (alternatively, this follows from Corollary 2.12).
We have to show that this homomorphism is in fact completely isometric and

surjective, or equivalently, that the map

A = {p(SI) : p ∈ C[z]} → Ad/Ĩ, p(SI) = PFIp(Mz)
∣∣
FI
7→ [p(Mz)]

is well defined and extends to a complete contraction onAI . Well-definedness follows
from Lemma 2.16 (c). To show that it is completely contractive, let N ∈ N and let

T = (pij(S
I))Ni,j=1 ∈MN(A)
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2.3. The radical case

with ||T || ≤ 1. By Lemma 2.16 (a), FI is co-invariant for all multipliers. Since
pij(S

I) = PFIMpij

∣∣
FI
, each pij(SI) commutes with all compressed multipliers, that

is

pij(S
I)PFIMϕ

∣∣
FI

= PFIMϕpij(S
I)

for all i, j = 1, . . . , N and all ϕ ∈ Mult(H2
d). Identifying MN(A) with a subset of

L(FI ⊗ CN) (see the discussion following Definition A.11), Theorem 2.5 yields a
multiplier Φ ∈ Mult(H2

d ⊗ CN) with ||Φ|| ≤ 1 and

T = PFI⊗CNMΦ

∣∣
FI⊗CN

.

Write Φ = (Φij)
N
i,j=1 with Φij ∈ Mult(H2

d). Then

PFIMpij

∣∣
FI

= PFIMΦij

∣∣
FI

for all i, j = 1, . . . , N.

According to Lemma 2.14 (a), all Φij(r) belong to Ad for 0 < r < 1, and Lemma
2.16 (b) shows that each Φij(r) equals pij(r) modulo Ĩ for 0 < r < 1. Consequently,
we obtain the estimate

||([pij(Mz)])
N
i,j=1|| = lim

r↑1
||([pij(rMz)])

N
i,j=1|| = lim

r↑1
||([pij(r)])

N
i,j=1||

= lim
r↑1
||([Φij(r)])

N
i,j=1|| ≤ sup

0<r<1
||Φ(r)|| ≤ 1,

where the last inequality follows from Lemma 2.14 (b). This observation finishes
the proof.

2.3. The radical case

Let I ⊂ C[z] be a homogeneous ideal. In the preceding chapter, we have identified
the algebra Ad/Ĩ with AI , which is an algebra of operators on FI = H2

d	I. We will
show that if the ideal I is radical, then FI can be regarded as a space of functions
on the intersection of the vanishing locus of I with the open unit ball. This fact will
allow us to identify AI with a function algebra on this set.
To fix notation, write V (I) for the vanishing locus of I. Moreover, Z0(I) (respec-

tively Z(I)) will denote the intersection of V (I) with the open (respectively closed)
unit ball in Cd. With this notation, FI is isomorphic to the restricted Hilbert func-
tion space H2

d

∣∣
Z0(I)

for radical homogeneous ideals I (see Lemma A.7 for the notion
of a restriction of a reproducing kernel Hilbert space).

Lemma 2.18. Let I ⊂ C[z] be a radical homogeneous ideal. Then

U : FI → H2
d

∣∣
Z0(I)

, f 7→ f
∣∣
Z0(I)

is a unitary, whose inverse is given by U−1(f
∣∣
Z0(I)

) = PFIf for f ∈ H2
d .
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2. Universal operator algebras

Proof. Let f ∈ FI . It is immediate from

||f
∣∣
Z0(I)
|| = inf{||g|| : g ∈ H2

d with g
∣∣
Z0(I)

= f
∣∣
Z0(I)
}

(see Lemma A.7) that the linear map U is contractive. On the other hand, if g ∈ H2
d

with g
∣∣
Z0(I)

= f
∣∣
Z0(I)

, then the Nullstellensatz (Theorem 1.7 in combination with
Lemma 1.4 (a)) shows that g − f ∈ I. Hence

||f || = ||PFIg|| ≤ ||g||,

so that U is isometric. To establish surjectivity and the additional claim, let f ∈ H2
d .

Then PFIf − f ∈ I, and thus (PFIf)
∣∣
Z0(I)

= f
∣∣
Z0(I)

.

On the level of multipliers, the preceding lemma implies the desired identification
of AI with a function algebra.

Corollary 2.19. Suppose that I ⊂ C[z] is a radical homogeneous ideal and let
U : FI → H2

d

∣∣
Z0(I)

be the unitary map given by restriction from Lemma 2.18. Then

AI → {p
∣∣
Z0(I)

: p ∈ C[z]}
Mult(H2

d |Z0(I))
, T 7→ UTU∗

is a unital completely isometric isomorphism, which maps PFIMϕ

∣∣
FI

to ϕ
∣∣
Z0(I)

for
each ϕ ∈ Ad. In particular, it sends SIi to zi

∣∣
Z0(I)

for i = 1, . . . , d. Moreover, every
function in the range of the above isomorphism extends uniquely to a continuous
function on Z(I).

Proof. The unital completely isometric isomorphism

Φ : L(FI)→ L(H2
d

∣∣
Z0(I)

), T 7→ UTU∗,

satisfies

Φ(PFIMϕ

∣∣
FI

)(f
∣∣
Z0(I)

) = UPFIMϕU
∗(f
∣∣
Z0(I)

) = (PFIMϕPFIf)
∣∣
Z0(I)

= (ϕf)
∣∣
Z0(I)

for ϕ ∈ Ad and f ∈ H2
d , where we have used that FI is co-invariant under Mϕ (see

Lemma 2.16 (a)). Since AI is the norm-closed algebra generated by the operators
SIi = PFIMzi

∣∣
FI
, we conclude that Φ maps AI onto the norm-closure of the poly-

nomials in Mult(H2
d

∣∣
Z0(I)

). The additional assertion follows from the fact that the
multiplier norm on the restriction of H2

d to Z0(I) dominates the sup norm on Z0(I)
by Lemma A.9 (b).

Because of the above corollary, we can think of AI as an algebra of continuous
functions on Z(I) for radical homogeneous ideals I.
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Remark 2.20. In the radical case, the use of Theorem 2.5 in the proof of Theorem
2.17 can be replaced by a more direct application of the complete Nevanlinna-Pick
property of H2

d . Let us briefly sketch the idea. Suppose that I ⊂ C[z] is a radical
homogeneous ideal. Then Corollary 2.19 shows that the elements of AI can be
regarded as multipliers on the restricted Hilbert function space H2

d

∣∣
Z0(I)

. Thus
elements ofMN(AI) can be viewed as vector-valued multipliers ofH2

d

∣∣
Z0(I)

. SinceH2
d

is a complete Nevanlinna-Pick space, these multipliers can be extended to multipliers
of H2

d without increasing their norm. Under the identification explained in Corollary
2.19, this extension of multipliers corresponds to dilating an element of MN(AI) to
an operator in Mult(H2

d ⊗ CN), which is precisely what was done in the proof of
Theorem 2.17.

The results for the radical case can be summarized as follows: The universal
operator algebra generated by a commuting row contraction satisfying the relations
in a radical homogeneous ideal I has three interpretations:

1. The quotient algebra Ad/Ĩ.

2. The concrete operator algebra AI .

3. The function algebra obtained by taking the norm-closure of the polynomials
in Mult(H2

d

∣∣
Z0(I)

).

We will see that depending on the context, each description has its benefits.

2.4. Unitary changes of variables

We conclude this chapter with a short section about maps on the Drury-Arveson
space which are induced by unitary maps on Cd. It turns out that the group of
unitaries on Cd acts by composition on H2

d and on Ad, the norm-closure of the
polynomials in Mult(H2

d). This is due to the fact that the kernel of H2
d is invariant

under unitary transformations.

Lemma 2.21. Let U be a unitary on Cd. Then

CU : H2
d → H2

d , f 7→ f ◦ U

is a unitary on H2
d . If ϕ ∈ Mult(H2

d) is a multiplier, then ϕ◦U is again a multiplier,
and CUMϕC

∗
U = Mϕ◦U . Moreover, if ϕ ∈ Ad, then ϕ ◦ U ∈ Ad as well.

Proof. Note that U maps Bd bijectively onto itself, and if K(z, w) = (1− 〈z, w〉)−1

is the reproducing kernel of H2
d , then K(Uz, Uw) = K(z, w) holds for all z, w ∈ B.

Hence Lemma A.5 shows that CU is a unitary on H2
d .
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2. Universal operator algebras

Let ϕ ∈ Mult(H2
d). Then for all f ∈ H2

d ,

(CUMϕC
∗
U)(f) = (ϕ · (f ◦ U∗)) ◦ U = (ϕ ◦ U) · f,

thus ϕ ◦ U is again a multiplier with Mϕ◦U = CUMϕC
∗
U . Therefore, the map

Mult(H2
d)→ Mult(H2

d), ϕ 7→ ϕ ◦ U,

is a (completely) isometric isomorphism, which clearly maps the algebra of polyno-
mials onto itself. So by definition of Ad, it also preserves Ad.

Suppose now that I and J are homogeneous ideals in C[z]. If U is a unitary on
Cd such that the operator CU maps I onto J , then the preceding lemma can be used
to obtain a completely isometric isomorphism between AI and AJ .

Lemma 2.22. Let I, J ⊂ C[z] be homogeneous ideals, and let U be a unitary on
Cd such that J = {p ◦ U : p ∈ I}. Let CU be the unitary operator on H2

d given
by composition with U from Lemma 2.21. Then CU restricts to a unitary operator
CI
U : FI → FJ . The map

ΦI
U : AI → AJ , T 7→ CI

UTC
I
U

∗

is a unital completely isometric algebra isomorphism that satisfies

ΦI
U

(
PFIMϕ

∣∣
FI

)
= PFJMϕ◦U

∣∣
FJ

for all ϕ ∈ Ad. If I and J are radical, then regarding AI and AJ as algebras of
functions on Z(I) and Z(J), respectively (see Corollary 2.19), then ΦI

U is given by

AI → AJ , ϕ 7→ ϕ ◦ U.

Proof. The assumption on U implies that CU maps I onto J , hence it maps FI onto
FJ . Now, let ϕ ∈ Ad. Then ϕ◦U ∈ Ad by Lemma 2.21, and for all f ∈ FJ , we have

CI
U

(
PFIMϕ

∣∣
FI

)
CI
U

∗
f = CI

UPFI (ϕ · (f ◦ U∗)) = (PFJCU(ϕ · (f ◦ U∗))
= PFJ ((ϕ · (f ◦ U∗)) ◦ U) = PFJMϕ◦Uf.

Hence

CI
U

(
PFIMϕ

∣∣
FI

)
CI
U

∗
= PFJMϕ◦U

∣∣
FJ
∈ AJ .

Since AI is the norm-closed algebra generated by the SIi = PFIMzi

∣∣
FI

(and likewise
for AJ), we conclude that ΦI

U indeed maps AI onto AJ . The statement about
the radical case immediately follows from the identification explained in Corollary
2.19.
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2.4. Unitary changes of variables

On the one hand, of course, the above lemma already gives a sufficient condition
for two algebras AI and AJ being (completely) isometrically isomorphic. On the
other hand, also the case I = J will be important. It can be used to obtain auto-
morphisms of AI , which will turn out helpful for determining necessary conditions
for two algebras AI and AJ being isomorphic (see Proposition 3.27).

Remark 2.23. If the homogeneous ideals I and J in the preceding lemma are radical,
then the hypothesis of the lemma can be stated in terms of the vanishing loci V (I)
and V (J). More generally, let A be any invertible linear map on Cd. Then

AV (J) = V ({p ◦ A−1 : p ∈ J}).

Since J is radical, the ideal {p ◦ A−1 : p ∈ J} is radical as well. Clearly, we have
I = {p◦A−1 : p ∈ J} if and only if J = {p◦A : p ∈ I}. So we deduce from Hilbert’s
Nullstellensatz that J = {p ◦ A : p ∈ I} if and only if AV (J) = V (I).
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3. Necessary conditions for
isomorphisms between the
algebras AI

3.1. The maximal ideal space of AI
The aim of this chapter is to exhibit necessary conditions for two algebras AI and
AJ being (topologically or isometrically) isomorphic, where I and J are radical
homogeneous ideals in C[z1, . . . , zd]. This was done in [DRS11], and we follow the
exposition given there. The basic strategy is to use the fact that if Φ : A → B is an
isomorphism of unital Banach algebras A and B, then Φ induces a homeomorphism
between the maximal ideal spaces ∆(A) and ∆(B) of A and B, respectively, which
is given by

Φ∗ : ∆(B)→ ∆(A), ρ 7→ ρ ◦ Φ.

Here and in the sequel, the maximal ideals spaces are equipped with their respective
Gelfand topologies.
First, let us observe that AI is a unital commuatative Banach algebra for every

proper homogeneous ideal I ⊂ C[z].

Remark 3.1. Let I ⊂ C[z] be a homogeneous ideal. We claim that AI = {0} if and
only if I = C[z]. For a proof, note that AI ⊂ L(FI) always contains the identity on
FI , so that AI = {0} if and only if FI = {0}. If I = C[z], then FI = H2

d 	 I = {0}
by density of the polynomials in H2

d , which shows one direction. Conversely, if I is
a proper homogeneous ideal, then 1 ∈ FI , thus AI is non-trivial as well.

Because of this observation, we will only consider proper homogeneous ideals
I ⊂ C[z]. To determine the maximal ideal space of the commutative Banach algebra
AI , we need some preliminaries.

Lemma 3.2. Let H be a Hilbert space, and let A ⊂ L(H) be a unital norm-
closed subalgebra. Suppose that ρ is a multiplicative linear functional on A. If
(T1, . . . , Td) ∈ Ad is a row contraction, then

(ρ(T1), . . . , ρ(Td)) ∈ Bd.
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3. Necessary conditions for isomorphisms between the algebras AI

Proof. It is well known that multiplicative linear functionals on Banach algebras are
automatically contractive, and that contractive linear functionals are completely
contractive (see, for example, [Pau02, Proposition 3.8]). Hence ρ : A → C is a
complete contraction. Since T is a row contraction, the operator given by

T1 . . . Td
0 . . . 0
...

...
0 . . . 0

 ∈ L(Hd)

is a contraction, so 
ρ(T1) . . . ρ(Td)

0 . . . 0
...

...
0 . . . 0

 ∈ L(Cd)

is contractive as well, from which it follows that ρ(T ) ∈ Bd.

Let I ( C[z] be a homogeneous ideal. If I is radical, then the algebra AI can be
regarded as an algebra of continuous functions on Z(I) by Corollary 2.19. Under
this identification, every λ ∈ Z(I) gives rise to a non-trivial multiplicative linear
functional

δIλ : AI → C, ϕ 7→ ϕ(λ).

If I is understood, we will simply write δλ.
Although we are primarily concerned with the radical case in this chapter, it seems

worthwile to include the non-radical case at this point as well. If I is homogeneous,
but not necessarily radical, then

RI : AI → A√I , T 7→ PF√IT
∣∣
F√I

is a completely contractive algebra homomorphism. Note that identifying AI and
A√I with a quotient of Ad according to Theorem 2.17, the map RI is just the natural
quotient map

Ad/Ĩ → Ad/
√̃
I.

Since Z(I) = Z(
√
I), every λ ∈ Z(I) gives rise to a multiplicative linear functional

δIλ = δ
√
I

λ ◦RI : AI → C.

Again, we will sometimes simply write δλ. The following lemma summarizes some
elementary properties of these characters.
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3.1. The maximal ideal space of AI

Lemma 3.3. Let I ( C[z] be a homogeneous ideal, and let λ ∈ Z(I).

(a) For ϕ ∈ Ad, we have δλ(PFIMϕ

∣∣
FI

) = ϕ(λ).

(b) If J ⊂ I is another homogeneous ideal, then

δIλ(PFIT
∣∣
FI

) = δJλ (T )

holds for all T ∈ AJ .

(c) If λ ∈ Z0(I), then δλ(T ) = 〈T1, K(·, λ)〉 for all T ∈ AI .

Proof. Part (a) is immediate from the definition of δλ and the identification explained
in Corollary 2.19. To show (b), note that part (a) implies that the statement holds
if T is of the form PFJMϕ

∣∣
FJ

for some ϕ ∈ Ad. It is clear that the set of all these
elements is dense in AJ (in fact, Theorem 2.17 shows that it is all of AJ), so that
(b) holds for all T ∈ AJ .
For the proof of (c), observe that the assumptions on I imply that 1 ∈ FI . Using

the defining property of the kernel function, we obtain for ϕ ∈ Ad, the identity

〈PFIMϕ1, K(·, λ)〉 = 〈Mϕ1, K(·, λ)〉 = ϕ(λ),

since K(·, λ) ∈ FI . Thus, the same reasoning as above establishes the assertion.

We can now show that every multiplicative linear functional on AI arises in the
way described above.

Proposition 3.4. Let I ( C[z] be a homogeneous ideal. The map

Z(I)→ ∆(AI), λ 7→ δλ

is a homeomorphism, where ∆(AI) is endowed with its Gelfand topology. Its inverse
is given by

∆(AI)→ Z(I), ρ 7→ (ρ(SI1), . . . , ρ(SId)).

Proof. By the above discussion, every λ ∈ Z(I) gives rise to an element δλ of ∆(AI),
and Lemma 3.3 (a) shows that (δλ(S

I
1), . . . , δλ(S

I
d)) = λ, which implies injectivity of

the map λ 7→ δλ. Conversely, let ρ ∈ ∆(AI), and set

λ = (ρ(SI1), . . . , ρ(SId)) ∈ Cd.

Then λ ∈ Bd according to Lemma 3.2, and given p ∈ I, Lemma 2.16 (c) shows that

p(λ) = ρ(p(SI)) = 0,
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3. Necessary conditions for isomorphisms between the algebras AI

so that λ ∈ Z(I). By definition of λ, the multiplicative linear functionals ρ and
δλ coincide on each SIi . Because AI is the unital norm-closed algebra generated by
these elements, we conclude that ρ = δλ.
To finish the proof, note that continuity of the second map is trivial, whereas con-

tinuity of the first map follows from the fact that the elements of A√I are continuous
functions on Z(I) under the identification explained in Corollary 2.19.

The following corollary indicates why the radical case is easier in general.

Corollary 3.5. Let I ( C[z] be a homogeneous ideal. Then RI : AI → A√I is
the Gelfand transform modulo the identifications explained in Corollary 2.19 and
Proposition 3.4. In particular, AI is semi-simple if and only if I is radical.

Proof. It is clear from Proposition 3.4 and the definition of δλ that RI is the Gelfand
transform. If I is radical, then RI is just the identity, thus AI is semi-simple.
Conversely, if AI is semi-simple and p ∈

√
I, then

RI(p(S
I)) = p(S

√
I) = 0,

hence p(SI) = 0. From Lemma 2.16 (c), we infer that p ∈ I, so that I is radical.

In general, the kernel of the Gelfand transform on a unital commutative Banach
algebra A consists precisely of the quasi-nilpotent elements of A. In the case of the
algebras AI , this result can be strengthened due to the Noetherian property of C[z].

Lemma 3.6. Let I ( C[z] be a homogeneous ideal. Then there is a natural number
N such that

ker(RI) =
⋂

λ∈Z0(I)

ker(δλ) = {T ∈ AI : TN = 0}.

Proof. The first equality follows from Corollary 3.5 and the fact that the elements
of A√I , regarded as functions on Z(I), are continuous. Moreover, it is trivial that
nilpotent elements are contained in the kernel of every multiplicative linear func-
tional.
To prove the remaining inclusion, note that by the Noetherian property of C[z],

there is a natural number N such that JN ⊂ I, where J =
√
I (see, for example,

[AM69, Proposition 7.14.]). Identifying AI with Ad/Ĩ and AJ with Ad/J̃ according
to Theorem 2.17, we have

ker(RI) = J̃/Ĩ.

The continuity of multiplication in Ad shows that(
J̃
)N ⊂ J̃N ⊂ Ĩ ,

which finishes the proof.
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3.1. The maximal ideal space of AI

We now come to the study of algebra homomorphisms between algebras of the
type AI . To this end, let I, J ( C[z] be homogeneous ideals and Φ : AI → AJ be a
unital algebra homomorphism. Then Φ induces a continuous map

Φ∗ : ∆(AJ)→ ∆(AI), ρ 7→ ρ ◦ Φ.

Identifying ∆(AJ) with Z(J) and ∆(AI) with Z(I) according to Proposition 3.4,
Φ∗ can be regarded as a continuous map from Z(J) → Z(I). The structure of the
algebras AI allows us to say more about Φ∗.

Proposition 3.7. Let I, J ( C[z] be homogeneous ideals and let Φ : AI → AJ be a
unital algebra homomorphism. Then there is a continuous map F : Bd → Cd such
that F

∣∣
Bd

is holomorphic, the restriction of F to Z(J) acts as

F
∣∣
Z(J)

= Φ∗,

and such that the components of F are in Ad.

Proof. For i = 1, . . . , d, Theorem 2.17 yields a multiplier ϕi ∈ Ad such that

PFJMϕi

∣∣
FJ

= Φ(SIi ).

Define

F : Bd → Cd, z 7→ (ϕ1(z), . . . , ϕd(z)).

Then F is continuous and F
∣∣
Bd

is holomorphic. Using Lemma 3.3 (a), we obtain for
all λ ∈ Z(J) and i = 1, . . . , d the identity

Φ∗(δλ)(S
I
i ) = δλ

(
PFJMϕi

∣∣
FJ

)
= ϕi(λ).

Proposition 3.4 now implies that F (λ) ∈ Z(I), and that Φ∗(δλ) = δF (λ), as asserted.

The above proposition implies that Φ∗ restricts to a holomorphic map on the
analytic set Z0(I) ⊂ Bd in the sense that for any point λ ∈ Z0(I), there is an open
neighborhood U of λ in Cd and a holomorphic map F on U which coincides with Φ∗

on U .
Example 3.8. Let I, J ( C[z] be homogeneous ideals, and let U be a unitary on Cd

such that J = {p ◦ U : p ∈ I}. In particular, this means that UZ(J) ⊂ Z(I). By
Lemma 2.22, U induces an algebra isomorphism Φ = ΦI

U : AI → AJ which maps
PFIMϕ

∣∣
FI

to PFJMϕ◦U
∣∣
FJ

for each ϕ ∈ Ad. Thus, given λ ∈ Z(J), we have

Φ∗(δλ)(PFIMϕ

∣∣
FI

) = δλ(PFJMϕ◦U
∣∣
FJ

) = (ϕ ◦ U)(λ) = δ(Uλ)(PFIMϕ

∣∣
FI

)

for all ϕ ∈ Ad, where we have used Lemma 3.3 (a). We conclude that the map
Φ∗ : Z(J)→ Z(I) is just the restriction of U to Z(J).
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3. Necessary conditions for isomorphisms between the algebras AI

If I and J are radical homogeneous ideals, we can view AI and AJ as algebras
of continuous functions on Z(I) and Z(J), respectively (see Corollary 2.19). Under
this identification, Φ acts as a composition operator.

Lemma 3.9. Let I, J ( C[z] be radical homogeneous ideals, and let Φ : AI → AJ
be a unital algebra homomorphism. Regarding AI and AJ as algebras of functions
on Z(I) and Z(J), respectively, Φ is given by composition with Φ∗, that is,

Φ(ϕ) = ϕ ◦ Φ∗

for ϕ ∈ AI .

Proof. To avoid confusion, let us write F for Φ∗, regarded as a map from Z(J) to
Z(I). Let ϕ ∈ AI , viewed as an algebra of functions on Z(I). Then for all λ ∈ Z(J),
we have

Φ(ϕ)(λ) = δλ(Φ(ϕ)) = Φ∗(δλ)(ϕ) = δF (λ)(ϕ) = (ϕ ◦ F )(λ).

Remark 3.10. The preceding lemma can be seen as a special instance of the following
general fact: If Φ : A → B is a homomorphism of unital commutative Banach
algebras A and B, and if RA : A → C(∆(A)) and RB : B → C(∆(B)) are the
respective Gelfand transforms, then the diagram

A Φ //

RA

��

B

RB

��

C(∆(A))
f 7→f◦Φ∗

// C(∆(B))

commutes, where Φ∗ : ∆(B) → ∆(A) is the induced map. In the setting of the
lemma, the algebras AI and AJ are semi-simple (see Corollary 3.5), so that modulo
the identifications we have used in this section, Φ is given by composition with Φ∗.

The closed graph theorem and the last lemma easily imply an automatic continu-
ity result for homomorphisms between AI and AJ in the radical case. In fact, this
result is just a special case of the theorem that every homomorphism of a commuta-
tive Banach algebra into a semi-simple commutative Banach algebra is continuous
[Rud91, Theorem 11.10].

Corollary 3.11. Let I, J ( C[z] be radical homogeneous ideals. Every unital algebra
homomorphism Φ : AI → AJ is continuous.
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3.2. Automorphisms of Ad

3.2. Automorphisms of Ad
As a by-product, the results established in the preceding section allow us to deter-
mine the group of algebra automorphisms of Ad. We therefore diverge from our
initial path of finding conditions for two algebras of the type AI being isomorphic,
and examine the case I = {0} more carefully. To this end, it is convenient to think
about Ad as an algebra of holomorphic functions on the open unit ball Bd, and we
will do so throughout this chapter. It turns out that there is a close relation between
automorphisms of Ad and biholomorphic self-maps of the unit ball Bd.
To fix notation, let

Aut(Bd) = {ψ : Bd → Bd : ψ is biholomorphic}

be the set of all automorphisms of Bd, which is a group under composition. Similarly,
we write Aut(Ad) for the group of all algebra automorphisms of Ad.
As an application of Proposition 3.7, we see that every algebra automorphism of
Ad is a composition operator with an automorphism of Bd.

Lemma 3.12. For any Φ ∈ Aut(Ad), there exists a biholomorphic map ψ ∈ Aut(Bd)
such that

Φ(ϕ) = ϕ ◦ ψ for all ϕ ∈ Ad.

Proof. Proposition 3.7, applied with I = J = {0}, asserts that there are continuous
maps F and F̃ from Bd to Cd that are holomorphic on Bd such that

Φ∗ = F and (Φ−1)∗ = F̃ .

Consequently, F and F̃ take values in Bd, and they are inverse to each other. It
follows from the maximum modulus principle, or from a well-known theorem about
injective holomorphic maps [Ran86, Theorem 1.2.14], that F and F̃ map Bd into
Bd, hence F restricts to an automorphism ψ of Bd. Lemma 3.9 finally shows that

Φ(ϕ) = ϕ ◦ ψ for all ϕ ∈ Ad,

as asserted.

Remark 3.13. The proof of the preceding lemma shows that the automorphism
ψ extends to a homeomorphism of the closed unit ball. This is nothing special.
In fact, it is well known that all automorphisms of the open unit ball extend to
homeomorphisms of the closed unit ball (see, for example, [Rud08, Section 2.2]).
Note that if we think of Ad as an algebra of functions on Bd, then the identity
Φ(ϕ) = ϕ ◦ ψ holds on all of Bd.
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3. Necessary conditions for isomorphisms between the algebras AI

The goal of this section is to show that conversely, every automorphism of Bd
induces an algebra automorphism of Ad by composition. In fact, we will see that
this algebra automorphism is unitarily implemented. The most simple case when
the automorphism is just a unitary on Cd has been treated with in Lemma 2.21.
For the general case, we recall some properties of automorphisms of Bd.
For a ∈ Bd, write Pa for the orthogonal projection of Cd onto the subspace spanned

by a, that is P0 = 0 and

Pa(z) =
〈z, a〉
〈a, a〉

z

for z ∈ Cd if a 6= 0. Let Qa = 1− Pa and let sa = (1− |a|2)1/2. Finally, we define

ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
. (3.1)

Then ϕa is an automorphism of Bd which maps 0 to a, and it is an involution [Rud08,
Theorem 2.2.2]. If ψ is an arbitrary automorphism of Bd and a = ψ−1(0), then there
is a unique unitary operator U on Cd such that

ψ = U ◦ ϕa.

Moreover, the identity

1− 〈ψ(z), ψ(w)〉 =
(1− 〈a, a〉)(1− 〈z, w〉)
(1− 〈z, a〉)(1− 〈a, w〉)

holds for all z, w ∈ Bd [Rud08, Theorem 2.2.5]. If K(z, w) = 1
1−〈z,w〉 denotes the

reproducing kernel of H2
d , we can rewrite the last identity as

K(ψ(z), ψ(w)) =
1

s2
a

K(z, w)

K(z, a)K(w, a)
. (3.2)

We can use this fact to show that automorphisms of the unit ball induce automor-
phisms of the multiplier algebra on H2

d by composition. In [DRS11], this result was
proven using a construction of Voiculescu concerning a non-commutative analogue
of the multiplier algebra on H2

d . The essential ingredient of the proof presented here
is Lemma A.5 from the theory of reproducing kernel Hilbert spaces.

Lemma 3.14. Let ψ be an automorphism of Bd and set a = ψ−1(0). Then

Vψ : H2
d → H2

d , f 7→ saK(·, a)(f ◦ ψ)

is a unitary operator. If ϕ ∈ Mult(H2
d) is a multiplier, then ϕ◦ψ is again a multiplier

and

VψMϕV
∗
ψ = Mϕ◦ψ.

52



3.2. Automorphisms of Ad

Proof. First note that by Lemma 2.21, it suffices to consider the case ψ = ϕa.
Indeed, if ψ = U ◦ ϕa where U is a unitary, then Vψ = Vϕa ◦ VU . The fact that Vϕa
is a unitary immediately follows from equation (3.2) and Lemma A.5. Note that for
z ∈ Bd,

(K(·, a) ◦ ϕa)(z) = K(ϕa(z), ϕa(0)) =
1

s2
aK(·, a)

(z)

by equation (3.2). Using this identity and the fact that ϕa is an involution, we
obtain

V 2
ϕaf = saK(·, a)((saK(·, a)(f ◦ ϕa)) ◦ ϕa) = s2

aK(·, a)
1

s2
aK(·, a)

f = f

for all f ∈ H2
d , thus the unitary Vϕa is an involution as well, and hence selfadjoint.

To finish the proof, let ϕ ∈ Mult(H2
d) . Then for all f ∈ H2

d ,

(VϕaMϕV
∗
ϕa)f = saK(·, a)((ϕsaK(·, a)(f ◦ ϕa)) ◦ ϕa)

= s2
aK(·, a)(ϕ ◦ ϕa)

1

s2
aK(·, a)

f

= (ϕ ◦ ϕa)f,

so that ϕ ◦ ϕa ∈ Mult(H2
d) and VϕaMϕV

∗
ϕa = Mϕ◦A.

To show that composition with an automorphism of Bd induces an automorphism
of Ad, we need the following simple observation. It could also be deduced from
Remark 2.15.

Lemma 3.15. Let ψ ∈ Aut(Bd). Then the components of ψ are in Ad.

Proof. Writing ψ = U ◦ ϕa where a = ψ−1(0) and U is a unitary, we see that is
sufficient to show that the components of ϕa are in Ad. By equation (3.1), it clearly
suffices to show that

K(·, a) =
1

1− 〈·, a〉
∈ Ad.

To this end, we observe that Lemma 2.9 yields

||〈·, a〉||2M = ||〈·, a〉||2H2
d

=
d∑
i=1

|ai|2 < 1,

hence the series
∑∞

n=0〈·, a〉n converges absolutely in the Banach algebra Ad, and the
limit is necessarily K(·, a).
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3. Necessary conditions for isomorphisms between the algebras AI

Combining these results, we obtain the following characterization of automor-
phisms of Ad.

Theorem 3.16. Let Ad be the norm-closure of the polynomials in Mult(H2
d).

(a) Any ψ ∈ Aut(Bd) gives rise to a completely isometric automorphism

Cψ : Ad → Ad, ϕ 7→ ϕ ◦ ψ

of Ad. In fact, Cψ is unitarily implemented.

(b) The map

Aut(Bd)→ Aut(Ad), ψ 7→ Cψ

is bijective and satisfies Cψ1Cψ2 = Cψ2◦ψ1 for ψ1, ψ2 ∈ Aut(Bd). Its inverse is
given by

Aut(Ad)→ Aut(Bd), Φ 7→ (Φ(z1), . . . ,Φ(zd)).

(c) Every algebra automorphism of Ad is completely isometric.

Proof. (a) Taking Lemma 3.14 into account, it remains to show that the isometric
isomorphism

C̃ψ : Mult(H2
d)→ Mult(H2

d), ϕ 7→ ϕ ◦ ψ

maps Ad into Ad. As an application of Lemma 3.15, we see that C̃ψ(zi) ∈ Ad for
i = 1, . . . , d. Thus, the result follows from the fact that Ad is the norm closed
algebra generated by the coordinate functions zi.
(b) By part (a), any ψ ∈ Aut(Bd) induces an automorphism Cψ ∈ Aut(Ad), and

clearly, Cψ(zi) = ψi, where ψi denotes the i-th component function on ψ. Conversely,
any Φ ∈ Aut(Ad) is of the form Cψ for some ψ ∈ Aut(Bd) by Lemma 3.12. Since
the relation for Cψ1◦ψ2 is obvious, we have established (b).
(c) This is an immediate consequence of (a) and (b).

3.3. Holomorphic maps on homogeneous varieties

Let I and J be homogeneous ideals in C[z]. According to Proposition 3.7, a unital
algebra homomorphism from AI to AJ always induces a map Φ∗ from Z(J) to Z(I)
which is holomorphic on Z0(J) in the sense that for all λ ∈ Z0(I), there is an open
neighborhood U of λ in Cd and a holomorphic map F on U which coincides with
F on U . In fact, if I and J are radical, the algebra homomorphism is uniquely
determined by this induced map (see Lemma 3.9). To get a better understanding of
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3.3. Holomorphic maps on homogeneous varieties

these algebra homomorphisms, it is therefore helpful to examine holomorphic maps
on sets of the form Z0(I).
The general scheme will be to use the homogeneity of I to embed the unit disk

into Z0(I) via t 7→ t z
||z|| , where z is a non-zero point in Z0(I), and apply results

from classical complex analysis. We begin with a variant of the maximum modulus
principle.

Lemma 3.17. Let I ( C[z] be a homogeneous ideal and let F : Z0(I) → Bd be a
holomorphic map. If there is a point z ∈ Z0(I) such that F (z) ∈ ∂Bd, then F is
constant.

Proof. Clearly, we may assume that Z0(I) ) {0}. Since I is homogeneous, we can
choose a point w0 ∈ Z0(I) \ {0} and a real number t0 ∈ [0, 1) such that z = t0w0.
Then tw0 ∈ Z0(I) for all t ∈ D. By assumption,

f : D→ C, t 7→ 〈F (tw0), F (z)〉

is continuous and holomorphic on D. Moreover, f satisfies |f(t)| ≤ 1 for all t ∈ D and
f(t0) = 1. By the maximummodulus principle, f is the constant function 1. But this
can only happen if F (tw0) = F (z) for all t ∈ D. In particular, F (0) = F (z) ∈ ∂Bd.
Now, if w ∈ Z0(I) is arbitrary, the same argument, applied to the function

D→ C, t 7→ 〈F (tw), F (0)〉,

shows that F (w) = F (0).

An immediate application to isomorphisms between algebras of the type AI is the
following result.

Lemma 3.18. Let I, J ( C[z] be homogeneous ideals and let Φ : AI → AJ be an
algebra isomorphism. Then Φ∗, regarded as a map from Z(J) to Z(I), maps Z0(J)
biholomorphically onto Z0(I).

Proof. This is a direct consequence of Proposition 3.7 and the maximum modulus
principle (Lemma 3.17).

The following lemma is a generalization of the classical Schwarz lemma to homo-
geneous varieties.

Lemma 3.19. Let I ( C[z] be a homogeneous ideal and let F : Z0(I) → Bd be
holomorphic with F (0) = 0.

(a) ||F (z)|| ≤ ||z|| and || d
dt
F (tz)

∣∣
t=0
|| ≤ ||z|| for all z ∈ Z0(I).
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3. Necessary conditions for isomorphisms between the algebras AI

(b) Suppose that there exists a point z ∈ Z0(I) \ {0} with ||F (z)|| = ||z|| or
|| d
dt
F (tz)

∣∣
t=0
|| = ||z||. Then there is a z0 ∈ ∂Bd such that

F
(
t
z

||z||

)
= tz0 for all t ∈ D. (3.3)

In particular, the map F sends the disk Cz ∩ Bd biholomorphically onto the
disk CF (z) ∩ Bd.

Proof. All assertions are trivial if Z0(I) = {0}. Otherwise, let z ∈ Z0(I) \ {0}. For
w ∈ Bd, we define a holomorphic map

fw : D→ C, t 7→
〈
F
(
t
z

||z||

)
, w
〉
.

The assumptions on F imply that fw(0) = 0 and that fw maps D into D. Hence, an
application of the classical Schwarz lemma shows that |fw(t)| ≤ |t| for all t ∈ D. If
F (z) 6= 0, we set w = F (z)

||F (z)|| and t = ||z|| to deduce the inequality ||F (z)|| ≤ ||z||,
which is evident if F (z) = 0. This proves half of (a).
If ||F (z)|| = ||z|| for some z ∈ Z0(I) \ {0}, we see that fw(||z||) = ||z||, where

w = F (z)
||z|| . In this case, the Schwarz lemma shows that this is only possible if fw is

the identity, that is, 〈
F
(
t
z

||z||

)
, w
〉

= t for all t ∈ D.

Since ||F (t z
||z||)|| ≤ |t| by the first half of (a), we conclude that equation (3.3) holds

with z0 = w = F (z)
||z|| , which establishes the first half of (b).

To finish the proof, let z ∈ Z0(I) \ {0}, and define w0 = d
dt
F (t z

||z||)
∣∣
t=0

. If w0 6= 0,
set w = w0

||w0|| in the definition of fw to deduce that

||w0|| =
〈w0, w0〉
||w0||

= f ′w(0) ≤ 1,

once again by the Schwarz lemma. Consequently, || d
dt
F (tz)

∣∣
t=0
|| ≤ ||z||. If equality

holds, then f ′w(0) = 1, so the Schwarz lemma tells us that fw is the identity, and the
same argument as above shows that equation (3.3) holds with z0 = w.

In one-dimensional complex analysis, the Schwarz lemma can be used to show that
every automorphism of the unit disk which fixes the origin is linear. For analytic
sets of the form Z0(I), we now obtain a similar result, which is a variant of Cartan’s
uniqueness theorem (see, for example, [Rud08, Theorem 2.1.3]).

Corollary 3.20. Let I, J ( C[z] be homogeneous ideals and let F : Z0(I)→ Z0(J)
be a biholomorphic map with F (0) = 0. Then there is a linear map A on Cd such
that F = A

∣∣
Z0(I)

.
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3.3. Holomorphic maps on homogeneous varieties

Proof. We may assume without loss of generality that Z0(I) ) {0}. Let A be the
derivative of G at 0, where G is a holomorphic function on a neighborhood U of the
origin which coincides with F on U ∩ Z0(I). Then

d

dt
F (tz)

∣∣
t=0

= Az for all z ∈ Z0(I).

The Schwarz lemma for homogeneous varieties (Lemma 3.19), applied to F and its
inverse, shows that ||F (z)|| = ||z|| for all z ∈ Z0(I). Let z ∈ Z0(I) \ {0}. By part
(b) of the same lemma, there is a z0 ∈ ∂Bd such that

F
(
t
z

||z||

)
= tz0 for all t ∈ D.

Note that z0 necessarily satisfies ||z||z0 = d
dt
F (tz)

∣∣
t=0

, from which we conclude that

F (z) = ||z||z0 = Az.

Hence F = A
∣∣
Z0(I)

.

Another useful consequence of the Schwarz lemma for homogeneous varieties is
the following result concerning biholomorphisms which do not fix the origin.

Corollary 3.21. Let I, J ( C[z] be homogeneous ideals and let F : Z0(I)→ Z0(J)
be a biholomorphic map with F (0) 6= 0. Let b = F (0) and a = F−1(0). Then F
maps the disk D1 = Ca ∩ Bd biholomorphically onto the disk D2 = Cb ∩ Bd.

Proof. Let ϕa be an automorphism of Bd which maps a to 0 and vice versa, and
which restricts to an automorphism of D1 (the automorphism ϕa defined in the
discussion preceding Lemma 3.14 will do). Then

h : D1 → Bd, h = F ◦ ϕa,

is holomorphic with h(0) = 0 and h(a) = b. Observe that the disk D1 is of the form
Z0(I0) for some homogeneous ideal I0 ( C[z]. Thus, the Schwarz lemma (Lemma
3.19) yields ||b|| = ||h(a)|| ≤ ||a||. A similar argument, applied to F−1 in place of F ,
shows that ||a|| ≤ ||b||, hence ||a|| = ||b||. Using part (b) of the Schwarz lemma, we
deduce that h maps D1 biholomorphically onto D2. The assertion is now immediate
since ϕa maps D1 biholomorphically onto itself.

Suppose that F : Z0(I) → Z0(J) is a biholomorphism which does not fix the
origin. Then there is way of constructing a biholomorphism from Z0(I) onto Z0(J)
which does fix the origin with the help of certain “turn” maps. To make this precise,
let t ∈ R, and define Ft : Bd → Bd, z 7→ eitz. It is clear that for any homogeneous
ideal I ⊂ C[z], we have Ft(Z0(I)) = Z0(I) for all t ∈ R.
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3. Necessary conditions for isomorphisms between the algebras AI

Lemma 3.22. Let I, J ( C[z] be homogeneous ideals, and let F : Z0(I) → Z0(J)
be a biholomorphic map. Then there are real numbers s and t such that the biholo-
morphic map

F ◦ Ft ◦ F−1 ◦ Fs ◦ F : Z0(I)→ Z0(J)

fixes the origin.

Proof. If F itself fixes the origin, we set s = t = 0, and we are done. Thus, we may
suppose that a = F (0) and b = F−1(0) are non-zero. We define D1 = Ca ∩ Bd and
D2 = Cb∩Bd. Then Corollary 3.21 shows that F maps the diskD2 biholomorphically
onto the disk D1. We will use an argument from plane conformal geometry to
establish the assertion. To this end, let

C = {eisa : s ∈ R} ⊂ D1

denote the circle in D1 around the origin with radius ||a||. Identifying D1 and D2

with D, the biholomorphic map F : D2 → D1 is an automorphism of the unit
disk. Since automorphisms of the unit disk extend to Möbius maps on the Riemann
sphere, which map circles to circles or straight lines (see, for example, Section 14.3
in [Rud74]), C ′ = F−1(C) is again a circle. It easily follows, for example by the
maximum modulus principle, that F−1 maps the interior of C into the interior of
C ′. Thus, the point b = F−1(0) lies in the interior of C ′. Clearly, 0 = F−1(a) ∈ C ′,
that is, C ′ is a circle passing through the origin. Now, an elementary geometry
argument shows that there is a point in C ′, say F−1(c) with c ∈ C, and a real
number t such that eitF−1(c) = F−1(0). By definition of C, there is an s ∈ R such
that c = eisa. It follows that

eitF−1(eisF (0)) = F−1(0).

The assertion readily follows from this observation.

3.4. Algebra isomorphisms

Suppose that I ( C[z] is a homogeneous ideal. In Proposition 3.4, we have identified
the maximal ideal space ∆(AI) of AI with Z(I). Since I is homogeneous, ∆(AI)
always contains a distinguished element δ0, which corresponds to 0 ∈ Z(I). Note
that δ0 is the unique multiplicative linear functional on AI mapping 1 to 1 and SIi
to 0 for each i. Lemma 3.3 (c) shows that it is given by

δ0(T ) = 〈T1, 1〉 for all T ∈ AI .

When identifying H2
d with the symmetric Fock space Fs(Cd), the vector in Fs(Cd)

which corresponds to the constant function 1 ∈ H2
d is usually called the vacuum

vector. Therefore, δ0 is called the vacuum state.
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3.4. Algebra isomorphisms

Now, suppose that J ( C[z] is another homogeneous ideal. Among all algebra
homomorphisms from AI into AJ , those homomorphisms Φ with the property that
Φ∗ : ∆(AJ)→ ∆(AI) preserves the vacuum state play a special role.

Definition 3.23. Let I, J ( C[z] be homogeneous ideals and let Φ : AI → AJ be
a unital algebra homomorphism. We call Φ vacuum-preserving if Φ∗(δ0) = δ0.

Vacuum-preserving isomorphisms are rather easy to understand in the radical
case.

Proposition 3.24. Let I, J ( C[z] be radical homogeneous ideals, and suppose that
Φ : AI → AJ is a vacuum-preserving algebra isomorphism. Then there exists an
invertible linear map A on Cd which maps Z(J) onto Z(I), and such that regarding
AI and AJ as algebras of functions on Z(I) and Z(J), respectively, Φ is given by

AI → AJ , ϕ 7→ ϕ ◦ A.

Proof. Since Φ is vacuum-preserving, Lemma 3.18 and Corollary 3.20 imply the
existence of a linear map A on Cd such that the continuous map Φ∗ coincides with
A on Z0(J), hence also on Z(J). In particular, A maps Z(J) onto Z(I). The same
reasoning, applied to the inverse of Φ, yields a linear map B which maps Z(I) onto
Z(J), and such that A◦B = idZ(I) and B ◦A = idZ(J). It follows that A is invertible
on span(Z(J)), so that it can be chosen to be invertible on Cd. Corollary 3.9 finally
shows that Φ is given by composition with A.

Remark 3.25. In the above proof, we only needed the hypothesis that the ideals I
and J are radical in the last sentence. Thus, if I and J are not necessarily radical,
then there is still an invertible linear map A on Cd which maps Z(J) onto Z(I),
and such that Φ∗, regarded as a map from Z(J) to Z(I), is the restriction of A
to Z(J). However, in the non-radical case, this does not completely determine the
isomorphism Φ.

To deduce a necessary criterion for two algebras of the type AI being isomorphic,
we will show that whenever AI and AJ are isomorphic, then they are isomorphic
via a vacuum-preserving homomorphism. We will do this with the help of Lemma
3.22. To this end, we need a particular class of automorphisms of AI .
Remark 3.26. Let t be a real number. Then t gives rise to a unitary Ut on Cd by
multiplication with eit. For any homogeneous ideal I ⊂ C[z], we have

I = {p ◦ Ut : p ∈ I}.

Thus, Lemma 2.22 shows that Ut induces an isometric automorphism ΦI
t = ΦI

Ut
of

AI . By Example 3.8, the map ΦI
t
∗ is given by multiplication with eit. Note that if

I = {0}, that is, AI = Ad, then for every ϕ ∈ Ad, the function ΦI
t (ϕ) is just the

function ϕt defined at the beginning of Section 1.1.
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3. Necessary conditions for isomorphisms between the algebras AI

The existence of vacuum-preserving isomorphisms is guaranteed by the following
result.

Proposition 3.27. Let I, J ( C[z] be homogeneous ideals and let Φ : AI → AJ be
an algebra isomorphism. Then there exists a vacuum-preserving algebra isomorphism
Ψ : AI → AJ . If Φ is a topological (respectively isometric) isomorphism, then Ψ
can be chosen to be a topological (respectively isometric) isomorphism as well. More
precisely, there are real numbers s and t such that

Ψ = Φ ◦ ΦI
s ◦ Φ−1 ◦ ΦJ

t ◦ Φ

is a vacuum-preserving algebra isomorphism.

Proof. Clearly, it suffices to prove the last assertion. To this end, we set F = Φ∗,
and regard it as a map from Z(J) onto Z(I). Lemma 3.18 shows that F maps Z0(J)
biholomorphically onto Z0(I). Using the fact that the mapping which assigns to a
unital commutative Banach algebra its maximal ideal space and to a homomorphism
of unital Banach algebras its induced map between the maximal ideal spaces is a
contravariant functor, we see that the assertion follows as an application of Lemma
3.22 and Remark 3.26.

We can now establish a necessary criterion forAI andAJ being isomorphic. Recall
from Corollary 3.11 that algebraic and topological isomorphisms are the same in the
radical case.

Theorem 3.28. Let I, J ⊂ C[z] be radical homogeneous ideals. If AI and AJ are
algebraically isomorphic, then there exists an invertible linear map A on Cd which
maps Z(J) onto Z(I).

Proof. Remark 3.1 deals with the trivial cases where I = C[z] or J = C[z]. If both
I and J are proper ideals, the assertion immediately follows from Proposition 3.27
and Proposition 3.24.

Remark 3.29. The proof of Theorem 3.28 follows closely the one given in [DRS11].
However, they differ in two aspects. Firstly, the existence of the two disks in the first
paragraph of the proof of Lemma 3.22 was established in [DRS11] using the notion
of a singular nucleus of a homogeneous variety. Secondly, the proof of Corollary
3.20 was an adaption of the proof of the Cartan uniqueness theorem (see [Rud08,
Theorem 2.1.3]). In the approach presented here, the heart of both results is Lemma
3.19, which is essentially an application of the Schwarz lemma from one-dimensional
complex analysis.
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3.5. Isometric isomorphisms

3.5. Isometric isomorphisms

The goal of this section is to refine Theorem 3.28 in the situation where AI and AJ
are not only algebraically, but isometrically, isomorphic. We will show that the map
A can be chosen to be a unitary on Cd in this case. To this end, we need to take a
closer look at the isometric structure of AI .
To start with, let I ⊂ C[z] be a homogeneous ideal, and observe that C[z]/I can

be regarded as a dense subspace of both FI and AI . Indeed, both maps

C[z]→ FI , p 7→ PFIp

and
C[z]→ AI , p 7→ p(SI) = PFIMp

∣∣
FI

have kernel I (see Lemma 1.12 and Lemma 2.16 (c)), so they induce embeddings of
C[z]/I into FI and AI , respectively. It is clear that both maps have dense image.
Since C[z]/I carries a natural grading, we have a notion of a graded homomorphism
between algebras of the type AI .

Definition 3.30. Let I, J ⊂ C[z] be homogeneous ideals, and let Φ : AI → AJ be
a unital algebra homomorphism. We call Φ a graded homomorphism if it restricts
to a graded homomorphism between C[z]/I and C[z]/J , viewed as a subspace of AI
and AJ , respectively.

We emphasize that a graded homomorphism in particular maps “polynomial mul-
tipliers” to “polynomial multipliers”, that is, an element of the form p(SI) for some
polynomial p is mapped to q(SJ) for some polynomial q.
In the radical case, vacuum-preserving isomorphisms are automatically graded.

Lemma 3.31. Let I, J ( C[z] be radical homogeneous ideals. Every vacuum-
preserving algebra isomorphism Φ : AI → AJ is graded.

Proof. Proposition 3.24 shows that there exists an (invertible) linear map A on Cd

such that regarding AI and AJ as function algebras on Z(I) and Z(J), respectively,
Φ is given by composition with A. It follows that for p ∈ C[z], we have Φ(p(SI)) =
(p ◦ A)(SJ), so that Φ restricts to

C[z]/I → C[z]/J, [p] 7→ [p ◦ A],

which is obviously graded.

For n ∈ N, let (C[z]/I)n denote the degree n part of the graded algebra C[z]/I.
The embeddings of C[z]/I into FI and AI induce norms on C[z]/I, which will be
different in general. However, they coincide on each graded part (C[z]/I)n.
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3. Necessary conditions for isomorphisms between the algebras AI

Lemma 3.32. Let I ⊂ C[z] be a homogeneous ideal and let n be a natural number.
Suppose that p ∈ (C[z])n. Then

||p(SI)||AI = ||PFIp||FI .

Proof. The assertion is trivial if I = C[z]. Otherwise, let p ∈ C[z]n. Since 1 ∈ FI ,
we have ||PFIp|| = ||p(SI)1|| ≤ ||p(SI)||. We will deduce the non-trivial equality
from Lemma 2.9. First, note that PFIp and PĪp are homogeneous polynomials of
degree n by Lemma 1.13. Lemma 1.12 shows that PĪp ∈ I, hence for any f ∈ FI ,
the function (PĪp) · f is contained in Ī by Lemma 2.16 (a). We conclude that for
f ∈ FI , we have

||p(SI)f || = ||PFI (p · f)|| = ||PFI ((PFIp+ PIp) · f)||
= ||PFI ((PFIp) · f)|| ≤ ||PFIp|| ||f ||,

where we have used the crucial Lemma 2.9 in the last inequality. This observation
finishes the proof.

In this section, we will only need the above lemma for homogeneous polynomials
of degree 1. In this case, the use of Lemma 2.9 can be replaced with an application
of Remark 2.11.
Clearly, every homomorphism between AI and AJ given by composition with a

linear map is graded. The converse of this fact is also true, and, more importantly
in our situation, if a graded isomorphism restricts to an isometry between the degree
one parts of C[z]/I and C[z]/J , then it is given by composition with a unitary.

Lemma 3.33. Let I, J ⊂ C[z] be homogeneous ideals, and let

Φ : C[z]/I → C[z]/J

be a unital graded homomorphism. Then there is a linear map A on Cd such that

Φ([p]) = [p ◦ A]

for all p ∈ C[z]. Moreover, the following statements hold:

(a) If Φ is an isomorphism, then A can be chosen to be invertible, and we have
J = {p ◦ A : p ∈ I} in this case.

(b) If Φ is an isomorphism which maps (C[z]/I)1, viewed as a subspace of AI ,
isometrically to (C[z]/J)1, viewed as a subspace of AJ , then A can be chosen
to be unitary.
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3.5. Isometric isomorphisms

Proof. Let

Φ1 : (C[z]/I)1 → (C[z]J)1

be the restriction of Φ to (C[z]/I)1. Then Φ1 lifts to a linear map Ψ1 on C[z]1, that
is, there is a linear map Ψ1 on Cd such that the diagram

C[z]1
Ψ1 //

��

C[z]1

��

(C[z]/I)1
Φ1 // (C[z]/J)1

commutes. Note that if Φ and hence Φ1 is invertible, then Ψ1 can be chosen to be
invertible. If Φ1 is in addition isometric under the identifications (C[z]/I)1 ⊂ AI
and (C[z]/J)1 ⊂ AJ , then Lemma 3.32 asserts that it is also isometric if we endow
(C[z]/I)1 with the norm of FI ⊂ H2

d , and similarly for (C[z]/J)1. Thus, the map
Ψ1 can be chosen to be unitary on C[z]1 ⊂ H2

d in this case.
Now, let A be the unique linear map on Cd such that

Ψ1(〈·, λ〉) = 〈·, A∗λ〉 for all λ ∈ Cd.

Then A is invertible (respectively unitary) if Ψ1 is, and Ψ1(p) = p ◦ A holds for all
p ∈ C[z]1 (these facts can be deduced, for example, from Proposition 2.8).
We conclude that

Φ([p]) = [p ◦ A]

holds for all p ∈ C[z]1, and since Φ is a unital algebra homomorphism, it holds for
all p ∈ C[z]. In particular, if Φ is bijective, then p ◦ A ∈ J if and only if p ∈ I.

The preceding lemma enables us to prove a refinement of Proposition 3.24 for
isometric isomorphisms.

Proposition 3.34. Let I, J ( C[z] be radical homogeneous ideals, and suppose
that Φ : AI → AJ is a vacuum-preserving isometric isomorphism. Then there
exists a unitary map U on Cd which maps V (J) onto V (I), and such that Φ is
the isomorphism ΦI

U from Lemma 2.22. In particular, if we regard AI and AJ as
algebras of functions on Z(I) and Z(J), respectively, Φ is given by

AI → AJ , ϕ 7→ ϕ ◦ U.

Proof. By Lemma 3.31, the isomorphism Φ is graded, so that Lemma 3.33 yields a
unitary U on Cd such that J = {p ◦ U : p ∈ I}, and such that

Φ(PFIMp

∣∣
FI

) = PFJMp◦U
∣∣
FJ

holds for all polynomials p. It follows that UV (J) = V (I) (compare Remark 2.23)
and that Φ coincides with the isomorphism ΦI

U from Lemma 2.22.
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In particular, we see that vacuum-preserving isometric isomorphisms lift to auto-
morphisms of Ad.

Corollary 3.35. Let I, J ( C[z] be radical homogeneous ideals, and suppose that
Φ : AI → AJ is a vacuum-preserving preserving isometric isomorphism. Then Φ
is unitarily implemented, and it lifts to an automorphism Φ̂ of Ad in the sense that
the diagram

Ad Φ̂ //

��

Ad

��

AI Φ // AJ

commutes, where the vertical arrows are the natural quotient maps.

Proof. By Proposition 3.34, there is a unitary map U on Cd such that Φ = ΦI
U .

Note that ΦI
U is unitarily implemented. Moreover, if ΦU denotes the automorphism

of Ad given by composition with U (see Lemma 2.21), then we have

PFJΦU(Mϕ)
∣∣
FJ

= ΦI
U(PFIMϕ

∣∣
FI

)

for all ϕ ∈ Ad, so that ΦU is the desired lifting of Φ.

Just as in the previous section, we can now deduce the desired necessary criterion
for AI and AJ being isometrically isomorphic, where I and J are radical homo-
geneous ideals. Combined with the results established in Section 2.4, this allows
for a classification of the algebras AI up to isometric isomorphism in terms of the
geometry of the vanishing loci of the ideals I. If H and K are Hilbert spaces and
if A ⊂ L(H) and B ⊂ L(K) are norm-closed subalgebras, we say that A and B are
unitarily equivalent if there exists a unitary U : H → K such that

A = {U∗TU : T ∈ B}.

Clearly, the operator algebras A and B are completely isometrically isomorphic in
this case.

Theorem 3.36. Let I, J ⊂ C[z] be radical homogeneous ideals. Then the following
assertions are equivalent:

(i) AI and AJ are isometrically isomorphic.

(ii) AI and AJ are unitarily equivalent.

(iii) There is a unitary U on Cd such that UV (J) = V (I).
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Proof. We merely have to collect what we have already shown. According to Remark
3.1, we may assume that I and J are proper ideals. To establish (iii)⇒ (ii), suppose
that UV (J) = V (I). Then J = {p ◦ U : p ∈ I} (see Remark 2.23), so that Lemma
2.22 shows that AI and AJ are unitarily equivalent.
The implication (ii) ⇒ (i) is trivial, and (i) ⇒ (iii) follows from Proposition 3.27

and Proposition 3.34.

Remark 3.37. So far, we have only considered the case where I and J are (radical)
homogeneous ideals of complex polynomials in the same number of variables. How-
ever, the more general setting where I ⊂ C[z1, . . . , zd] and J ⊂ C[z1, . . . , zd′ ] are
homogeneous ideals such that possibly d 6= d′ can be reduced to the case d = d′.
To this end, we may assume that d′ ≥ d. We define I ′ to be the homogeneous

ideal in C[z1, . . . , zd′ ] generated by I and the monomials zd+1, . . . , zd′ . Identifying
Cd with Cd ⊕ {0} ⊂ Cd′ in the obvious way, V (I) equals V (I ′). If Id denotes the
ideal in C[z1, . . . , zd′ ] generated by zd+1, . . . , zd′ , then I ′ decomposes as a direct sum
of vector spaces

I ′ = I ⊕ Id,

and Id is orthogonal to C[z1, . . . , zd] inH2
d′ . This observation implies that the natural

algebra homomorphism

C[z1, . . . , zd]/I → C[z1, . . . , zd′ ]/I
′

is an isomorphism which extends to a unitary operator U from FI = H2
d 	 I onto

FI′ = H2
d′	I ′. Note that, in particular, I ′ is radical if and only if I is. Moreover, it is

easy to check that T 7→ U∗TU defines a completely isometric isomorphism from AI′
onto AI which maps SI′i to SIi for i = 1, . . . , d. Hence there is no loss of generality
in assuming that d = d′.

65





4. Sufficient conditions for
isomorphisms between the
algebras AI

4.1. Linear maps on homogeneous varieties

Suppose that I and J are radical homogeneous ideals in C[z]. In the preceding
chapter, we have deduced a necessary condition for AI and AJ being topologically
isomorphic, namely that there exists an invertible linear map A on Cd mapping Z(J)
onto Z(I) (see Theorem 3.28). We have seen that ifAI andAJ are even isometrically
isomorphic, then the map A can be chosen to be unitary. The converse of the latter
result, that is, that a unitary on Cd which maps Z(J) onto Z(I), and thus maps
V (J) onto V (I), induces an isometric isomorphism between AI and AJ , was almost
immediate (see Lemma 2.22).
However, the question, whether the necessary condition for AI and AJ being

topologically isomorphic given by Theorem 3.28 is also sufficient, is more difficult.
Explicitly, we ask:

Question 4.1. Let I, J ⊂ C[z] be radical homogeneous ideals. Suppose that there
is an invertible linear map on Cd which maps Z(J) onto Z(I). Does it follow that
AI and AJ are topologically isomorphic?

In [DRS11], a positive answer to this question was given for the case of tractable
varieties, and it was conjectured that the answer is affirmative in general. The aim
of this chapter is to prove this conjecture.
To this end, we first prove a result from [DRS11] concerning invertible linear maps

mapping Z(J) onto Z(I), which reduces the above question to the case where the
ideals are vanishing ideals of unions of subspaces. We begin by observing that such
linear maps must preserve the norm on Z(J).

Lemma 4.2. Let I, J ⊂ C[z] be homogeneous ideals and let A be a linear map on
Cd that takes Z(I) bijectively onto Z(J). Then ||Av|| = ||v|| for all v ∈ Z(I).

Proof. Let v ∈ Z(I) \ {0}. Since I is homogeneous, v
||v|| ∈ Z(I), so by assumption,∣∣∣∣∣∣A v

||v||

∣∣∣∣∣∣ ≤ 1,
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4. Sufficient conditions for isomorphisms between the algebras AI

that is, ||Av|| ≤ ||v||. To establish the reverse inequality, note that Av 6= 0, so there
is a w ∈ Z(I) such that Aw = Av

||Av|| , that is, Av = A(||Av||w). We conclude that
v = ||Av||w, and hence ||v|| ≤ ||Av||, as desired.

This result can be significantly strengthened if V (I) is irreducible. We will show
that in this case, the linear map A is automatically isometric on the linear span of
V (I). To this end, we need some results from algebraic geometry.
By a variety in Cd, we mean the vanishing locus of an ideal of polynomials in d

variables. Note that we do not require that varieties are irreducible. A variety V
is called homogeneous if it is invariant under multiplication with complex scalars.
Equivalently, the vanishing ideal of V is a homogeneous ideal. If V is a variety and
p ∈ V , the tangent space of V at p is defined by

Tp(V ) = V (dp(f) : f ∈ I(V )),

where

dp(f) =
d∑
i=1

∂f

∂zi
(p)zi.

If V is irreducible, the set of singular points of V (see [Har77, Chapter I, Section
5]) is denoted by Sing(V ). Points which are not singular are called smooth.
Over C, a point p ∈ V is smooth if and only if V is a complex submanifold of Cd

in a neighborhood of p, see for example [Tay02, Proposition 13.3.6]. We only need
the easy direction of this fact.

Lemma 4.3. Let V ⊂ Cd be an irreducible variety, and suppose that p ∈ V is a
smooth point. Then there is an open neighborhood U of p in Cd such that V ∩ U
is a complex submanifold of Cd. Moreover, the tangent space Tp(V ) is the set of
all tangent vectors γ′(0) at γ(0) = p of complex analytic curves γ : Ω → V , where
Ω ⊂ C is a neighborhood of the origin.

Proof. By Theorem 5.7.1 and Corollary 5.7.2. in [Tay02], the variety V is a com-
plex submanifold of dimension r in a neighborhood of p, where r = dimTp(V ). This
establishes the first assertion. The second assertion is well known and easy to show.
Indeed, let W denote the set of all tangent vectors γ′(0), where γ is as in the state-
ment of the lemma. Then a straightforward application of the chain rule shows that
W ⊂ Tp(V ). Conversely, let F : Ω→ Cd be a regular holomorphic parametrisation
of V in a neighborhood of p with F (0), where Ω ⊂ Cr is an open neighborhood of
0. Then the image of the derivate of F at 0 is an r-dimensional subspace of Cr,
which is clearly contained in W . Since Tp(V ) is itself an r-dimensional subspace of
Cd, this observation finishes the proof.

The following lemma is the first step in showing that a linear map A which is
isometric on an irreducible variety V is isometric on the linear span of V .
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Lemma 4.4. Let V ⊂ Cd be a variety and let p ∈ V be a smooth point. If A is a
linear map on Cd such that ||Av|| = ||v|| for all v ∈ V , then ||Av|| = ||v|| holds for
all v ∈ Tp(V ).

Proof. Write A = (aij)
d
i,j=1. Given a smooth point p ∈ V and v ∈ Tp(V ), Lemma 4.3

yields a holomorphic curve γ = (γi)
d
i=1 : Ω → V such that γ(0) = p and γ′(0) = v,

where Ω is an open neighborhood of the origin. Clearly,

||Az||2 =
d∑

i,j,k=1

aijaikzjzk

for all z ∈ Cd, so that for t ∈ Ω, we have

∂∂̄ ||Aγ(t)||2 =
d∑

i,j,k=1

aijaikγ
′
j(t)γ

′
k(t) = ||Aγ′(t)||2

by standard properties of the ∂ and ∂̄ operator. This reasoning also applies when A
is the identity map, hence

∂∂̄||γ(t)||2 = ||γ′(t)||2

for all t ∈ Ω. Since A is isometric on V , we deduce that ||Aγ′(t)||2 = ||γ′(t)||2 for all
t ∈ Ω. Evaluating this identity at t = 0 finishes the proof.

The intermediate goal is to build a variety from the tangent spaces at smooth
points of a given variety. The first fact we need is the following identity theorem for
irreducible varieties.

Theorem 4.5. Let W ⊂ Cd be an irreducible variety and let U ⊂ Cd be an open set
such that U ∩W 6= ∅. If p ∈ C[z] is a polynomial that vanishes on U ∩W , then p
vanishes on W .

Proof. See [Ken77, Theorem IV. 2.11] and the second sentence of the proof.

As a consequence, we obtain a connection between the euclidean and the Zariski
topology on Cd. Recall that the Zariski topology is the topology whose closed sets
are precisely the varieties in Cd.

Corollary 4.6. Let V ⊂ Cd be a variety and let V0 ⊂ V be Zariski-open and
Zariski-dense in V . Then V0 is dense in V in the euclidean topology.

Proof. Assume, for a contradiction, that there is a p ∈ V and a euclidean open
neighborhood U of p in Cd such that U ∩ V0 = ∅. Let W an irreducible component
of V containing p. Then ∅ 6= U ∩ W ⊂ V \ V0. Hence Theorem 4.5 shows that
I(V \ V0) ⊂ I(U ∩W ) = I(W ), thus W ⊂ V \ V0 since V0 is Zariski-open in V . But
because V0 is Zariski-dense in V , we have W ∩ V0 6= ∅, since otherwise, V would
be contained in the union of the irreducible components not equal to W . This
contradiction finishes the proof.
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4. Sufficient conditions for isomorphisms between the algebras AI

It is well known that the projection of an algebraic set need not be algebraic in
the affine setting. The following theorem shows that what is missing is rather small.

Theorem 4.7. Let V ⊂ Cd+e be a variety and let π : Cd+e → Cd be the projection
onto the first d components. If Vd denotes the Zariski-closure of π(V ) in Cd, then
there is a variety W ( Vd such that

Vd \W ⊂ π(V ).

Proof. See [CLO92, Chapter 3, Paragraph 2, Theorem 3]

Combining the last two results, we obtain the following useful fact.

Corollary 4.8. Let V ⊂ Cd+e be a variety and let π : Cd+e → Cd be the projection
onto the first d components. Then the euclidean closure of π(V ) is a variety in Cd.

Proof. By decomposing V into its irreducible components, we may assume that V
is irreducible. Since π is continuous in the Zariski topology, the Zariski closure Vd
of π(V ) is irreducible as well. Theorem 4.7 yields a proper subvariety W of Vd such
that Vd \W ⊂ π(V ). In particular, Vd \W is non-empty and Zariski-open in Vd,
hence, by irreducibility of Vd, it is Zariski-dense in Vd. Consequently, Corollary 4.6
shows that the euclidean closure of Vd \W is Vd. Since Vd \W ⊂ π(V ) ⊂ Vd, this
observation finishes the proof.

We are now in the position to construct the desired variety from tangent spaces
at smooth points of a given variety.

Lemma 4.9. Let V ⊂ Cd be an irreducible variety. Then the euclidean closure of⋃
p∈V \Sing(V )

Tp(V ) ⊂ Cd.

is a homogeneous variety.

Proof. Let I = I(V ), set

X0 =
⋃

p∈V \Sing(V )

{p} × Tp(V ) ⊂ Cd × Cd,

and let X be the Zariski closure of X0. If we denote the coordinates on Cd ×Cd by
(z, w), we see that⋃

p∈V

{p} × Tp(V ) = V ({(f ⊗ 1)(z) : f ∈ I} ∪ {dzf(w) : f ∈ I})

is a variety. Here, f ⊗ 1 is the polynomial in C[z, w] with (f ⊗ 1)(z, w) = f(z). In
particular, X is contained in this variety, soX0 = X∩(Sing(V )×Cd)c. Since Sing(V )
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is Zariski-closed, the set X0 is Zariski open in X. An application of Corollary 4.6
yields that X0 = X, where X0 is the euclidean closure of X0. Let π : Cd×Cd → Cd

be the projection onto the last d components. Then by Corollary 4.8, π(X) ⊂ Cd is
a variety. Since π is continuous, we have π(X0) = π(X), hence the set in question
is a variety. Since all tangent spaces are linear subspaces of Cd, it is necessarily
homogeneous.

We can now prove the result about isometric linear maps on irreducible homoge-
neous varieties which was alluded to above.

Proposition 4.10. Let V ⊂ Cd be an irreducible homogeneous variety, and let A
be a linear map on Cd such that ||Az|| = ||z|| for all z ∈ V . Then

||Az|| = ||z|| for all z ∈ span(V ).

Proof. We will construct a sequence of homogeneous irreducible algebraic varieties

V = V0 ⊂ V1 ⊂ V2 ⊂ . . .

such that ||Az|| = ||z|| for all z ∈ Vi and all i, and such that either dimVi < dimVi+1

or Vi is a subspace of Cd. Since the dimensions of the varieties Vi are bounded from
above by d, this process will eventually yield a subspace Vi and thus prove the
proposition.
Assume that i ∈ N and that Vi has already been constructed. By Lemma 4.4, we

know that ||Az|| = ||z|| for all z ∈ Tp(Vi) and all p ∈ Vi \ Sing(Vi). Now, let W
denote the euclidean closure of ⋃

p∈Vi\Sing(Vi)

Tp(Vi) ⊂ Cd,

which is a homogeneous variety according to Lemma 4.9. By continuity of A, the
linear map A is isometric on W . It is an easy consequence of the homogeneity of Vi
that p ∈ Tp(Vi) for each p ∈ Vi, hence Vi \Sing(Vi) ⊂ W . Because the smooth points
of Vi are dense in Vi in the Zariski topology (see [Har77, Theorem 5.3]), it follows
that Vi is contained inW . The irreducibility of Vi implies that there is an irreducible
component Vi+1 of W , which is necessarily homogeneous (see, for example, Section
3.5 in [Eis95]), such that Vi ⊂ Vi+1. Let W̃ denote the union of the other irreducible
components of W .
We finish the proof by showing that if dimVi = dimVi+1, then Vi is a linear

subspace of Cd. Since both Vi and Vi+1 are irreducible, the definition of dimension
as the supremum of lengths of chains of irreducible subvarieties (see the Definition
after Corollary 1.6 in [Har77]) implies that Vi = Vi+1 holds in this case. Now⋃

p∈Vi\Sing(Vi)

Tp(Vi) ⊂ W = W̃ ∪ Vi.
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4. Sufficient conditions for isomorphisms between the algebras AI

Since each Tp(Vi) is irreducible, it is contained in Vi or in W̃ . If all Tp(Vi) for
p ∈ Vi \Sing(Vi) were contained in W̃ , then also W would be contained in W̃ , which
is not possible, since Vi = Vi+1 is not contained in W̃ . Consequently, there is a
smooth point p ∈ Vi such that Tp(Vi) ⊂ Vi. Since dimTp(Vi) = dimVi, we have that
Vi = Tp(Vi) is a linear subspace.

The following example shows that the condition that V is irreducible is essential.

Example 4.11. Let V be the union of the coordinate axes in C2, and consider the
linear map

A =

(
1 1√

2

0 1√
2

)
.

Then A is isometric on V , but it is clearly not isometric on C2, which is the linear
span of V .

The preceding proposition enables us to give an affirmative answer to Question
4.1 in the case of irreducible varieties. Moreover, we obtain a rigidity result for
certain algebras of the type AI . Note that the following theorem in particular
covers irreducible varieties and non-linear hypersurfaces.

Theorem 4.12. Let I, J ⊂ C[z] be homogeneous radical ideals, and suppose that
V (J) has an irreducible component W such that V (J) ⊂ spanW . If there is an
invertible linear map A on Cd which maps Z(J) onto Z(I), then AI and AJ are
isometrically isomorphic. In particular, AI and AJ are topologically isomorphic if
and only if they are isometrically isomorphic.

Proof. By Lemma 4.2, the linear map A is isometric on V (J). SinceW is necessarily
homogeneous (see, for example, Section 3.5 in [Eis95]), we can apply Proposition
4.10 to W to deduce that A is isometric on spanW . Consequently, the assumption
on V (J) implies that A is isometric on spanV (J), so that there is a unitary on Cd

which coincides with A on V (J). The first assertion thus follows from Theorem 3.36,
and the second one by an application of Theorem 3.28.

4.2. Algebra isomorphisms and sums of Fock
spaces

It was observed in [DRS11] that Proposition 4.10 reduces Question 4.1 to the case
where the ideals are vanishing ideals of unions of subspaces. We will shortly see
why this is true. Moreover, we show that in this case, the problem is related to
the question whether a certain algebraic sum of subspaces of the full Fock space is
closed.
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4.2. Algebra isomorphisms and sums of Fock spaces

Let I ⊂ C[z] be a radical homogeneous ideal. An application of Lemma 1.13
shows that FI is graded in the sense that

FI =
∞⊕
n=0

FI ∩ C[z]n,

and in particular, DI = FI ∩C[z] is a dense subspace of FI . We begin by exhibiting
a convenient generating set for each homogeneous part FI ∩C[z]n. Note that FI can
be identified with H2

d

∣∣
Z0(I)

in the radical case according to Lemma 2.18. Since the
kernel functions form a total set in any Hilbert function space (see Lemma A.4 (c))
this fact can be used to obtain a total set in FI , and therefore a generating set for
each FI ∩ C[z]n. This can also be done directly.

Lemma 4.13. Let I ⊂ C[z] be a radical homogeneous ideal. Then for all natural
numbers n,

FI ∩ C[z]n = span{〈·, λ〉n : λ ∈ Z0(I)} = span{〈·, λ〉n : λ ∈ V (I)}.

Moreover, the set of the kernel functions K(·, λ), where λ ∈ Z0(I), is dense in FI .

Proof. Note that for any λ ∈ Bd, we have

K(·, λ) =
∞∑
n=0

〈·, λ〉n ∈ H2
d ,

where K is the reproducing kernel of H2
d . Using that homogeneous polynomials of

different degree are orthogonal in H2
d , we obtain for λ ∈ Z0(I) and f ∈ C[z]n the

identity 〈
f, 〈·, λ〉n

〉
H2
d

=
〈
f,K(·, λ)

〉
H2
d

= f(λ).

In particular, if f ∈ I ∩ C[z]n and λ ∈ Z0(I), then〈
f, 〈·, λ〉n

〉
H2
d

= 0,

hence 〈·, λ〉n ∈ FI . Conversely, if g ∈ FI ∩ C[z]n is orthogonal to each 〈·, λ〉n for
λ ∈ Z0(I), then g vanishes on Z0(I). By homogeneity of I and g, we infer that g
vanishes on V (I), hence g ∈ I by Hilbert’s Nullstellensatz. Consequently, g = 0,
from which the first equality follows, while the second is obvious.
To establish the second assertion, note that the defining property of the kernel

functions immediately implies that K(·, λ) ∈ FI for all λ ∈ Z0(I). If f ∈ FI
is orthogonal to each K(·, λ), then f vanishes on Z0(I). From Theorem 1.7, we
deduce that f ∈ I, so that f = 0.
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4. Sufficient conditions for isomorphisms between the algebras AI

Suppose now that I, J ⊂ C[z] are radical homogeneous ideals and that A is a
linear map on Cd which maps V (J) into V (I). Since

〈·, λ〉n ◦ A∗ = 〈·, Aλ〉n

for all λ ∈ Cd and n ∈ N, we conclude with the help of the preceding lemma that A
induces a densely defined linear map

FJ ⊃ DJ → FI , f 7→ f ◦ A∗. (4.1)

The crucial problem is to determine when this map is bounded. If J is the vanishing
ideal of a single subspace V ⊂ Cd and A is isometric on V , then the map is in fact
isometric.

Lemma 4.14. Let V ⊂ Cd be a subspace and let J ⊂ C[z] be its vanishing ideal. If
A is a linear map on Cd which is isometric on V , then

CA∗ : FJ ⊃ DJ → H2
d , f 7→ f ◦ A∗

is an isometry.

Proof. The assumption on A implies that there exists a unitary U on Cd which
coincides with A on V . By Lemma 2.21, the map

CU∗ : H2
d → H2

d , f 7→ f ◦ U∗,

is a unitary on H2
d , and it coincides with CA∗ on polynomials of the form 〈z, λ〉n for

λ ∈ Z0(J) and n ∈ N. Since the linear span of these elements forms a dense subset
of DJ by Lemma 4.13, we conclude that CA∗ = CU∗

∣∣
DJ

is an isometry.

When considering more complicated algebraic sets such as unions of subspaces,
one of course wishes to decompose the sets into smaller pieces which are easier to
deal with. Algebraically, this corresponds to writing an ideal as an intersection of
larger ideals. On the level of the spaces FI , we get the following result.

Lemma 4.15. Let J1, . . . , Jr ⊂ C[z] be homogeneous ideals and let J = J1∩ . . .∩Jr.
Then

J = J1 ∩ . . . ∩ Jr,
and

FJ = FJ1 + . . .+ FJr .
Proof. It suffices to prove the first claim, since the second will then follow by taking
orthogonal complements. To this end, note that the inclusion J ⊂ J1 ∩ . . . ∩ Jr is
trivial. Conversely, given an element f ∈ Jk with homogeneous expansion

f =
∞∑
n=0

fn,

Lemma 1.12 shows that each fn is contained in Jk, from which the reverse inclusion
readily follows.
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The question under which conditions the sum FJ1 + . . . + FJr in the preceding
lemma is itself closed will be of central importance. The reason lies in the following
well-known observation.

Lemma 4.16. Let H be a Hilbert space and letM1, . . . ,Mr ⊂ H be closed subspaces.
Then the following are equivalent:

(i) M1 + . . .+Mr is closed.

(ii) There is a constant C ≥ 0 such that for all x ∈ M1 + . . . + Mr, there exist
xi ∈Mi for i = 1, . . . , r such that x = x1 + . . .+ xr and

||x1||2 + . . .+ ||xr||2 ≤ C||x||2.

Proof. Let

Φ : M1 ⊕ . . .⊕Mr →M1 + . . .+Mr

be the map given by addition. Then Φ is a continuous linear map between Hilbert
spaces with dense image. If (i) holds, Φ is in fact surjective, so a standard application
of the open mapping theorem shows that (ii) holds. Conversely, suppose that (ii) is
satisfied. Then the induced map

(M1 ⊕ . . .⊕Mr)/(ker Φ)→M1 + . . .+Mr

is bounded below. Hence its image is closed, so Φ is surjective.

In general, FJ1 + FJ2 need not be closed for two radical homogeneous ideals J1

and J2, see Example 4.24 below. But thanks to the reduction to unions of subspaces
from [DRS11] alluded to earlier, we only need to consider the case where the Jk are
vanishing ideals of subspaces in Cd.
To keep the statements of the following results reasonably short, we make an

ad-hoc definition which will only be used in this section.

Definition 4.17. Let J ⊂ C[z1, . . . , zd] be a radical homogeneous ideal, and let
V (J) = W1 ∪ . . . ∪Wr be the decomposition of V (J) into irreducible components.
Denote the vanishing ideal of spanWk by Ĵk. We call J admissible if the algebraic
sum FĴ1 + . . .+ FĴr is closed.

Proposition 4.18. Let I and J be radical homogeneous ideals in C[z]. Suppose
that there is a linear map A on Cd that maps Z(J) bijectively onto Z(I). If J is
admissible, then

FJ ⊃ DJ → FI , f 7→ f ◦ A∗

is a bounded map.
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Proof. Let V (J) = W1 ∪ . . .∪Wr be the irreducible decomposition of V (J), and let
Ĵk be the vanishing ideal of span(Wk). Define

S = span(W1) ∪ . . . ∪ span(Wr),

and denote the vanishing ideal of S by Ĵ , so that Ĵ = Ĵ1 ∩ . . .∩ Ĵr. Since DJ ⊂ DĴ ,
it suffices to show that f 7→ f ◦A∗ defines a bounded map on DĴ . By Lemma 4.15,
we have

FĴ = FĴ1 + . . .+ FĴr .
By Lemma 4.2 and Proposition 4.10, the linear map A is isometric on S. Conse-
quently, Lemma 4.14 shows that f 7→ f ◦A∗ defines an isometry on each DĴk

⊂ FĴk .
We will use the hypothesis that J is admissible in order to show that f 7→ f ◦ A∗
defines a bounded map on DĴ . To this end, we note that since FĴ1 + . . . + FĴr is
closed, Lemma 4.16 yields a constant C ≥ 0 such that for any f ∈ FĴ , there are
fk ∈ FĴk with f = f1 + . . .+ fr and

||f1||2 + . . .+ ||fr||2 ≤ C||f ||2.

If f is a homogeneous polynomial of degree n, we can choose the fk to be homo-
geneous polynomials of degree n as well. Consequently, if f ∈ DĴ , the fk can be
chosen from DĴk . With such a choice, we obtain for f ∈ DĴ the (crude) estimate

||f ◦ A∗||2 = ||f1 ◦ A∗ + . . .+ fr ◦ A∗||2

≤ r2 max
1≤k≤r

||fk ◦ A∗||2

= r2 max
1≤k≤r

||fk||2 ≤ Cr2||f ||2,

where we have used that f 7→ f ◦ A∗ is an isometry on each DĴk .

In the setting of the preceding proposition, let CA∗ : FJ → FI be the continuous
extension of f 7→ f ◦ A∗ onto FJ . Note that the homogeneous expansion of the
kernel function shows in combination with (4.1) that

CA∗K(·, λ) = K(·, Aλ) for all λ ∈ Z0(J),

so that CA∗ is the map considered in [DRS11, Section 7.3]. Conjugation with the
adjoint of CA∗ then yields a topological isomorphism between AI and AJ .
Corollary 4.19. Let I and J be radical homogeneous ideals in C[z]. Suppose that A
is an invertible linear map which maps Z(J) onto Z(I). If I and J are admissible,
then CA∗ and C(A−1)∗ are inverse to each other, and

Φ : AI → AJ , T 7→ (CA∗)
∗T (C(A−1)∗)

∗,

is a completely bounded isomorphism. Regarding AI and AJ as function algebras on
Z(I) and Z(J), respectively, Φ is given by composition with A, that is,

Φ(ϕ) = ϕ ◦ A for all ϕ ∈ AI .
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Proof. It is clear that CA∗ and C(A−1)∗ are inverse to each other. Now, let p ∈ C[z]
be a polynomial. Then for all f ∈ FJ and λ ∈ Z0(J), we have

〈(CA∗)∗(PFIMp

∣∣
FI

)(C(A−1)∗)
∗f,K(·, λ)〉 = 〈Mp(C(A−1)∗)

∗f,K(·, Aλ)〉
= p(Aλ)〈f, C(A−1)∗K(·, Aλ)〉
= ((p ◦ A) · f)(λ)

= 〈(PFJMp◦A
∣∣
FJ

)f,K(·, λ)〉.

Since the kernel functions K(·, λ), where λ ∈ Z0(I), form a total subset of FI by
Lemma 4.13, it follows that

(CA∗)
∗(PFIMp

∣∣
FI

)(C(A−1)∗)
∗ = PFJMp◦A

∣∣
FJ
.

We conclude that the continuous map Φ indeed sends AI into AJ , and, arguing in
the other direction, we find that Φ is an isomorphism. It is clear that Φ is completely
bounded, and the final statement easily follows from the above result (see Corollary
2.19 for the identification) using a density argument.

To improve the corresponding results from [DRS11], we will show that every radi-
cal homogeneous ideal I ⊂ C[z1, . . . , zd] is automatically admissible. To this end, we
will work with the description of the Drury-Arveson space as symmetric Fock space,
rather than as a Hilbert function space (see Proposition 2.8). This identification
allows us to translate the condition that the ideals I and J be admissible in terms
of symmetric Fock space. In fact, working with the full Fock space suffices.

Lemma 4.20. Let J ⊂ C[z] be a radical homogeneous ideal, and suppose that
V (J) = W1∪ . . .∪Wr is the irreducible decomposition of V (J). Let Vk = span (Wk).
If the algebraic sum of the full Fock spaces F(V1) + . . .+ F(Vr) is closed, then J is
admissible.

Proof. Let Ĵk be the vanishing ideal of Vk. Then by Lemma 4.13, the linear span of
the elements 〈·, λ〉n with λ ∈ Vk and n ∈ N is dense in FĴk , whereas Fs(Vk) is the
closed linear span of the symmetric tensors λ⊗n with λ ∈ Vk and n ∈ N. Hence, the
anti-unitary J from Proposition 2.8 maps FĴk onto Fs(Vk), so that I is admissible
if and only if the algebraic sum

S = Fs(V1) + . . .+ Fs(Vr)

is closed.
Now, let Q be the orthogonal projection from F(Cd) onto Fs(Cd). Note that for

a subspace V ⊂ Cd, the orthogonal projection from (Cd)⊗n onto V ⊗n is just P⊗nV .
Combined with the description of Q in Lemma 2.7, we deduce that for a subspace
V ⊂ Cd, the projections Q and PF(V ) commute and QPF(V ) = PFs(V ), from which is
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easily follows that closedness of F(V1)+ . . .+F(Vr) implies closedness of S. Indeed,
if x is in the closure of S, then we can write x = x̃1 + . . . + x̃r with x̃k ∈ F(Vk).
Setting xk = Qx̃k ∈ Fs(Vk), we have

x = Qx = x1 + . . . xr ∈ S.

4.3. The Friedrichs angle

In order to show that sums of full Fock spaces are closed, we will make use of a
classical notion of angle between two closed subspaces of a Hilbert space due to
Friedrichs [Fri37] (for the history of this and related quantities, see for example
[BS10]).

Definition 4.21. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.
If M 6⊂ N and N 6⊂M , the Friedrichs angle between M and N is defined to be the
angle in [0, π

2
] whose cosine is

c(M,N) = sup
x∈M	(M∩N)
y∈N	(M∩N)

x6=06=y

|〈x, y〉|
||x|| ||y||

.

Otherwise, we set c(M,N) = 0.

Let us record some immediate consequences of this definition.

Remark 4.22. Let M,N ⊂ H be closed subspaces of a Hilbert space H.

(a) Clearly, c(M,N) = c(N,M).

(b) By the Cauchy-Schwarz inequality, 0 ≤ c(M,N) ≤ 1.

(c) Since the spaces M 	 (M ∩ N) and N 	 (M ∩ N) have trivial intersection,
the supremum is in fact taken over a subset of [0, 1). Because the unit ball of
a finite-dimensional space is compact, the supremum is attained if M and N
are finite dimensional, and thus c(M,N) < 1 in this case.

(d) c(M,N) = c(M 	 (M ∩N), N 	 (M ∩N)).

(e) It is elementary to see that c(M,N) is the smallest real number c ≥ 0 such
that

|〈x, y〉| ≤ c||x|| ||y||

holds for all x ∈ M and y ∈ N 	 (M ∩N) (or for all x ∈ M 	 (M ∩N) and
y ∈ N)).
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The Friedrichs angle between two subspaces is closely related to the question
whether their algebraic sum is closed. The following lemma is the reason why we
consider this quantity.

Lemma 4.23. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.
Then the following are equivalent:

(i) The algebraic sum M +N is closed.

(ii) c(M,N) < 1.

(iii) There is a constant C ≥ 0 such that for all z ∈M +N , there are (necessarily
unique) x ∈M and y ∈ N 	 (M ∩N) such that z = x+ y and such that

||x||2 + ||y||2 ≤ C||z||2. (4.2)

Moreover, the smallest possible constant C in (4.2) is given by 1
1−c(M,N)

.

Proof. The implication (iii) ⇒ (i) follows from Lemma 4.16. Conversely, suppose
that (i) holds. By Lemma 4.16, there is a constant C0 such that for all z ∈M +N ,
there are x ∈M and y ∈ N such that z = x+ y and such that

||x||2 + ||y||2 ≤ C0||z||2.

Now write y = ỹ+ŷ, where ỹ ∈ N	(M∩N) and ŷ ∈M∩N . Setting x̃ = x+ŷ ∈M ,
we have ||x̃||2 ≤ 2(||x||2 + ||ŷ||2) and x̃+ ỹ = z, so

||x̃||2 + ||ỹ||2 ≤ 2(||x||2 + ||ŷ||2) + ||ỹ||2 ≤ 2(||x||2 + ||y||2) ≤ 2C0||z||2.

Thus (4.2) holds with C = 2C0. Moreover, if x1 + y1 = x2 + y2 for elements
xi ∈M, yi ∈ N 	 (M ∩N), i = 1, 2, then x1 − x2 = y2 − y1 ∈ (N 	 (M ∩N)) ∩M ,
so x1 = x2 and y1 = y2, which shows the uniqueness statement. Hence (iii) holds.
To show that (ii) implies (iii), let z ∈ M + N and write z = x + y where x ∈ M

and y ∈ N 	 (M ∩N). Since∣∣∣||z||2 − (||x||2 + ||y||2)
∣∣∣ ≤ 2|〈x, y〉| ≤ 2c(M,N)||x|| ||y|| ≤ c(M,N)(||x||2 + ||y||2),

(iii) holds with C = 1
1−c(M,N)

.
Finally, we show (iii) ⇒ (ii). To this end, let x ∈ M and y ∈ N 	 (M ∩ N)

with ||x|| = ||y|| = 1. Since the decomposition of x + y into elements of M and
N 	 (M ∩N) is unique, we have

2 = ||x||2 + ||y||2 ≤ C||x+ y||2
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by assumption, thus

2

C
≤ ||x+ y||2 = 2 + 2 Re〈x, y〉,

that is, Re〈x, y〉 ≥ 1
C
−1. Note that this is true for all x ∈M and y ∈ N 	 (M ∩N).

Multiplying x by a suitable complex scalar of modulus one, we see that

−|〈x, y〉| ≥ 1

C
− 1,

which shows c(M,N) ≤ 1− 1
C
. This observation finishes the proof.

Recently, Badea, Grivaux and Müller [BGM10] have introduced a generalization
of the Friedrichs angle to more than two subspaces. Although we want to show
closedness of sums of arbitrarily many Fock spaces, an inductive argument using the
classical definition for two subspaces seems to be more feasible in our case.
As a first application, we exhibit two radical homogeneous ideals I, J ⊂ C[z] such

that FI +FJ is not closed. When the ideals are not necessarily radical, an example
for this phenomenon is also given by Shalit’s example of a set of polynomials which
is not a stable generating set, see [Sha11, Example 2.6].

Example 4.24. Let I = 〈y2 + xz〉 and J = 〈x〉 in C[x, y, z]. We claim that FI + FJ
is not closed. It is well known that for two closed subspaces M and N of a Hilbert
space H, closedness of M + N is equivalent to closedness of M⊥ + N⊥ (see also
Proposition 4.34 below), so that it suffices to show that I + J is not closed. To this
end, we set for n ≥ 2

fn = zn−2(y2 + xz) and gn = zn−1x.

Clearly, fn ∈ I and gn ∈ J for all n. Using that different monomials in H2
d are

orthogonal, one easily checks that all fn and gn are orthogonal to I∩J = 〈x2z+xy2〉,
so they are orthogonal to I ∩ J = I ∩ J (see Lemma 4.15) as well. Moreover, a
straightforward calculations yields

||fn||2 =
n+ 1

n(n− 1)
and 〈fn, gn〉 = ||gn||2 =

1

n
.

Consequently,
〈fn, gn〉
||fn|| ||gn||

=

√
n− 1

n+ 1

n→∞−−−→ 1,

from which we conclude that c(I, J) = 1, so that I+J is not closed by Lemma 4.23.

The Friedrichs angle can also be expressed in terms of certain orthogonal projec-
tions.
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Lemma 4.25. Let H be a Hilbert space and let M and N be closed subspaces of H.
Then c(M,N) = ||PMPN − PM∩N || and c(M,N)2 = ||PNPMPN − PM∩N ||.

Proof. We first consider the case M ∩N = {0}. Let x ∈M and y ∈ N . Then

|〈x, y〉| = |〈x, PMPNy〉| ≤ ||PMPN || ||x|| ||y||,

so c(M,N) ≤ ||PMPN ||. On the other hand, we have for all x ∈ H the estimate

||PMPNx||2 = |〈PMPNx, PNx〉| ≤ c(M,N)||PMPNx|| ||PNx||
≤ c(M,N)||PMPNx|| ||x||,

so ||PMPN || ≤ c(M,N), which completes the proof if M ∩N = {0}.
The general case from this one by using part (d) of Remark 4.22 and observing

that by the first case,

c(M 	 (M ∩N), N 	 (M ∩N)) = ||(PM − PM∩N)(PN − PM∩N)||
= ||PMPN − PM∩N ||.

To show the second assertion, we set T = PMPN − PM∩N and note that

T ∗T = (PNPM − PM∩N)(PMPN − PM∩N) = PNPMPN − PM∩N .

Hence, by the first part,

c(M,N)2 = ||T ||2 = ||T ∗T || = ||PNPMPN − PM∩N ||.

Let H be a Hilbert space which is graded in the sense that H is the orthogonal
direct sum H =

⊕
n∈NHn for some Hilbert spaces Hn. Denote the orthogonal

projection from H to Hn by Pn. We say that a closed subspace M ⊂ H is graded if
PnPM = PMPn for all n ∈ N. Equivalently,

M =
∞⊕
n=0

M ∩Hn.

Note that M is graded if and only if PM belongs to the commutant of {Pn : n ∈ N},
which is a von Neumann algebra. In particular, if M,N ⊂ H are graded, then
M +N and M ∩ N are graded as well. The most important examples of graded
Hilbert spaces in our case are full Fock spaces and sums thereof.
The angle between two graded subspaces can be easily expressed in terms of the

angles between their graded components by the following formula.

Lemma 4.26. Let H =
⊕∞

n=0Hn be a graded Hilbert space and let M,N ⊂ H be
graded subspaces. Write Mn = M ∩Hn and Nn = N ∩Hn for n ∈ N. Then

c(M,N) = sup
n∈N

c(Mn, Nn).
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4. Sufficient conditions for isomorphisms between the algebras AI

Proof. The assertion readily follows from Lemma 4.25 and the fact that for any
graded subspace K ⊂ H, we have

PK =
∞⊕
n=0

PHn
K∩Hn ,

where PHn
K∩Hn denotes the orthogonal projection from Hn onto K ∩Hn.

If each of the spaces Hn in the preceding lemma is finite dimensional, then
c(Mn, Nn) < 1 for all n ∈ N (see part (c) of Remark 4.22). In particular, M + N
is closed if and only if lim supn→∞ c(Mn, Nn) < 1. That is, closedness of M + N
only depends on the asymptotic behaviour of the sequence (c(Mn, Nn))n. Inspired
by condition 7 in [BGM10, Theorem 2.3], we will now introduce a variant of the
Friedrichs angle which reflects this fact. For a closed subspace M of a Hilbert space
H, we denote the equivalence class of PM in the Calkin algebra by pM .

Definition 4.27. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.
The essential Friedrichs angle is defined to be the angle in [0, π

2
] whose cosine is

ce(M,N) = ||pMpN − pM∩N ||.

Some of the elementary properties of the Friedrichs angle also hold for its essential
variant.

Lemma 4.28. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.

(a) ce(M,N) = ce(M 	 (M ∩N), N 	 (M ∩N)).

(b) ce(M,N)2 = ||pNpMpN − pM∩N ||.

(c) ce(M,N) = ce(N,M).

Proof. Part (a) follows from the identity

(PM − PM∩N)(PN − PM∩N) = PMPN − PM∩N ,

while (b) is again an application of the C∗-identity, see the proof of Lemma 4.25.
For the proof of (c), we may assume that M ∩ N = {0} by part (a). According

to part (b), we have to show that ||pMpNpM || = ||pNpMpN ||, or, equivalently, that
the spectral radius of pNpMpN equals the spectral radius of pMpNpM . But this fact
readily follows from the identity

σ(pNpMpN) ∪ {0} = σ(pNpNpM) ∪ {0} = σ(pNpMpM) ∪ {0} = σ(pMpNpM) ∪ {0},

where we have used that σ(ab) ∪ {0} = σ(ba) ∪ {0} for elements a, b of a unital
C∗-algebra.
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To determine if M +N is closed, the essential Friedrichs angle is just as good as
the usual one, that is, the equivalence of (i) and (ii) in Lemma 4.23 also holds with
ce in place of c as well. This follows from [BGM10, Theorem 2.3]. Before we provide
a short proof below, we record a simple lemma.

Lemma 4.29. Let H be a Hilbert space and letM1, . . . ,Mr ⊂ H be closed subspaces.
Define T = PM1PM2 . . . PMr and M = M1 ∩ . . . ∩Mr.

(a) ker(1− T ∗T ) = M .

(b) If dimH <∞, then ||T || = 1 if and only if M 6= {0}.

Proof. We first claim that a vector x ∈ H satisfies ||Tx|| = ||x|| if and only if x ∈M .
We prove the non-trivial implication by induction on r. The case r = 1 is clear. So
suppose that r ≥ 2 and that the assertion is true for r − 1 subspaces. Let x ∈ H
such that ||Tx|| = ||x||. Setting y = PM2 . . . PMrx, we have

||x|| = ||PM1y|| ≤ ||y|| ≤ ||x||,

thus y ∈M1 and ||PM2 . . . PMrx|| = ||x||. By induction hypothesis, x ∈M2∩. . .∩Mr,
and hence also x = y ∈M1, which finishes the proof of the claim.
Both assertions easily follow from this observation. Clearly, M is contained in

ker(1 − T ∗T ). Conversely, any x ∈ ker(1 − T ∗T ) satisfies ||x||2 = ||Tx||2, so that
x ∈M by the above remark, which proves (a).
Part (b) is immediate from the claim as well, since ||T || is attained if H is finite

dimensional.

Lemma 4.30. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.
Then M +N is closed if and only if ce(M,N) < 1.

Proof. In view of Lemma 4.23, it suffices to show that c(M,N) < 1 if ce(M,N) < 1,
since ce(M,N) ≤ c(M,N) holds trivially. To this end, we can assume without loss
of generality that M ∩ N = {0} by Remark 4.22 (d) and Lemma 4.28 (a). Then
||PNPMPN ||e < 1, so T = 1−PNPMPN is a self-adjoint Fredholm operator. Lemma
4.29 (a) implies that T is injective, from which we conclude that T is invertible. It
follows that 1 6∈ σ(PNPMPN), and hence that c(M,N) = ||PNPMPN || < 1.

For graded subspaces, we obtain a more concrete description of the essential
Friedrichs angle, which gives another proof for the preceding lemma in the graded
case. In particular, we see that the essential Friedrichs angle indeed only depends on
the asymptotic behaviour of the Friedrichs angles between the graded components.

Lemma 4.31. Let H =
⊕∞

n=0 Hn be a graded Hilbert space, where all Hn are finite
dimensional, and let M,N ⊂ H be graded subspaces. Write Mn = M ∩ Hn and
Nn = N ∩Hn for n ∈ N. Then

ce(M,N) = lim sup
n→∞

c(Mn, Nn).
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Proof. Let ε > 0 be arbitrary. By definition of ce, there is a compact operator K on
H such that

||PMPN − PM∩N +K|| ≤ ce(M,N) + ε.

It is easy to see that limn→∞ ||PnKPn|| = 0. Furthermore,

c(Mn, Nn) = ||Pn(PMPN − PM∩N)Pn||
≤ ||Pn(PMPN − PM∩N +K)Pn||+ ||PnKPn||
≤ ce(M,N) + ε+ ||PnKPn||,

so lim supn→∞ c(Mn, Nn) ≤ ce(M,N).
Conversely, for any k ∈ N, the operator

K =
k⊕

n=0

Pn(PMPN − PM∩N)Pn

has finite rank, and

PMPN − PM∩N −K =
∞⊕

n=k+1

Pn(PMPN − PM∩N)Pn.

Hence
ce(M,N) ≤ ||PMPN − PN∩N −K|| = sup

n≥k+1
c(Mn, Nn)

for all natural numbers k, which establishes the reverse inequality.

Remark. If T is an operator on a Hilbert space H, the infimum

inf{||T +K|| : K ∈ K(H)}

is always attained [HK72]. In particular, we can choose an operator K in the first
part of the above proof such that ||PMPN − PM∩N +K|| = ce(M,N).

To deduce other identities for the Friedrichs angle and its essential variant, we
need two simple consequences of the Gelfand-Naimark theorem.

Lemma 4.32. Let A be a unital C∗-algebra and let a, b ∈ A be selfadjoint elements.

(a) If ab = 0, then ||a+ b|| = max(||a||, ||b||).

(b) Suppose that a and b commute and that a ≤ b. If f is a continuous and
increasing real-valued function on σ(a) ∪ σ(b), then f(a) ≤ f(b).

Proof. In both cases, the unital C∗-algebra generated by a and b is commutative.
By the Gelfand-Naimark theorem, we can therefore regard a and b as real-valued
functions on a compact Hausdorff space, where both assertions are elementary.
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Lemma 4.33. Let H be a Hilbert space and let M1,M2, N1, N2 ⊂ H be closed
subspaces with M1⊥M2,M1⊥N2,M2⊥N1, N1⊥N2. Then

c(M1 ⊕M2, N1 ⊕N2) = max(c(M1, N1), c(M2, N2)).

The same is true with ce in place of c.

Proof. The assertion can be shown using the definition of the Friedrichs angle or
working with projections. The latter has the advantage of proving the claim for the
essential Friedrichs angle at the same time.

First, we note that the assumptions on the subspaces imply that

(M1 ⊕M2) ∩ (N1 ⊕N2) = (M1 ∩N1)⊕ (M2 ∩N2).

Indeed, if m1 +m2 = n1 + n2 is an element of the space on the left-hand side, with
mi ∈ Mi, ni ∈ Ni for i = 1, 2, then m1 − n1 = n2 − m2, and the orthogonality
relations show that this vector is zero. Hence m1 ∈ M1 ∩ N1 and m2 ∈ M2 ∩ N2,
thus proving the non-trivial inclusion. Using the orthogonality relations once again,
we conclude that

PN1⊕N2PM1⊕M2PN1⊕N2 − P(M1⊕M2)∩(N1⊕N2)

= (PN1 + PN2)(PM1 + PM2)(PN1 + PN2)− (PM1∩N1 + PM2∩N2)

= (PN1PM1PN1 − PM1∩N1) + (PN2PM2PN2 − PM2∩N2).

Since
(PN1PM1PN1 − PM1∩N1)(PN2PM2PN2 − PM2∩N2) = 0,

both assertions follow from Lemma 4.32 (a).

We finish this section by showing that the (essential) Friedrichs angle is invariant
under taking orthogonal complements.

Proposition 4.34. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces.
Then

c(M,N) = c(M⊥, N⊥).

The same is true with ce in place of c. In particular, M +N is closed if and only if
M⊥ +N⊥ is closed.

Proof. In a first step, we reduce to the case where M and N are in generic position,
that is, where

M ∩N, M ∩N⊥, M⊥ ∩N, M⊥ ∩N⊥ (4.3)
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are all zero. To this end, note that Lemma 4.33 in particular implies that given
closed subspaces M1, N1 and E of H such that E is orthogonal to M1 and N1, then
c(M1 ⊕ E,N1 ⊕ E) = c(M1, N1) (and the same statement with ce in place of c).
Consequently, after replacing M by M 	 (M ∩N) and N by N 	 (M ∩N), we may
assume that M ∩N = {0}. Now, let M ′ = M 	 (M ∩N⊥) and N ′ = N 	 (N ∩M⊥).
Clearly, we still have M ′ ∩N ′ = {0}. Moreover,

(N ′)⊥ = N⊥ ⊕ (N ∩M⊥) and (M ′)⊥ = M⊥ ⊕ (M ∩N⊥),

from which it easily follows that M ′ ∩ (N ′)⊥ = {0} and N ′ ∩ (M ′)⊥ = {0}. Another
straightforward application of Lemma 4.33 thus shows that we may suppose that
the first three spaces in (4.3) are trivial. To dispose of the fourth space in (4.3), we
replace H by M +N . It is easy to see that c(M,N) and ce(M,N) do not depend
on the ambient Hilbert space, and using once again Lemma 4.33, we deduce that
this operation does not change c(M⊥, N⊥) and ce(M⊥, N⊥) either. This observation
establishes the desired reduction.
In the situation where all spaces in (4.3) are zero, a theorem of Halmos ([Hal69,

Theorem 2]) asserts that there exists a Hilbert space K and positive contractions S
and C on K, with S2 + C2 = 1, such that PM and PN are unitarily equivalent to

P ′M =

(
1 0
0 0

)
and P ′N =

(
C2 CS
CS S2

)
,

respectively. From

P ′MP
′
NP

′
M =

(
C2 0
0 0

)
and

(1− P ′M)(1− P ′N)(1− P ′M) =

(
0 0
0 C2

)
,

we infer that P ′MP ′NP ′M and (1−P ′M)(1−P ′N)(1−P ′M) are unitarily equivalent, which
proves the proposition, observing that the additional claim follows from Lemma
4.23.

4.4. Reduction to subspaces with trivial joint
intersection

Let V1, . . . , Vr be subspaces of Cd. The purpose of this section is to reduce the
problem of showing closedness of the sum of Fock spaces F(V1) + . . . + F(Vr) ⊂
F(Cd) to the case where V1 ∩ . . . ∩ Vr = {0}. Note that in [DRS11, Lemma 7.12],
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Davidson, Ramsey and Shalit reduced the problem of showing boundedness of the
map f 7→ f ◦ A∗ in the setting of unions of subspaces to the case where the joint
intersection of the subspaces is trivial. However, in our situation, it does not suffice
to consider only subspaces with trivial joint intersection. The issue is that in the
inductive proof of closedness of the sum of r Fock spaces, we will use the inductive
hypothesis on r−1 subspaces which do not necessarily have trivial joint intersection.
We begin by showing that tensoring with another Hilbert space does not make

the angle worse.

Lemma 4.35. Let H be a Hilbert space and let M,N ⊂ H be closed subspaces. If
E is another non-trivial Hilbert space, then

c(M ⊗ E,N ⊗ E) = c(M,N).

Proof. First, note that (M ∩N)⊗E = (M ⊗E)∩ (N ⊗E). Since PK⊗E = PK ⊗PE
for any closed subspace K ⊂ H, we have

||PM⊗EPN⊗E − P(M⊗E)∩(N⊗E)|| = ||PM⊗EPN⊗E − P(M∩N)⊗E||
= ||(PMPN − PM∩N)⊗ 1E||
= ||PMPN − PM∩N ||.

The following result is the desired reduction to subspaces with trivial joint inter-
section.

Lemma 4.36. Let V1, . . . , Vr ⊂ Cd be subspaces and let V = V1 ∩ . . . ∩ Vr 6= {0}.
Suppose that F(V1) + . . .+F(Vr−1) and F(V1 	 V ) + . . .+F(Vr−1 	 V ) are closed.
Then F(V1) + . . . + F(Vr) is closed if and only if F(V1 	 V ) + . . . + F(Vr 	 V ) is
closed.

Proof. We claim that it suffices to prove the following assertion: IfW1, . . . ,Wr ⊂ Cd

are subspaces, and if E ⊂ Cd is a non-trivial subspace that is orthogonal to each
Wi, then

c((W1 ⊕ E)⊗n + . . .+ (Wr−1 ⊕ E)⊗n, (Wr ⊕ E)⊗n)

= max
j=1,...,n

c(W⊗j
1 + . . .+W⊗j

r−1,W
⊗j
r ).

(4.4)

Indeed, setting E = V and Wi = Vi 	 V for each i, we see from Lemma 4.26 and
Lemma 4.23 that this assertion will prove the lemma.
In fact, we will show that

c
( r−1∑
i=1

W⊗k
i ⊗ (Wi ⊕ E)⊗n,W⊗k

r ⊗ (Wr ⊕ E)⊗n
)

= max
j=k,...,k+n

c
( r−1∑
i=1

W⊗j
i ,W⊗j

r

) (4.5)
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holds for all natural numbers k and n. The assertion (4.4) corresponds to the case
k = 0, with the usual convention W⊗0 = C for a subspace W ⊂ Cd. We proceed
by induction on n. If n = 0, this is trivial. So suppose that n ≥ 1 and that the
assertion has been proved for n− 1. First, we note that

W⊗k
i ⊗ (Wi ⊕ E)⊗n

=
(
W⊗k+1
i ⊗ (Wi ⊕ E)⊗n−1

)
⊕
(
W⊗k
i ⊗ E ⊗ (Wi ⊕ E)⊗n−1

)
,

holds for all i. So defining

M1 =
r−1∑
i=1

W⊗k+1
i ⊗ (Wi ⊕ E)⊗n−1 and

M2 =
r−1∑
i=1

W⊗k
i ⊗ E ⊗ (Wi ⊕ E)⊗n−1,

as well as

N1 = W⊗k+1
r ⊗ (Wr ⊕ E)⊗n−1 and

N2 = W⊗k
r ⊗ E ⊗ (Wr ⊕ E)⊗n−1,

we have
r−1∑
i=1

W⊗k
i ⊗ (Wi ⊕ E)⊗n = M1 +M2 and

W⊗k
r ⊗ (Wr ⊕ E)⊗n = N1 +N2.

Since E is orthogonal to eachWi, we see thatM1⊥M2,M1⊥N2,M2⊥N1 and N1⊥N2.
Consequently, Lemma 4.33 applies to show that the left-hand side of (4.5) equals

max(c(M1, N1), c(M2, N2)).

By induction hypothesis,

c(M1, N1) = max
j=k+1,...,k+n

c
( r−1∑
i=1

W⊗j
i ,W⊗j

r

)
.

Moreover, an application of Lemma 4.35 combined with the inductive hypothesis
shows that

c(M2, N2) = max
j=k,...,k+n−1

c
( r−1∑
i=1

W⊗j
i ,W⊗j

r

)
,

which finishes the proof.
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Example 4.37. With the formula derived in the proof of the preceding lemma, we
can already determine the Friedrichs angle between two full Fock spaces. To begin
with, suppose that V1 and V2 are two subspaces in Cd such that V1∩V2 = {0}. Then
Lemma 4.25 yields for all natural numbers n the identity

c(V ⊗n1 , V ⊗n2 ) = ||P⊗nV1 P
⊗n
V2
|| = ||PV1PV2||n = c(V1, V2)n.

Note that c(V1, V2) < 1 because Cd is finite dimensional. If V1 ∩ V2 6= {0}, we set
Wi = Vi 	 (V1 ∩ V2) for i = 1, 2. By formula (4.4), we have

c(V ⊗n1 , V ⊗n2 ) = max
j=1,...,n

c(W⊗j
1 ,W⊗j

2 )

for all n. Since W1 and W2 have trivial intersection,

c(W⊗j
1 ,W⊗j

2 ) = c(W1,W2)j = c(V1, V2)j

by what we have just proved, so

c(V ⊗n1 , V ⊗n2 ) = c(V1, V2)

for all n. As an application of Lemma 4.26, we see that in any case,

c(F(V1),F(V2)) = c(V1, V2),

while Lemma 4.31 shows that

ce(F(V1),F(V2)) =

{
c(V1, V2), if V1 ∩ V2 6= {0},
0, if V1 ∩ V2 = {0}.

In particular, we see that sums of two Fock spaces are closed.
We conclude this section with a lemma about the case of trivial joint intersec-

tion. In view of the definition of the essential Friedrichs angle, it indicates why the
reduction to this case will be helpful.

Lemma 4.38. Let V1, . . . , Vr ⊂ Cd be subspaces with V1 ∩ . . . ∩ Vr = {0}. Set
Mi = F(Vi) for i = 1, . . . , r. Then PM1 . . . PMr is a compact operator.

Proof. We note that for each i,

PMi
=

∞⊕
n=0

P⊗nVi ,

hence

PM1 . . . PMr =
∞⊕
n=0

(PV1 . . . PVr)
⊗n.

Since V1 ∩ . . . ∩ Vr = {0}, and since Cd is finite dimensional, ||PV1 . . . PVr || < 1 by
Lemma 4.29 (b). Therefore,

||(PV1 . . . PVr)⊗n|| = ||(PV1 . . . PVr)||n
n→∞−−−→ 0.

From this observation, it is easy to see that PM1 . . . PMr is compact.

89
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4.5. A closedness result

In this section, we will deduce a closedness result which will form the inductive step
in the proof of our general result on the closedness of algebraic sums of r Fock spaces.
Because of Lemma 4.36 and Lemma 4.38, we will consider the following situation
throughout this section: Let r ≥ 2, and let M1, . . . ,Mr be closed subspaces of a
Hilbert space H which satisfy the following two conditions:

(a) Any algebraic sum of r − 1 or fewer subspaces of the Mi is closed, that is, for
any subset {i1, . . . , ik} ⊂ {1, . . . , r} with k ≤ r − 1, the sum

Mi1 + . . .+Mik

is closed.

(b) Any product of the PMi
containing each PMi

at least once is compact, that
is, for any collection of (not necessarily distinct) indices i1, . . . , ik such that
{i1, . . . , ik} = {1, . . . , r}, the operator

PMi1
PMi2

. . . PMik

is compact.

Our goal is to show that under these assumptions, the sum M1 + . . .+Mr is closed.
Note that for r = 2, the first condition is empty, while the second is equivalent to
demanding that PM1PM2 be compact.
Recall that for a closed subspace M ⊂ H, we denote the equivalence class of PM

in the Calkin algebra by pM . Moreover, we define A to be the unital C∗-subalgebra
of the Calkin algebra generated by pM1 , . . . , pMr . The following proposition is the
key step in proving that the sum M1 + . . . + Mr is closed. It crucially depends on
condition (b).

Proposition 4.39. For any irreducible representation π of A on a Hilbert space K,
there is an i ∈ {1, . . . , r} such that π(pMi

) = 0.
In particular, there are representations π1, . . . , πr of A such that πi(pMi

) = 0 for
each i, and such that π =

⊕r
i=1 πi is a faithful representation of A.

Proof. We write pi = pMi
. Suppose that π(p2), . . . , π(pr) are all non-zero. We have

to prove that π(p1) = 0. First, note that by condition (b),

π(p1a1p2a2 . . . ar−1pr) = 0 (4.6)

holds if each of the ai is a monomial in the pj. By linearity and continuity, (4.6)
therefore holds for all a1, . . . , ar−1 ∈ A.
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4.5. A closedness result

Since π is irreducible, and since π(pr) 6= 0, we have∨
ar−1∈A

π(ar−1pr)K = K.

Consequently, (4.6) implies that π(p1a1p2a2 . . . ar−2pr−1) = 0. Iterating this process
yields the conclusion π(p1) = 0, as desired.
To establish the additional assertion, let πi be the direct sum of all irreducible

GNS representations πf with πf (pi) = 0, which is understood to be zero if there
are no such representations. Then π =

⊕r
i=1 πi contains every irreducible GNS

representation of A as a summand by the first part, and is therefore faithful.

We will use the preceding proposition to get a good estimate of the essential
Friedrichs angle

ce(M1 + . . .+Mr−1,Mr) = ||pM1+...Mr−1pMr − p(M1+...+Mr−1)∩Mr ||. (4.7)

To this end, we have to make sure that all occurring elements belong to A. We will
use the following well-known fact.

Lemma 4.40. Let H,K be Hilbert spaces and let T ∈ L(H,K). Then the image of
T is closed if and only if 0 is not a cluster point of σ(T ∗T ).

Proof. First, we observe that the image of T is closed if and only if T is bounded
below on M = ker(T )⊥, that is, if and only if there exists an ε > 0 such that

T ∗T
∣∣
M
≥ ε1M .

Now, notice that M is a reducing subspace for T ∗T . Consequently, if the image of
T is closed, then σ(T ∗T ) ⊂ {0} ∪ [ε,∞). Conversely, if 0 is not a cluster point of
σ(T ∗T ), then it is not a cluster point of σ(T ∗T

∣∣
M

) either. But T ∗T
∣∣
M

is injective,
so using that isolated points of the spectrum are eigenvalues, we conclude that
0 6∈ σ(T ∗T

∣∣
M

). Hence T ∗T
∣∣
M
≥ ε1M for some ε > 0.

Part of the task of showing that all elements in (4.7) belong to A is done by the
following lemma.

Lemma 4.41. Let H be a Hilbert space and let M,N,N1, . . . , Ns ⊂ H be closed
subspaces.

(a) The algebraic sum N1 + . . .+Ns is closed if and only if 0 is not a cluster point
of the spectrum of the positive operator PN1 + . . .+PNs. In this case, the image
of the operator PN1 + . . .+ PNr equals N1 + . . .+Nr.
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4. Sufficient conditions for isomorphisms between the algebras AI

(b) If N1 + . . .+Ns is closed, then

PN1+...+Ns = χ(0,∞)(PN1 + . . .+ PNs),

where χ(0,∞) denotes the indicator function of (0,∞). In particular, the pro-
jection PN1+...+Ns belongs to the C∗-algebra generated by PN1 , . . . , PNs.

(c) M +N is closed if and only if the sequence ((PMPNPM)n)n converges in norm
to PM∩N . In particular, if M + N is closed, then PM∩N belongs to the C∗-
algebra generated by PM and PN .

Proof. (a) Consider the continuous operator

T :
s⊕
i=1

Ni → H, (xi)
s
i=1 7→

s∑
i=1

xi.

Clearly, the image of T equals N1 + . . . + Nr. Consequently, this sum is closed if
and only if the image of T is closed, which, in turn, happens if and only if the image
of T ∗ is closed. It is easy to check that T ∗ is given by T ∗x = (PN1x, . . . , PNsx),
so TT ∗ = PN1 + . . . + PNs . Hence the assertion follows from Lemma 4.40, and the
additional claim is now obvious.
(b) Part (a) shows that the restriction of χ(0,∞) to σ(PN1 +. . .+PNs) is continuous,

so P = χ(0,∞)(PN1 + . . .+PNs) belongs to the C∗-algebra generated by PN1 , . . . , PNs .
By standard properties of the functional calculus, P is the orthogonal projection
onto the range of PN1 + . . .+ PNs , which is N1 + . . .+Ns.
(c) For any n ∈ N, we have

||(PMPNPM)n − PM∩N || = ||(PMPNPM − PM∩N)n|| = c(M,N)2n,

which converges to zero if and only if c(M,N) < 1. This, in turn, is equivalent to
M +N being closed by Lemma 4.23.

Remark 4.42. Statement (c) in the preceding lemma is just part of a bigger picture:
For any closed subspaces M,N ⊂ H, the sequence ((PMPN)n)n (and hence also
((PMPNPM)n)n = ((PMPN)nPM)n) converges in the strong operator topology to
PM∩N , and the convergence is in norm if and only if M + N is closed, see for
example [Deu95, Section 3].

Because of condition (a), the preceding lemma shows that pM1+...+Mr−1 ∈ A. If
r ≥ 3, we define for i = 1, . . . , r − 1

Si = M1 + . . .+ M̂i + . . .+Mr−1,

where M̂i stands for omission of Mi. If r = 2, this is understood to be the zero
vector space. Note that Si is a sum of r − 2 subspaces for r ≥ 3. Thus another
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application of Lemma 4.41 shows that pSi and pSi∩Mr belong to A. However, care
must be taken when using Proposition 4.39 to estimate ce(M1 + . . . + Mr−1,Mr)
since it is not obvious a priori that p(M1+...+Mr−1)∩Mr lies in A. Before we address
this question, we record the following simple lemma for future reference.

Lemma 4.43. Let π =
⊕r

i=1 πi be the representation from Proposition 4.39. Then
for i = 1, . . . , r − 1,

πi(pM1+...+Mr−1) = πi(pSi).

Proof. Let a = pM1 + . . .+ pMr−1 and b = pM1 + . . .+ p̂Mi
+ . . .+ pMr−1 (if r = 2, we

set b = 0). By condition (a) and Lemma 4.41, the origin is neither a cluster point
of σ(a) nor one of σ(b), and

χ(0,∞)(a) = pM1+...+Mr−1 and χ(0,∞)(b) = pSi .

The assertion therefore follows from the identity πi(a) = πi(b) and the fact that the
continuous functional calculus is compatible with ∗-homomorphisms.

The question whether p(M1+...+Mr−1)∩Mr belongs to A is more difficult. We will see
below that it can well happen that for subspacesM and N of a Hilbert space H, the
projection pM∩N does not belong to the unital C∗-algebra generated by pM and pN .
Moreover, although there is a criterion for the closedness of M + N only in terms
of PM and PN , namely M +N is closed if and only if the sequence ((PMPN)n)n is a
Cauchy sequence in norm (see Remark 4.42), there cannot be such a criterion only
in terms of pM and pN .

Example 4.44. A concrete example of two closed subspaces M and N of a Hilbert
space H such that M + N is not closed can be obtained as follows (compare the
discussion preceding Problem 52 in [Hal82]): Take a continuous linear operator T
on H with non-closed range, and let M be the graph of T , that is,

M = {(x, Tx) : x ∈ H} ⊂ H ⊕H.

Set N = H ⊕ {0}. Then M and N are closed, but

M +N = H ⊕ ran(T )

is not closed. Suppose now that T is additionally self-adjoint and compact. It is
easy to check that the projection onto M is given by

PM =

(
(1 + T 2)−1 T (1 + T 2)−1

T (1 + T 2)−1 T 2(1 + T 2)−1

)
.

Clearly,

PN =

(
1 0
0 0

)
.
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4. Sufficient conditions for isomorphisms between the algebras AI

However, the equivalence classes pM and pN of these projections in the Calkin algebra
are the same. In particular, we see that there cannot be a criterion for the closedness
of M +N only in terms of pM and pN .
Moreover, M ∩N = ker(T )⊕ {0}, so

PM∩N =

(
Pker(T ) 0

0 0

)
.

Hence, if both ker(T ) and H 	 ker(T ) are infinite dimensional, pM∩N does not
belong to the unital C∗-algebra generated by pM and pN . For a concrete example,
set H = `2(N), choose a null sequence (an)n of real numbers with infinitely many
zero and infinitely many non-zero terms, and let T be componentwise multiplication
with (an)n.
In the presence of conditions (a) and (b), the situation is better.

Lemma 4.45. Under the above hypotheses, p(M1+...+Mr−1)∩Mr ∈ A. Moreover, if
π =

⊕r
i=1 πi is the faithful representation from Proposition 4.39, we have

πi(p(M1...+Mr−1)∩Mr) = πi(pSi∩Mr),

for i = 1, . . . , r − 1, and πr(p(M1+...+Mr−1)∩Mr) = 0.

Proof. If r = 2, condition (b) asserts that PM1PM2 is a compact operator. Since
PM1∩M2 = PM1PM2PM1∩M2 , we conclude that pM1∩M2 = 0, so the statement is trivial
for r = 2.
Now, let us assume that r ≥ 3 and define

S = M1 + . . .+Mr−1.

In a first step, we show that the sequence ((pMrpSpMr)
n)n converges to an element

qu ∈ A with qu ≥ pS∩Mr . To this end, let π =
⊕r

i=1 πi be the faithful representation
from Proposition 4.39. By Lemma 4.43, we have πi(pS) = πi(pSi) for each i. Since
Si +Mr is closed, Lemma 4.41 (c) shows that for i = 1, . . . , r − 1,

πi
(
(pMrpSpMr)

n
)

= πi
(
(pMrpSipMr)

n
) n→∞−−−→ πi(pSi∩Mr). (4.8)

Clearly, πr(pMrpSpMr) = 0. Since π =
⊕r

i=1 πi is a faithful representation, we
conclude that ((pMrpSpMr)

n)n is a Cauchy sequence in A. Denoting its limit by qu,
we see from

(pMrpSpMr)
n − pS∩Mr = (pMrpSpMr − pS∩Mr)

n ≥ 0

for all n ∈ N that qu ≥ pS∩Mr .
The next step is to prove that 0 is not a cluster point of the spectrum of the

positive element a = pS1∩Mr + . . .+ pSr−1∩Mr ∈ A, and that

ql = χ(0,∞)(a) ≤ pS∩Mr .
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To this end, we fix an i ∈ {1, . . . , r − 1}, and for j = 1, . . . , r − 1 with j 6= i, we set

Nj = M1 + . . .+ M̂i + . . .+ M̂j + . . .+Mr−1 ⊂ Si,

which is understood as the zero vector space if r = 3. Clearly, Nj is closed by
condition (a). Then pNj ∈ A, and just as in the proof of Lemma 4.43, we see
that πi(pSj) = πi(pNj). Since Nj + Mr and Sj + Mr are closed by condition (a), an
application of Lemma 4.41 (c) yields that pNj∩Mr belongs to A and that πi(pSj∩Mr) =
πi(pNj∩Mr). Therefore,

πi(a) = πi(pN1∩Mr + . . .+ pNi−1∩Mr + pSi∩Mr + pNi+1∩Mr + . . .+ pNr−1∩Mr).

Using the fact that the algebraic sum

N1 ∩Mr + . . .+Ni−1 ∩Mr + Si ∩Mr +Ni+1 ∩Mr + . . .+Nr−1 ∩Mr

equals Si∩Mr and is therefore evidently closed, we conclude with the help of Lemma
4.41 (a) that 0 is not a cluster point of σ(πi(a)), and that

χ(0,∞)(πi(a)) = πi(pSi∩Mr). (4.9)

Since πr(a) = 0, and since π =
⊕r

i=1 πi is a faithful representation of A, it follows
that 0 is not a cluster point of σ(a). Thus, we can define

ql = χ(0,∞)(a) ∈ A.

To prove the asserted inequality, we note that a ≤ (r − 1) pS∩Mr , and that a and
pS∩Mr commute. Hence Lemma 4.32 (b) shows that

ql ≤ χ(0,∞)((r − 1) pS∩Mr) = pS∩Mr .

We have established the following situation so far:

ql ≤ p(M1+...+Mr−1)∩Mr ≤ qu,

and ql and qu belong to A. We now finish the proof of p(M1+...+Mr−1)∩Mr ∈ A by
showing that ql = qu. Using once again the representation from Proposition 4.39,
it suffices to show that πi(ql) = πi(qu) for i = 1, . . . , r. This is obvious for i = r,
because πr(ql) = 0 = πr(qu). So let i ∈ {1, . . . , r − 1}. According to equation (4.8),
we have πi(qu) = πi(pSi∩Mr), while equation (4.9) shows that πi(ql) = πi(pSi∩Mr), as
desired. The additional assertion is now obvious.

We are now in the position to prove the main theorem of this section.

Theorem 4.46. Let H be a Hilbert space, let r ≥ 2 and let M1, . . .Mr ⊂ H be
closed subspaces such that the following two conditions hold:
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(a) Any algebraic sum of r − 1 or fewer subspaces of the Mi is closed, that is, for
any subset {i1, . . . , ik} ⊂ {1, . . . , r} with k ≤ r − 1, the sum

Mi1 + . . .+Mik

is closed.

(b) Any product of the PMi
containing each PMi

at least once is compact, that is, for
any collection of (not necessarily distinct) indices i1, . . . , ik with {i1, . . . , ik} =
{1, . . . , r}, the operator

PMi1
PMi2

. . . PMik

is compact.

Then the algebraic sum M1 + . . .+Mr is closed.

Proof. As above, let A be the unital C∗-algebra generated by pM1 , . . . , pMr , and let
π =

⊕r
i=1 πi be the faithful representation from Proposition 4.39. By the discus-

sion preceding Lemma 4.43, the elements pSi and pSi∩Mr , as well as pM1+...+Mr−1 , all
belong to A for i = 1, . . . , r − 1. According to Lemma 4.45, this is also true for
p(M1+...+Mr−1)∩Mr , and πi(p(M1+...+Mr−1)∩Mr) = πi(pSi∩Mr) for i = 1, . . . , r − 1. More-
over, for these i, we have πi(pM1+...+Mr−1) = πi(pSi) by Lemma 4.43. Combining
these results, we obtain

||πi(pM1+...+Mr−1pMr − p(M1+...+Mr−1)∩Mr)|| = ||πi(pSipMr − pSi∩Mr)||
≤ ce(Si,Mr).

Since πr(pMr) = 0 = πr(p(M1+...+Mr−1)∩Mr), we conclude that

ce(M1 + . . .+Mr−1,Mr) = ||pM1+...+Mr−1pMr − p(M1+...+Mr−1)∩Mr ||
≤ max

1≤i≤r−1
ce(Si,Mr) < 1

because Si +Mr is closed for each i by condition (a).

The desired result about sums of Fock spaces follows now by a straightforward
inductive argument.

Corollary 4.47. Let V1, . . . , Vr ⊂ Cd be subspaces. Then the algebraic sum

F(V1) + . . .+ F(Vr) ⊂ F(Cd)

is closed.
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Proof. We prove the result by induction on r, noting that the case r = 1 is trivial.
So suppose that r ≥ 2 and that the assertion has been proved for k ≤ r − 1. In
order to show that sums of r Fock spaces F(V1), . . . ,F(Vr) are closed, it suffices to
consider the case where V1 ∩ . . . ∩ Vr = {0} by Lemma 4.36. Let Mi = F(Vi) for
each i. As an application of Lemma 4.38, we see that condition (b) of the preceding
theorem is satisfied, whereas condition (a) holds by the inductive hypothesis. Thus
the assertion follows from the preceding theorem.

In the terminology of the second section of this chapter, this result, combined
with Lemma 4.20, shows that every radical homogeneous ideal is admissible. Hence,
Proposition 4.18 and Corollary 4.19 hold without the additional hypotheses on I
and J . We thus obtain the desired classification of the algebras AI up to topological
isomorphism. If H and K are Hilbert spaces and if A ⊂ L(H) and B ⊂ L(K) are
norm-closed subalgebras, we say that A and B are similar if there exists an invertible
continuous linear operator A : H → K such that

A = {A−1TA : T ∈ B}.

Clearly, the operator algebras A and B are topologically isomorphic via a completely
bounded isomorphism in this case.

Theorem 4.48. Let I, J ⊂ C[z] be radical homogeneous ideals. Then the following
assertions are equivalent:

(i) AI and AJ are algebraically isomorphic.

(ii) AI and AJ are topologically isomorphic.

(iii) AI and AJ are similar.

(iv) There exists an invertible linear map A on Cd which maps Z(J) onto Z(I).

Proof. The implications (iii) ⇒ (ii) ⇒ (i) are trivial. (i) ⇒ (iv) is Theorem 3.28.
The remaining implication (iv) =⇒ (iii) follows from Corollary 4.19 and the fact
that all radical homogeneous ideals are admissible.

We conclude this chapter with the easiest non-trivial application of the classifica-
tion results from Theorem 3.36 and Theorem 4.48.
Example 4.49. Let d = 2 and let both I and J be the vanishing ideal of a union of
two distinct complex lines, say V (I) = V1 ∪ V2 and V (J) = W1 ∪W2 for some one-
dimensional subspaces V1, V2,W1,W2 ⊂ C2. Then there is always an invertible linear
map on C2 which sends V (J) onto V (I) and is isometric on V (J), so that AI and
AJ are always topologically isomorphic. The algebras AI and AJ are isometrically
isomorphic if and only if there is a unitary on C2 which maps V (J) onto V (I). It
is not hard to see that his happens if and only if the angles c(V1, V2) and c(W1,W2)
are the same.
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5.1. Graded isomorphisms

The results established so far allow for a classification of algebras of the type AI
in the homogeneous radical case. One way of generalizing this setting is dropping
the condition that the ideal I be homogeneous. This was done in a recent paper by
Davidson, Ramsey and Shalit [DRS12], where the isomorphism problem for algebras
of multipliers on Drury-Arveson space associated to not necessarily homogeneous
varieties was studied.
In this chapter, we consider a different direction of generalization by dropping the

condition that the ideal I be radical. Thus, we seek necessary and sufficient condi-
tions for two algebras AI and AJ being isomorphic, where I and J are homogeneous,
but not necessarily radical, ideals of polynomials. Clearly, there is no hope of ob-
taining a classification of the algebras AI only in terms of the vanishing loci V (I).
What makes the non-radical setting even more difficult is that we cannot regard AI
as an algebra of continuous functions on Z(I) as in Corollary 2.19. In fact, Corollary
3.5 shows that AI will not be semi-simple unless I is a radical ideal. Nevertheless,
the algebras AI were classified up to isometric isomorphism in [DRS11], using the
notion of a subproduct system [SS09]. The first goal is to establish this result. In
the sequel, we will not use this notion, but we will employ ideas from this theory,
specifically from [SS09, Section 9].
Recall from the beginning of Section 3.5 that if I ⊂ C[z] is a homogeneous ideal,

then C[z]/I can be embedded into AI via

C[z]/I → AI , [p] 7→ p(SI) = PFIMp

∣∣
FI
.

In what follows, we write (AI)n for the degree n part of C[z]/I, viewed as a subspace
of AI , that is,

(AI)n = {p(SI) : p ∈ C[z]n}.

Let J ⊂ C[z] be another homogeneous ideal. Recall that an algebra homomorphism
from AI to AJ is called graded if it restricts to a graded homomorphism from C[z]/I
to C[z]/J , that is, if

Φ((AI)n) ⊂ (AJ)n for all n ∈ N.
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We have seen in Proposition 3.27 that if the algebras AI and AJ are isometrically
isomorphic, then they are isomorphic via a vacuum-preserving isometric isomor-
phism (see also Definition 3.23). In the radical case, this led to a necessary criterion
for AI and AJ being isomorphic. An important point was that in this case, vacuum-
preserving isomorphisms are always graded (see Lemma 3.31). This need no longer
be true in the non-radical case.

Example 5.1. Let d = 1 and let I = J = 〈z3〉 ⊂ C[z]. Using the homogeneous
expansion, it is easy to check that AI and AJ are naturally isomorphic to C[z]/I.
Let Φ : C[z]/I → C[z]/I be the unique algebra homomorphism mapping [z] to
[z + z2]. Then Φ is a continuous algebra isomorphism whose inverse is given by the
map sending [z] to [z − z2]. Since Z(I) = {0}, the algebra homomorphism Φ is
evidently vacuum-preserving, but it does not respect the grading.

To examine the situation in the non-radical case, we need a homogeneous expan-
sion for AI .

Proposition 5.2. Let I ⊂ C[z] be a homogeneous ideal. There is a family of
contractive projections P I

n : AI → (AI)n for n ∈ N with the following properties:

(a) P I
n

∣∣
(AI)n

= id(AI)n and P I
n

∣∣
(AI)m

= 0 for n 6= m.

(b) For each T ∈ AI , the series
∑∞

n=0 P
I
n(T ) is Cesàro-convergent to T .

Proof. In the case I = {0}, that is, AI = Ad, Proposition 1.6 yields projections Pn
as asserted. For the general case, we identify AI with Ad/Ĩ according to Theorem
2.17. Since I is homogeneous, Ĩ is invariant under each Pn by Lemma 1.12, so that
the operators Pn induce well-defined contractive projections on Ad/Ĩ. On AI , they
are given by

P I
n : AI → (AI)n, PFIMϕ

∣∣
FI
7→ PFIMPn(ϕ)

∣∣
FI

for ϕ ∈ Ad. It is clear that the family (P I
n) satisfies the first condition, while the

second one follows from the corresponding statement about the projections Pn in
Proposition 1.6.

The projections introduced in the preceding lemma allow for a simple characteri-
zation of graded homomorphisms.

Lemma 5.3. Let I, J ⊂ C[z] be homogeneous ideals and let Φ : AI → AI be a
continuous algebra homomorphism. Then Φ is graded if and only if

P J
n Φ = ΦP I

n for all n ∈ N.
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Proof. Clearly, the intertwining relations are sufficient. To prove necessity, let Φ be
graded and let T ∈ AI be arbitrary. Then Φ(P I

n(T )) ∈ (AJ)n for all n ∈ N. Since
Φ is continuous and linear, Proposition 5.2 shows that

P J
n Φ(T ) = P J

n Φ
( ∞∑
k=0

P I
k (T )

)
= Φ(P I

n(T ))

for all n ∈ N, where the series is Cesàro-convergent. Hence the assertion follows.

An immediate consequence is the following result.

Corollary 5.4. Let I, J ⊂ C[z] be homogeneous ideals and let Φ : AI → AJ be a
continuous graded algebra isomorphism. Then also its inverse Φ−1 : AJ → AI is
graded.

Proof. The assertion follows from Lemma 5.3 by multiplying the intertwining con-
ditions by Φ−1 from the left and from the right.

With the help of the homogeneous expansion in AI , we obtain a clearer picture of
the connection between vacuum-preserving and graded homomorphisms. In partic-
ular, we see that graded homomorphisms are always vacuum-preserving. To shorten
notation, we define for n ∈ N closed ideals

(AI)≥n = {p(SI) : p ∈ C[z]≥n}

in AI , where C[z]≥n denotes the homogeneous ideal
⊕∞

k=nC[z]k in C[z].

Lemma 5.5. Let I, J ( C[z] be homogeneous ideals and let Φ : AI → AJ be a
unital continuous algebra homomorphism. Then the following are equivalent:

(i) Φ is vacuum-preserving,

(ii) Φ((AI)1) ⊂ (AJ)≥1,

(iii) Φ((AI)≥n) ⊂ (AJ)≥n for all n ∈ N.

Proof. (iii) trivially implies (ii), and it is easy to check that (ii) implies (iii) using
the fact that Φ is a continuous algebra homomorphism.
To show that (i) and (ii) are equivalent, suppose first that (ii) holds. Then

Φ∗(δ0)(SIi ) = δ0(Φ(SIi )) = 0 for all i = 1, . . . , d,

and consequently Φ∗(δ0) = δ0 by Proposition 3.4, that is, Φ is vacuum-preserving.
Conversely, assume that (i) holds and let i ∈ {1, . . . , d}. An application of Propo-

sition 5.2 shows that there are a ∈ C and T ∈ (AJ)≥1 such that

Φ(SIi ) = a1 + T.

By assumption, we have a = δ0(Φ(SIi )) = δ0(SIi ) = 0, so Φ(SIi ) = T . This observa-
tion finishes the proof.
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5. The non-radical case

Example 5.1 shows that vacuum-preserving isomorphisms need not be graded.
However, the following lemma asserts that they are not far from being graded in a
certain sense. As in the discussion preceding Lemma 3.3, let

RI : AI → A√I , T 7→ PF√IT
∣∣
F√I

be the natural quotient map from AI onto A√I .

Lemma 5.6. Let I, J ⊂ C[z] be homogeneous ideals and let Φ : AI → AJ be a
vacuum-preserving algebra isomorphism. Then

RJ(P J
n Φ− ΦP I

n) = 0.

Proof. Consider

Ψ = RJ ◦ Φ : AI → A√J .

Then Ψ is a vacuum-preserving algebra homomorphism, in fact, with the identifi-
cations explained in Proposition 3.4, we have Φ∗ = Ψ∗. Thus, Lemma 3.18 and
Corollary 3.20 imply the existence of a linear map A on Cd such that Ψ∗ = A

∣∣
Z(J)

.
Regarding A√J as an algebra of functions on Z(J), we obtain for T ∈ AI and
λ ∈ Z(J) the identity

Ψ(T )(λ) = (δλ ◦Ψ)(T ) = δAλ(T ) = (RI(T ))(Aλ),

where we have also viewed A√I as an algebra of functions on Z(I) in the last
step. We conclude that Ψ(T ) = RI(T ) ◦ A, from which it easily follows that Ψ is
graded. Since A√J is semi-simple by Corollary 3.5, the algebra homomorphism Ψ

is continuous, so that P
√
J

n ◦ Ψ = Ψ ◦ P I
n holds for all n ∈ N by Lemma 5.3. The

assertion now follows by another application of Lemma 5.3 to the continuous graded
homomorphism RJ .

5.2. Isometric isomorphisms in the non-radical case

In this section, we classify the algebras AI for not necessarily radical homogeneous
ideals I, up to isometric isomorphism. A sufficient condition for two algebras AI
and AJ being isomorphic is given by Lemma 2.22: it suffices that there exists a
unitary map U on Cd such that J = {p ◦U : p ∈ I}. We will see that this condition
is also necessary.
If I ( C[z] is a homogeneous ideal, then 1 ∈ FI . The following property of

operators in AI is reminiscent of the behaviour of multiplication operators, even
though the elements of AI are not multiplication operators in a natural way.
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5.2. Isometric isomorphisms in the non-radical case

Lemma 5.7. Let I ( C[z] be a homogeneous ideal and let T ∈ AI . Let ϕ ∈ Ad
such that T = PFIMϕ

∣∣
FI

(see Theorem 2.17). Then the following are equivalent:

(i) T = 0,

(ii) T1 = 0,

(iii) ϕ ∈ Ĩ.

Proof. (i) ⇒ (ii) is trivial. If (ii) holds, then ϕ ∈ I. A straightforward application
of the homogeneous decomposition (Proposition 1.6) and Lemma 1.12 shows that
ϕ ∈ Ĩ, that is, (iii) holds. The implication (iii) ⇒ (i) follows at once from Lemma
2.16 (b).

The following lemma shows that isometric isomorphisms do not show the ba-
haviour from Example 5.1 (compare [SS09, Lemma 9.6]).

Lemma 5.8. Let I, J ( C[z] be homogeneous ideals. A unital isometric algebra
isomorphism Φ : AI → AJ is vacuum-preserving if and only if it is graded.

Proof. Clearly, graded continuous algebra homomorphisms are vacuum-preserving
by Lemma 5.5. Conversely, let Φ be an isometric vacuum-preserving isomorphism.
To prove that Φ is graded, it suffices to show that Φ(SIi ) ∈ (AI)1 for i = 1, . . . , d. So
let i ∈ {1, . . . , d}. According to Lemma 5.5 and Proposition 5.2, there are S ∈ (AI)1

and T ∈ (AI)≥2 such that

Φ(SIi ) = S + T.

We have to show that T = 0. Note that S1 is orthogonal to T1 in FJ , so using
Lemma 3.32 and the fact that Φ is isometric, we obtain the estimate

||S||2 = ||S1||2 ≤ ||S1||2 + ||T1||2 = ||Φ(SIi )1||2 ≤ ||Φ(SIi )||2 = ||SIi ||2.

Since Φ−1 is vacuum-preserving as well, Lemma 5.5 shows that Φ−1(T ) ∈ (AI)≥2,
hence SIi 1 and Φ−1(T )1 are orthogonal in FI . Using Lemma 3.32 once again, we
infer that

||SIi ||2 = ||SIi 1||2 ≤ ||SIi 1||2 + ||Φ−1(T )1||2 = ||(SIi − Φ−1(T ))1||2

≤ ||(SIi − Φ−1(T ))||2 = ||S||2,

where the last equality holds because Φ is isometric. Combining both estimates,
we see that equality holds everywhere. In particular, T1 = 0 and hence T = 0 by
Lemma 5.7.

Just as in the radical case (see Theorem 3.36), we can now show that the sufficient
condition for AI and AJ being isomorphic from Lemma 2.22 is also necessary.

103



5. The non-radical case

Theorem 5.9. Let I, J ⊂ Cd be (not necessarily radical) homogeneous ideals. Then
the following assertions are equivalent:

(i) AI and AJ are isometrically isomorphic.

(ii) AI and AJ are unitarily equivalent.

(iii) There is a unitary U on Cd such that I = {p ◦ U : p ∈ J}.

Proof. The trivial case where I = C[z] or J = C[z] is readily disposed of by Remark
3.1. Hence, we may assume that I and J are proper ideals. Taking Lemma 2.22
into account, we only have to show that (i) implies (iii). If (i) holds, we find a
vacuum-preserving isometric isomorphism Φ : AI → AJ according to Proposition
3.27. Lemma 5.8 shows that Φ is graded, so that the existence of the unitary U
follows from Lemma 3.33.

5.3. Topological isomorphisms in the non-radical
case

Classifying the algebras AI up to topological isomorphism is more difficult than
classifying them up to isometric isomorphism. The main result in the radical case
was Theorem 4.48. In this section, we study the same problem for not necessarily
radical ideals.
As in the radical case, maps on spaces of polynomials given by p 7→ p ◦A∗, where

A is a linear map on Cd, play an important role. In the non-radical case, we do
not have a generating set for DI = FI ∩ C[z] as in Lemma 4.13. Nevertheless, the
existence of densely defined maps given by composition with a linear map easily
follows from the following lemma.

Lemma 5.10. Let n be a natural number. For a linear map A on Cd, we define

CA : C[z]n → C[z]n, p 7→ p ◦ A.

Then the adjoint of CA is given by composition with A∗, that is, (CA)∗ = CA∗.

Proof. For λ, µ ∈ Bd, we have〈
〈·, λ〉n, 〈·, µ〉n ◦ A∗

〉
H2
d

=
〈
〈·, λ〉n, 〈·, Aµ〉n

〉
H2
d

=
〈
〈·, Aµ〉n, K(·, λ)

〉
H2
d

= 〈Aµ, λ〉n.

Similarly, 〈
〈·, λ〉n ◦ A, 〈·, µ〉n

〉
H2
d

= 〈µ,A∗λ〉n = 〈Aµ, λ〉n,

so that the assertion follows from the fact that C[z]n is the linear span of the poly-
nomials of the form 〈·, λ〉n for λ ∈ Cd.
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5.3. Topological isomorphisms in the non-radical case

Let I, J ⊂ C[z] be homogeneous ideals. If A is an invertible linear map on Cd

such that J = {p ◦A : p ∈ I}, then for each natural number n, composition with A
maps I ∩C[z]n into J ∩C[z]n. The preceding lemma thus implies that composition
with A∗ maps FJ ∩ C[z]n into FI ∩ C[z]n, so that we obtain a densely defined map

FJ ⊃ DJ → FI , p 7→ p ◦ A∗,

where DJ = FJ ∩ C[z]. Just as in the radical case, boundedness of this map is
essential.

Lemma 5.11. Let I, J ⊂ C[z] be homogeneous ideals and let A be an invertible
linear map on Cd satisfying J = {p ◦ A : p ∈ I}. Regarding C[z]/I and C[z]/J as
subspaces of AI and AJ , respectively, the following assertions are equivalent:

(i) The algebra isomorphism

C[z]/I → C[z]/J, [p] 7→ [p ◦ A]

extends to a topological isomorphism between AI and AJ .

(ii) The linear maps

FJ ⊃ DJ → FI , p 7→ p ◦ A∗

and

FI ⊃ DI → FJ , p 7→ p ◦ (A−1)∗

are bounded.

(iii) There exist constants M1,M2 > 0 such that for all n ∈ N and all homogeneous
polynomials p of degree n, we have

1

M1

||[p]||(AI)n ≤ ||[p ◦ A]||(AJ )n ≤M2||[p]||(AI)n .

In this case, AI and AJ are similar.

Proof. (i) ⇒ (iii). Set M2 = ||Φ|| and M1 = ||Φ−1||.
(iii) ⇒ (ii). With the help of Lemma 3.32, we see that the inequality on the

right-hand side implies that the norms of the maps

C∗n : FI ∩ C[z]n → FJ ∩ C[z]n, p 7→ PFJ (p ◦ A)

are bounded by M2. Lemma 5.10 shows that the adjoints are given by

Cn : FJ ∩ C[z]n → FI ∩ C[z]n, p 7→ p ◦ A∗.
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5. The non-radical case

Using that homogeneous polynomials of different degree are orthogonal, we conclude
that the first map is bounded. Boundedness of the second map follows by a similar
argument from the inequality on the left-hand side.
(ii) ⇒ (i). Let C denote the continuous extension of the first map in (ii) to FJ .

Clearly, the continuous extension of the second map in (ii) is the inverse of C. We
claim that

Φ : AI → AJ , T 7→ C∗T (C−1)∗

is a topological isomorphism which extends the map [p] 7→ [p ◦A∗]. To this end, let
p be a homogeneous polynomial, and let f ∈ FJ ∩ C[z]n for some natural number
n. An application of Lemma 5.10 yields the identity

(C−1)∗f = PFI (f ◦ A−1). (5.1)

Using the co-invariance of FI under multiplication by p, we deduce that

C∗(PFIMp

∣∣
FI

)(C−1)∗f = C∗PFIMp(f ◦ A−1).

By an obvious analogue of (5.1), and since composition with A maps I into J , this
is equal to

PFJ ((PFIMp(f ◦ A−1)) ◦ A) = PFJ ((p · (f ◦ A−1)) ◦ A) = PFJMp◦Af.

Hence
C∗(PFIMp

∣∣
FI

)(C−1)∗ = PFJMp◦A
∣∣
FJ
.

This observation shows that Φ indeed maps AI into AJ , and that it extends the
map [p] 7→ [p ◦ A]. Arguing in the other direction, we find that Φ is a topological
isomorphism, as asserted. In fact, Φ is a similarity, which establishes the additional
assertion.

Remark 5.12. If A = U is a unitary map on Cd in the preceding lemma, then
composition with U induces a unitary CU on H2

d (see Lemma 2.21). Note that CU
maps I onto J , so it maps FI onto FJ . Thus, the analogue of (5.1) for the operator
C shows that in this case, the operator C∗ from the last part of the above proof
is the restriction of CU to FI . In particular, the algebra isomorphism constructed
above is just the algebra isomorphism from Lemma 2.22 if A = U is a unitary.

We can now deduce a necessary criterion for AI and AJ being topologically iso-
morphic. Moreover, we show that if AI and AJ are topologically isomorphic, then
they are isomorphic via a graded isomorphism.

Theorem 5.13. Let I, J ( C[z] be homogeneous ideals such that AI and AJ are
topologically isomorphic. Then there exists an invertible linear map A on Cd with
the following properties:
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5.3. Topological isomorphisms in the non-radical case

(a) J = {p ◦ A : p ∈ I}.

(b) A maps Z(J) bijectively onto Z(I).

In addition, it can be achieved that C[z]/I → C[z]/J, [p] 7→ [p ◦ A], extends to a
topological isomorphism between AI and AJ .

Proof. By Proposition 3.27, there exists a vacuum-preserving topological isomor-
phism Φ : AI → AJ . The isomorphism Φ need not be graded, but an application of
Lemma 5.5 and Proposition 5.2 shows that there are Ti ∈ (AJ)1 and Ri ∈ (AJ)≥2

for i = 1, . . . , d such that

Φ(SIi ) = Ti +Ri (i = 1, . . . , d).

Set T = (T1, . . . , Td). If p is a homogeneous polynomial of degree n, then

Φ(p(SI)) = p(Φ(SI1), . . . ,Φ(SId)) = p(T1, . . . , Td) +R, (5.2)

for some R ∈ (AJ)≥n+1, where we have used that (AJ)≥m · (AJ)≥k ⊂ (AJ)≥(m+k)

for natural numbers m and k. In particular, if p ∈ I, then the left-hand side of the
last identity is zero, so by applying the projection P J

n , we conclude that p(T ) = 0.
Consequently, if we regard C[z]/J as a subspace of AJ , we obtain a well-defined
graded algebra homomorphism

Ψ : C[z]/I → C[z]/J, [p] 7→ p(T ).

Equation (5.2) shows that

Ψ([p]) = (P J
n ◦ Φ)(p(SI)) (5.3)

for all p ∈ C[z]n and all n ∈ N. We claim that Ψ is given by composition with a
linear map, and that it extends to a topological isomorphism between AI and AJ .
First, notice that Φ−1 is vacuum-preserving as well, so that by the same argument,

applied to Φ−1, we obtain a graded algebra homomorphism Ψ̃ : C[z]/J → C[z]/I
satisfying

Ψ̃([p]) = (P I
n ◦ Φ−1)(p(SJ)) (5.4)

for all p ∈ C[z]n and all n ∈ N. Using Lemma 5.5, it is easy to check that for n ∈ N,
the maps

P I
n ◦ Φ−1 ◦ P J

n ◦ Φ and P J
n ◦ Φ ◦ P I

n ◦ Φ−1

are the identity maps on (AI)n and (AJ)n, respectively, from which we infer that Ψ

and Ψ̃ are inverse to each other. In this situation, Lemma 3.33 yields an invertible
linear map A on Cd satisfying statement (a) of the theorem such that Ψ is given by
composition with A. Since the projections P I

n and P J
n are contractive, and since Φ
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5. The non-radical case

is a topological isomorphism, equations (5.3) and (5.4) show that condition (iii) of
Lemma 5.11 is fulfilled. Thus, Ψ extends to a topological isomorphism as asserted.
It remains to prove statement (b) of the theorem. To this end, let λ ∈ Z(J).

Then
Ψ∗(δλ)(S

I
i ) = δλ(PFJMzi◦A

∣∣
FJ

) = zi(Aλ),

where we have used Lemma 3.3 (a). By Proposition 3.4, this means that Aλ ∈ Z(I)
and Ψ∗(δλ) = δAλ, so that Ψ∗ coincides with A on Z(J). This observation finishes
the proof.

Remark 5.14. Let Φ and Ψ be as in the preceding proof. Equation (5.3), combined
with Lemma 5.6, shows that

RJ ◦ Φ = RJ ◦Ψ,

that is, the maps Φ and Ψ coincide modulo the kernel of the Gelfand transform on
AJ . In particular, we have Φ∗ = Ψ∗, so that also Φ∗ is the restriction of A to Z(J).

We record an immediate consequence of the preceding theorem and the additional
assertion in Lemma 5.11.

Corollary 5.15. Let I, J ⊂ C[z] be homogeneous ideals. Then AI and AJ are
topologically isomorphic if and only if they are similar.

In general, conditions (a) and (b) of Theorem 5.13 are not sufficient for AI and
AJ being topologically isomorphic.

Example 5.16. Let I = 〈x4, x2(x + y)〉 and J = 〈x4, x2y〉. Clearly, V (I) = V (J) is
the y-axis. We set

A =

(
1 0
−1 1

)
.

Then A is invertible, and we have

(a) J = {p ◦ A : p ∈ I}.

(b) A maps Z(J) bijectively onto Z(I).

We claim that AI and AJ are not topologically isomorphic. Suppose, for a contra-
diction, that they are. Then, by Theorem 5.13, there is an invertible linear map
B on Cd, satisfying conditions (a) and (b) above with B in place of A, such that
composition with B induces a topological isomorphism between AI and AJ . In
particular, the map

FJ ⊃ DJ → FI , p 7→ p ◦B∗ (5.5)

is bounded in this case by Lemma 5.11.
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5.3. Topological isomorphisms in the non-radical case

First, we show that B must essentially look like A. From condition (b) and
Lemma 4.2, we infer that B maps the y-axis isometrically onto itself, so that there
are complex numbers a, b and λ, the latter of modulus 1, such that

B =

(
a 0
b λ

)
.

If we replace B with λB, then assumptions (a) and (b) are still valid, and since
multiplication by λ is a unitary on C2, the map in (5.5) is still bounded by Lemma
2.22. Hence, we may assume without loss of generality that λ = 1. Condition (a)
implies in particular that the polynomial

(x2(x+ y)) ◦B = (ax)2(ax+ bx+ y) = a2(a+ b)x3 + ax2y

is contained in J , that is, a2(a + b)x3 ∈ J . Since the monomial x3 does not belong
to J , this is only possible if a2(a + b) = 0. From invertibility of B, we deduce that
a 6= 0, hence b = −a. Consequently, we have

B =

(
a 0
−a 1

)
.

To obtain the desired contradiction, we show that the map in (5.5) is not bounded.
Note that for all natural numbers n, the monomial xyn belongs to DJ , and that

||xyn||2 =
n!

(n+ 1)!
=

1

n+ 1
.

On the other hand,

||(xyn) ◦B∗||2 = ||(ax− ay)yn||2 = |a|2(||xyn||2 + ||yn+1||2)

= |a|2
( 1

n+ 1
+ 1
)

= |a|2(n+ 2)||xyn||2,

which finishes the proof since a 6= 0.

In a very particular situation, conditions (a) and (b) of Theorem 5.13 are also
sufficient. To explain this situation, let I be a homogeneous ideal, and suppose that
V (I) = V1∪ . . .∪Vr is the irreducible decomposition of V (I). Let Î be the vanishing
ideal of span(V1)∪ . . .∪ span(Vr). We say that I is good if Î ⊂ I. Roughly speaking,
this means that the non-reduced structure is entirely contained in the union of the
linear spans of the irreducible components. Note that all radical homogeneous ideals
are good. Another example are homogeneous ideals I such that V (I) is a non-linear
hypersurface. As for a non-example, let I be the vanishing ideal of a proper subspace
of Cd. Then Ik is not good for k ≥ 2.
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5. The non-radical case

Theorem 5.17. Let I, J ⊂ C[z] be good homogeneous ideals. Then AI and AJ are
topologically isomorphic if and only if there exists an invertible linear map A on Cd

with the following properties:

(a) J = {p ◦ A : p ∈ I}.

(b) A maps Z(J) onto Z(I).

Proof. Necessity follows from Theorem 5.13. To establish sufficiency, we apply
Proposition 4.18 to

√
I and

√
J . Recall from Lemma 4.20 and Theorem 4.46 that

all radical homogeneous ideals are admissible, so that p 7→ p ◦ A∗ is bounded on
D√J . In fact, the proof of Proposition 4.18 shows that p 7→ p ◦A∗ is bounded on DĴ
because

√̂
J = Ĵ . Since J is good, we have DJ ⊂ DĴ , so that p 7→ p ◦A∗ is bounded

on DJ . Similarly, we see that p 7→ p ◦ (A−1)∗ is bounded on DI . The assertion thus
follows from Lemma 5.11.
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6. The WOT-closures of the
algebras AI

6.1. The algebras LI
Let I ⊂ C[z] be a homogeneous ideal, and let LI denote the WOT-closure of the
algebra AI . In this chapter, we study the isomorphism problem for algebras of the
type LI , where I is radical. We follow again [DRS11]. The main result is that two
such algebras LI and LJ are (isometrically) isomorphic if and only if AI and AJ
are (isometrically) isomorphic, so that the results deduced in the preceding chapters
also lead to a classification of the algebras LI . In fact, it is not hard to see from the
classification of the algebras AI that two isomorphic algebras AI and AJ also have
isomorphic WOT-closures LI and LJ . Thus, the goal of this chapter is to establish
the converse.
As it was pointed out at the beginning of Section 11 in [DRS11], it can well happen

that two operator algebras are isomorphic, but that their WOT-closures are not, or
conversely, that non-isomorphic operator algebras have isomorphic WOT-closures.
An elementary example of the latter phenomenon are the C∗-algebras C ⊕ K(H)
and L(H), where H is an infinite dimensional Hilbert space and K(H) denotes the
ideal of compact operators. It is essentially due to the homogeneity of the ideals
that this problem does not occur in our case.
Recall that AI can be identified with Ad/Ĩ by Theorem 2.17. If I is radical, AI

can be regarded as an algebra of functions on Z(I) by Corollary 2.19. We begin by
establishing analogous results for the algebras LI .

Theorem 6.1. The map

Mult(H2
d)/I

WOT → LI , [Mϕ] 7→ PFIMϕ

∣∣
FI

is an isometric algebra isomorphism.

Proof. Since the map L(H2
d)→ L(FI), T 7→ PFIT

∣∣
FI
, is WOT-continuous, and since

Mult(H2
d) is WOT-closed by Lemma A.10, we have a map

Φ : Mult(H2
d)→ LI , Mϕ 7→ PFIMϕ

∣∣
FI
.

This mapping is an algebra homomorphism because FI is co-invariant for all mul-
tipliers by Lemma 2.16 (a), and Lemma 2.16 (b) shows that its kernel is equal to
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6. The WOT-closures of the algebras AI

I
WOT

= I
SOT , so that the map in the statement of the theorem is a well-defined,

injective and contractive algebra homomorphism.
To establish surjectivity of Φ, note that for all polynomials p ∈ C[z], the opera-

tor p(SI) commutes with all compressed multipliers since FI is co-invariant for all
multiplication operators, that is,

p(SI)(PFIMϕ

∣∣
FI

) = (PFIMϕ

∣∣
FI

)p(SI) for all ϕ ∈ Mult(H2
d).

It follows that

T (PFIMϕ

∣∣
FI

) = (PFIMϕ

∣∣
FI

)T for all ϕ ∈ Mult(H2
d)

and all T ∈ LI . Hence an application of Theorem 2.5 shows that given T ∈ LI with
||T || ≤ 1, we find a contractive multiplier ϕ ∈ Mult(H2

d) such that Φ(Mϕ) = T .
This shows that Φ is surjective, and that the induced map in the statement of the
theorem is an isometric algebra isomorphism.

If I ( C[z] is a radical homogeneous ideal, then according to Lemma 2.18,
FI can be identified with H2

d

∣∣
Z0(I)

. Under this identification, LI corresponds to
Mult(H2

d

∣∣
Z0(I)

). In particular, the algebra LI is semi-simple if I is radical.

Corollary 6.2. Let U be the unitary operator

FI → H2
d

∣∣
Z0(I)

, f 7→ f
∣∣
Z0(I)

from Lemma 2.18. Then

LI → Mult(H2
d

∣∣
Z0(I)

), T 7→ UTU∗

is an algebra isomorphism sending PFIMϕ

∣∣
FI

to ϕ
∣∣
Z0(I)

for ϕ ∈ Mult(H2
d).

Proof. Corollary 2.19 shows that USIi U∗ = zi
∣∣
Z0(I)

for i = 1, . . . , d, from which we
infer that T 7→ UTU∗ defines an isometric algebra homomorphism from LI into
the multiplier algebra of H2

d

∣∣
Z0(I)

(recall that the multiplier algebra is WOT-closed
by Lemma A.10). Thus, it remains to show that given ϕ ∈ Mult(H2

d

∣∣
Z0(I)

), the
operator U∗MϕU is contained in LI . To this end, note that Mϕ commutes with
U(PFIMψ

∣∣
FI

)U∗ for each ψ ∈ Mult(H2
d), thus an application of Theorem 2.5 shows

that there is a multiplier ψ on H2
d such that U∗MϕU = PFIMψ

∣∣
FI
. In particular,

this operator is contained in LI , which finishes the proof.
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6.2. The maximal ideal space of LI
Let I ( C[z] be a homogeneous ideal. In contrast to the norm-closed case, we
cannot hope to write down explicitly all multiplicative linear functionals on LI . For
example, if d = 1 and I = {0}, we have LI = H∞(D), an algebra whose maximal
ideal space is rather complicated (see [Hof62, Chapter 10]). Nevertheless, just as
with H∞(D), some multiplicative linear functionals on LI are easy to come by: In
the discussion preceding Lemma 3.3, we have seen that every λ ∈ Z0(I) gives rise
to a multiplicative linear functional δIλ on AI , and according to the lemma itself, it
is given by

δIλ(T ) = 〈T1, K(·, λ)〉 for all T ∈ AI ,
where K is the reproducing kernel of H2

d . In particular, δIλ is WOT-continuous, and
hence uniquely extends to a WOT-continuous linear functional δ̂Iλ on LI . As in the
norm-closed case, we will drop the superscript I when the ideal is understood. It
is easy to see that the extension is again multiplicative, for example using separate
continuity of multiplication in the weak operator topology. For future reference, we
record some properties of the functionals δ̂λ.

Lemma 6.3. Let I ( C[z] be a homogeneous ideal, and let λ ∈ Z0(I).

(a) δ̂λ(T ) = 〈T1, K(·, λ)〉 for all T ∈ LI .

(b) For ϕ ∈ Mult(H2
d), we have δ̂λ(PFIMϕ

∣∣
FI

) = ϕ(λ).

(c) If J ⊂ I is another homogeneous ideal, then

δ̂Iλ(PFIT
∣∣
FI

) = δ̂Jλ (T )

holds for all T ∈ LJ .

(d) Suppose that I is a radical ideal. Then modulo the identification of LI with
Mult(H2

d

∣∣
Z0(I)

) explained in Corollary 6.2, the functional δ̂λ equals point eval-

uation at λ. In particular, if T ∈ LI with δ̂λ(T ) = 0 for all λ ∈ Z0(I), then
T = 0.

Proof. Part (a) is immediate from the definition, while (b) and (c) easily follow from
(a), since K(·, λ) ∈ FI for λ ∈ Z0(I). Part (d) finally follows from (b).

Part (d) of the preceding lemma could also serve as the definition of δ̂λ in the
radical case, while the statement of part (c) could then be used to extend the
definition to arbitrary ideals, taking I =

√
J .

It turns out that all WOT-continuous linear functionals on LI arise in the way de-
scribed above. We write ∆0(LI) for the set of all WOT-continuous linear functionals,
endowed with the weak-* topology.
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Proposition 6.4. The map

Z0(I)→ ∆0(LI) λ 7→ δ̂λ

is a homeomorphism, whose inverse is given by

∆0(LI)→ Z0(I), ρ 7→ ρ(SI1 , . . . , S
I
d).

Proof. By the above discussion, each λ ∈ Z0(I) gives rise to a multiplicative linear
functional δ̂λ ∈ ∆0(LI), and it is clear that δ̂λ(SI1 , . . . , SId) = λ. Conversely, given
ρ ∈ ∆0(LI), Proposition 3.4 shows that ρ

∣∣
AI

= δλ where λ = ρ(SI1 , . . . , S
I
d). We

have to show that λ ∈ Z0(I). Assume, to the contrary, that λ ∈ ∂Bd, and let U be
a unitary on Cd which maps λ to the point (1, 0, . . . , 0). Since

Φ : Ad → AI , Mϕ 7→ PFIMϕ

∣∣
FI

and

ΦU : Ad → Ad, Mϕ 7→Mϕ◦U

are WOT-continuous algebra homomorphisms, the latter by Lemma 2.21, the mul-
tiplicative linear functional ρ̃ = ρ ◦ Φ ◦ ΦU is WOT-continuous and satisfies

ρ̃(Mz1) = ρ(PFIMz1◦U
∣∣
FI

) = (z1 ◦ U)(λ) = 1

by Lemma 6.3 (b). But the sequence
(
Mn

z1

)
n
converges to zero in the weak operator

topology, so

(ρ̃(Mz1))
n = ρ̃(Mn

z1
)
n→∞−−−→ 0,

which is the desired contradiction. We conclude that ρ = δ̂λ.
To finish the proof, note that continuity of the second map is clear, while conti-

nuity of the first map follows from the identity

δλ(T ) = (T1)(λ)

for T ∈ LI and the fact that the functions in FI ⊂ H2
d are continuous on Bd.

If ρ is a multiplicative linear functional on LI , then Proposition 3.4, applied to
the restriction of ρ to AI , shows that λ = ρ(SI1 , . . . , S

I
d) ∈ Z(I). The preceding

proposition implies that λ ∈ Z0(I) if ρ is WOT-continuous. It turns out that this
actually characterises WOT-continuity among the characters. In other words, if ρ
is any multiplicative linear functional on LI which coincides with δλ on AI for some
λ ∈ Z0(I), then ρ is WOT-continuous and equals δ̂λ. This assertion will follow as
an application of the following result, which is known as the solution to Gleason’s
problem for Mult(H2

d).
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Theorem 6.5. Every ϕ ∈ Mult(H2
d) can be written as

ϕ = ϕ(0) +
d∑
i=1

ziϕi

for some ϕi ∈ Mult(H2
d).

Proof. See [GRS05, Corollary 4.2] for a proof using an interpolation result ([EP02,
Theorem 1.6]) for reproducing kernel Hilbert spaces. The theorem is also a conse-
quence of a corresponding result for free semigroup algebras (see [DP98a, Lemma
2.5] and the discussion below) and the fact that Mult(H2

d) is isomorphic to a quotient
of a free semigroup algebra [DP98b, Theorem 2.3].

Corollary 6.6. Let I ⊂ C[z] be a homogeneous ideal, and let ρ be a multiplicative
linear functional on LI . If λ = ρ(SI1 , . . . , S

I
d) ∈ Z0(I), then ρ equals δ̂λ, and in

particular, ρ is WOT-continuous.

Proof. Theorem 6.5 immediately implies the assertion for I = {0} and λ = 0. More
generally, if I = {0} and λ ∈ Bd is arbitrary, we can find an automorphism F of Bd
which maps λ to 0. By Lemma 3.15,

Φ : Mult(H2
d)→ Mult(H2

d), Mϕ 7→Mϕ◦F

is an algebra isomorphism, so the linear functional ρ̃ = ρ ◦ Φ is multiplicative, and
it satisfies

ρ̃(Mzi) = ρ(Mzi◦F ) = (zi ◦ F )(λ) = 0

for i = 1, . . . , d. From the first part, we infer that ρ̃ = δ̂0, and hence

ρ(Mϕ) = (δ0 ◦ Φ−1)(Mϕ) = δ0(Mϕ◦F−1) = ϕ(λ)

for all ϕ ∈ Mult(H2
d), that is, ρ = δ̂λ.

To deduce the assertion for an arbitrary homogeneous ideal I, we consider the
natural quotient homomorphism

Ψ : Mult(H2
d)→ LI , Mϕ 7→ PFIMϕ

∣∣
FI
.

Given a multiplicative linear functional ρ on LI with ρ(SI1 , . . . , S
I
d) = λ ∈ Z0(I), we

obtain a multiplicative linear functional ρ ◦Ψ on Mult(H2
d). This character satisfies

(ρ ◦ Ψ)(Mzi) = λi for all i = 1, . . . , d. From what we have shown so far, it follows
that

ρ(Ψ(Mϕ)) = ϕ(λ) = δ̂λ(Ψ(Mϕ)),

for all ϕ ∈ Mult(H2
d), where the last equality follows from Lemma 6.3 (b). We

conclude that ρ and δλ coincide on the range of Ψ. Hence the observation that Ψ is
surjective (see Theorem 6.1) finishes the proof.
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The preceding corollary and Proposition 6.4 allow for a disjoint decomposition of
the maximal ideal space ∆(LI) of LI of the form

∆(LI) = Z0(I) ∪∆r(LI),

where we have identified Z0(I) with ∆0(LI). The characters in Z0(I) are precisely
the WOT-continuous ones, and a character ρ belongs to ∆r(LI) if and only if the
point (ρ(SI1), . . . ρ(SId)) lies in Z(I) \ Z0(I). Note, however, that although we un-
derstand the part Z0(I) of ∆(LI) quite well, the example of H∞(D) shows that
the “residual part” ∆r(LI) can be rather complicated. In particular, the map from
∆r(LI) into Z(I) \ Z0(I), given by evaluating at SI , need not be injective.
Similarly to the norm-closed case, we will use the description of ∆(LI) to deduce

necessary conditions for the existence of isomorphisms between algebras of the type
LI . It is the presence of the part ∆r(LI) of the maximal ideal space which makes
things more complicated for the WOT-closed algebras. Our scheme is to restrict
a given algebra homomorphism from LI into LJ to the subalgebra AI , so that we
get a map from Z0(J) ⊂ ∆(LJ) into Z(I) = ∆(AI). We begin with an analogue of
Proposition 3.7.

Proposition 6.7. Let I, J ( C[z] be homogeneous ideals, and let Φ : LI → LJ be
a unital algebra homomorphism. Let Φ0 : AI → LJ denote the restriction of Φ to
the subalgebra AI , and write Φ∗0 : ∆(LJ) → ∆(AI) for the induced map between
the maximal ideal spaces. Then there is a tuple F ∈ Mult(H2

d)d such that, with the
identifications of Proposition 3.4 and Proposition 6.4, we have

Φ∗0
∣∣
Z0(J)

= F
∣∣
Z0(J)

.

Proof. Theorem 6.1 allows us to choose ϕi ∈ Mult(H2
d) such that

PFJMϕi

∣∣
FJ

= Φ(SIi )

for i = 1, . . . , d. Put F = (ϕ1, . . . , ϕd). Then for all λ ∈ Z0(J) and i = 1, . . . , d, we
have

Φ∗0(δ̂λ)(S
I
i ) = δ̂λ(Φ(SIi )) = ϕi(λ),

so Φ∗0(δ̂λ) = δ̂F (λ) by Proposition 3.4.

We will show that if the algebra homomorphism Φ in the preceding proposition is
an isomorphism, then Φ∗0 maps Z0(J) into Z0(I). The following analogue of Lemma
3.6 allows us to include the non-radical case as well.

Lemma 6.8. Let I ⊂ C[z] be a homogeneous ideal. Then there is a natural number
N such that ⋂

λ∈Z0(I)

ker(δ̂λ) = {T ∈ LI : TN = 0}.
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6.2. The maximal ideal space of LI

Proof. It is trivial that nilpotent elements belong to the kernel of every multiplicative
linear functional. To show the converse, note that the Noetherian property of C[z]
allows us to choose a natural number N with JN ⊂ I, where J =

√
I. Suppose

now that T ∈ LI lies in the kernel of each δ̂λ. By Theorem 6.1, there is a multiplier
ϕ ∈ Mult(H2

d) with T = PFIMϕ

∣∣
FI
. Using Lemma 6.3 (c), we see that

δ̂λ(PFJMϕ

∣∣
FJ

) = δ̂λ(T ) = 0

for each λ ∈ Z0(I), so that PFJMϕ

∣∣
FJ

= 0 by Lemma 6.3 (d). According to Lemma
2.16 (b), this is only possible if ϕ is contained in the SOT-closure of J . Since
multiplication is separately continuous in the strong operator topology, and since
JN ⊂ I, an obvious inductive application of Lemma 1.17 shows that ϕN ∈ I

SOT .
Invoking Lemma 2.16 (b) once again, we infer that TN = PFIMϕN

∣∣
FI

= 0, as
asserted.

We can now show that an isomorphism between LI and LJ induces a biholomor-
phic map between Z0(J) and Z0(I).

Lemma 6.9. Let I, J ( C[z] be homogeneous ideals and let Φ : LI → LJ be a unital
algebra isomorphism. Then Φ∗ maps Z0(J) biholomorphically onto Z0(I).

Proof. Let Φ0 be the restriction of Φ to AI . Then Φ∗0 is a holomorphic map from
Z0(J) into Z(I) by Proposition 6.7. By Corollary 6.6, it suffices to show that Φ∗0
maps Z0(J) into Z0(I). So assume to the contrary that there is a point q0 ∈ Z0(J)
such that Φ∗0(q0) = p ∈ Z(I)\Z0(I). Then Φ∗0 is constant on Z0(J) by Lemma 3.17,
that is, Φ∗0(δ̂q)

∣∣
AI

= δp for all q ∈ Z0(J). In particular, we find that

δq(Φ(SIi − pi · 1)) = Φ∗0(δq)(S
I
i − pi · 1) = 0

for i = 1, . . . , d and all q ∈ Z0(J). Consequently, Lemma 6.8 yields a natural number
N such that

(Φ(SIi − pi · 1))N = 0 for i = 1, . . . , d.

Since Φ is injective, this means that (SIi − p1 · 1)N = 0 for all i, which, in turn,
implies that

(zi − pi)N ∈ I for i = 1, . . . , d

by Lemma 2.16 (c). However, because p ∈ ∂Bd, this means that that Z0(I) = ∅,
which is not possible.

Remark 6.10. The preceding lemma is essentially Lemma 11.5 in [DRS11]. The
proof given here differs from the one in [DRS11] in that we did not use the notion of
Gleason parts. The crucial point in the approach presented here is holomorphicity
of the map Φ∗0, and the maximum modulus principle for homogeneous varieties.
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Recall from Corollary 6.2 that in the radical case, the algebra LI can be identified
with the multiplier algebra of H2

d

∣∣
Z0(I)

. Just as in the norm-closed case (see Lemma
3.9), isomorphisms act as composition operators under this identification.

Lemma 6.11. Let I, J ( C[z] be radical homogeneous ideals and let Φ : LI → LJ
be a unital algebra isomorphism. Regarding LI and LJ as algebras of functions on
Z0(I) and Z0(J), respectively, Φ is given by composition with Φ∗, that is,

Φ(ϕ) = ϕ ◦ (Φ∗
∣∣
Z0(J)

)

for ϕ ∈ LI .

Proof. Write F for Φ∗, regarded as a map from Z0(J) to Z0(I) (see Lemma 6.9),
and let ϕ ∈ LI , viewed as an algebra of functions on Z0(I). Then for all λ ∈ Z0(J),
we have

Φ(ϕ)(λ) = δ̂λ(Φ(ϕ)) = Φ∗(δ̂λ)(ϕ) = δ̂F (λ)(ϕ) = (ϕ ◦ F )(λ).

6.3. Isomorphisms between the algebras LI
As in the norm-closed case, an algebra homomorphism Φ : AI → AJ is said to be
vacuum-preserving if Φ∗(δ0) = δ0. The following result is an analogue of Proposition
3.27.

Proposition 6.12. Let I, J ( C[z] be homogeneous ideals, and suppose that LI and
LJ are topologically isomorphic. Then there exists a vacuum-preserving topological
isomorphism Φ : LI → LJ . If LI and LJ are isometrically isomorphic, then Φ can
be chosen to be isometric.

Proof. The construction is the same as in the proof of Proposition 3.27, we only need
to check that everything remains valid when passing to the WOT-closure. Here are
the details:
For t ∈ R, the isometric automorphism ΦI

t of AI from Remark 3.26, induced by
the unitary map z 7→ eitz on Cd, is given by conjugation with a unitary on FI . Thus,
it extends to an isometric automorphism of LI . It is easy to check that the induced
map on Z0(I) ⊂ ∆(LI) is given by multiplication with eit (compare Example 3.8).
Moreover, Lemma 6.9 shows that Φ∗ maps Z0(J) biholomorphically onto Z0(I).
Thus the assertion follows, just as in Proposition 3.27, as an application of Lemma
3.22.

We can now prove the theorem which was alluded to at the beginning of this
chapter.

Theorem 6.13. Let I, J ⊂ C[z] be radical homogeneous ideals. Then LI is isomet-
rically (respectively topologically) isomorphic to LJ if and only if AI is isometrically
(respectively topologically) isomorphic to AJ .
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Proof. If AI is isometrically isomorphic to AJ , then Theorem 3.36 shows that there
is an isometric isomorphism between AI and AJ which is given by conjugation with
a unitary map from FJ onto FI , and hence extends to an isometric isomorphism
between the WOT-closures. Similarly, assuming that AI and AJ are topologically
isomorphic, we can find a similarity between AI and AJ by Theorem 4.48, which
again extends to a topological isomorphism between LI and LJ . This establishes
one direction.
To prove the other one, we will show that if LI and LJ are topologically (respec-

tively isometrically) isomorphic, then there is a topological (respectively isometric)
isomorphism between LI and LJ which restricts to an isomorphism between AI and
AJ . So assume that LI and LJ are topologically isomorphic. Proposition 6.12 yields
a topological isomorphism

Φ : LI → LJ with Φ∗(0) = 0.

As an application of Lemma 6.9, we see that Φ∗ maps Z0(J) biholomorphically onto
Z0(I), and since it fixes the origin, we infer from Corollary 3.20 that there exists an
invertible linear map A on Cd which coincides with Φ∗ on Z0(J). Moreover, Lemma
6.11 asserts that if we regard LI and LJ as algebras of functions on Z0(I) and Z0(J),
respectively, then Φ is given by

Φ(ϕ) = ϕ ◦ A for all ϕ ∈ LI .

Since AI and AJ correspond to the norm-closures of the polynomials in these alge-
bras (see Corollary 2.19), it is clear that the topological isomorphism Φ maps AI
onto AJ . This proves the assertion concerning topological isomorphisms. The iso-
metric case follows from the fact that the vacuum-preserving isomorphism Φ from
above can be chosen to be isometric if LI and LJ are isometrically isomorphic (see
Proposition 6.12).
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A. Reproducing kernel Hilbert
spaces

A.1. Hilbert function spaces and kernels

The purpose of this section is to recall some results from the theory of reproducing
kernel Hilbert spaces. General references for this topic include the classical paper
by Aronszajn [Aro50], the books [AM02] and [BM84] and the thesis [Bar07].

Definition A.1. Let X be a set. A Hilbert space H of complex-valued functions
on X is called a reproducing kernel Hilbert space or Hilbert function space if for each
λ ∈ X, the point evaluation functional

δλ : H → C, f 7→ f(λ)

is continuous.

Suppose that H is a reproducing kernel Hilbert space on X. By the Riesz repre-
sentation theorem, there is for any λ ∈ X a function kλ ∈ H such that

f(λ) = 〈f, kλ〉 for all f ∈ H.

The function
K : X ×X → C, (µ, λ) 7→ kλ(µ) = 〈kλ, kµ〉

is called the reproducing kernel of H. It is easy to check that K indeed is a kernel
in the following sense.

Definition A.2. Let X be a set. A function K : X × X → C is called positive
definite or a kernel if for any finite sequence (λi)

n
i=1 of points in X, the matrix(

K(λi, λj)
)n
i,j=1

is positive semidefinite.

A theorem of E.H. Moore asserts that any kernel on a set is the reproducing kernel
of a Hilbert function space.
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Theorem A.3. Let X be a set, and let K : X ×X → C be positive definite. Then
there exists a unique Hilbert function space H on X whose reproducing kernel is K.

Proof. See, for example, [AM02, Theorem 2.23].

We record a few elementary properties of the kernel of a Hilbert function space.

Lemma A.4. Let H be a reproducing kernel Hilbert space on a set X with kernel
K. Then the following assertions are true:

(a) K(µ, λ) = K(λ, µ) for all λ, µ ∈ X.

(b) ||K(·, λ)||2 = K(λ, λ) for all λ ∈ X.

(c) The linear span of the kernel functions K(·, λ) for λ ∈ X is dense in H.

(d) Let λ ∈ X. Then f(λ) = 0 for all f ∈ H if and only if K(λ, λ) = 0.

Proof. Part (a) follows from the fact thatK is positive definite, and (b) is immediate.
To prove (c), note that if f is orthogonal to all kernel functions K(·, λ), then

f(λ) = 〈f,K(·, λ)〉 = 0 for all λ ∈ X.

The non-trivial implication of (d) finally follows from (b) and the defining property
of K(·, λ).

Theorem A.3 shows that the structure of a Hilbert function space is completely
determined by its reproducing kernel. We will need the following result along these
lines.

Lemma A.5. Let X and Y be sets and let HX and HY be reproducing kernel Hilbert
spaces on X and Y with kernels KX and KY , respectively. For an invertible map
ϕ : Y → X and a function ψ : Y → C with 0 /∈ ranψ, the following are equivalent:

(i) The map V : HX → HY , f 7→ ψ · (f ◦ ϕ) is a well-defined unitary.

(ii) KY (λ, µ) = KX(ϕ(λ), ϕ(µ))ψ(λ)ψ(µ) for all λ, µ ∈ Y .

In particular, if H is a reproducing kernel Hilbert space on X with kernel K, and if
ϕ : X → X is an invertible map, then f 7→ f ◦ϕ defines a unitary on H if and only
if K is invariant under composition with ϕ.

Proof. The proof of (i) implies (ii) is a simple calculation. Indeed, suppose that
λ, µ ∈ Y . The assumptions imply that the adjoint of V is given by

V ∗(f) =
(f
ψ

)
◦ ϕ−1 for all f ∈ HY .
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Consequently,

KX(ϕ(λ), ϕ(µ))ψ(λ)ψ(µ) =
〈
V KX(·, ϕ(µ)), KY (·, λ)

〉
ψ(µ)

=
〈
V ∗KY (·, λ), KX(·, ϕ(µ))

〉
ψ(µ)

= KY (µ, λ) = KY (λ, µ).

To establish the converse, we first examine the action of f 7→ ψ · (f ◦ ϕ) on kernel
functions K(·, ξ) for ξ ∈ X. By assumption, we have for λ ∈ Y the identity

KY (λ, ϕ−1(ξ)) = KX(ϕ(λ), ξ)ψ(λ)ψ(ϕ−1(ξ)),

hence
ψ · (KX(·, ξ) ◦ ϕ) =

1

ψ(ϕ−1(ξ))
KY (·, ϕ−1(ξ)) ∈ HY .

Let V0 denote the map from the linear span of the kernel functions KX(·, ξ) for
ξ ∈ X into HY , given by f 7→ ψ · (f ◦ ϕ). From

〈V0KX(·, ξ), V0KX(·, ν)〉 =
1

ψ(ϕ−1(ν))ψ(ϕ−1(ξ))
〈KY (·, ϕ−1(ξ)), KY (·, ϕ−1(ν))〉

=
1

ψ(ϕ−1(ν))ψ(ϕ−1(ξ))
KY (ϕ−1(ν), ϕ−1(ξ))

= KX(ν, ξ) = 〈KX(·, ξ), KX(·, ν)〉

for ξ, ν ∈ X, we deduce that V0 is an isometry. Since all kernel functions KY (·, λ)
for λ ∈ Y are contained in the range of V0, and since the kernel functions form a
total set in every reproducing kernel Hilbert space by Lemma A.4 (c), V0 extends to
a unitary V : HX → HY . It is easy to check that V is again given by f 7→ ψ · (f ◦ϕ),
which finishes the proof of the first assertion. The second one is now obvious.

Remark A.6. Using more sophisticated tools from the theory of reproducing ker-
nel Hilbert spaces, a less technical proof for the implication from (ii) to (i) in the
preceding lemma can be given. We only sketch the argument.
Define

Kϕ : Y × Y → C, (λ, µ) 7→ KX(ϕ(λ), ϕ(µ)).

Then Kϕ is positive-definite, so there is a unique Hilbert function space Hϕ on Y
with kernel Kϕ by Theorem A.3. It is known that Hϕ = {f ◦ ϕ : f ∈ HX} and that
the map

HX → Hϕ, f 7→ f ◦ ϕ,
is a unitary operator (here, we need that ϕ is invertible). The assumption (ii) in the
preceding lemma now becomes

KY (λ, µ)− ψ(λ)ψ(µ)Kϕ(λ, µ) = 0.
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This observation, together with the fact that 0 /∈ ranψ, is known to imply that

Hϕ → HY , f 7→ ψ · f

is a unitary operator as well, which finishes the outline of the proof.

If H is a reproducing kernel Hilbert space on a set X with kernel K, then for any
subset Y ⊂ X, the restriction ofK to Y is again positive definite. The corresponding
reproducing kernel Hilbert space on Y has a very natural description:

Lemma A.7. Let H be a reproducing kernel Hilbert space on a set X with kernel
K, let Y ⊂ X be a subset, and let KY denote the restriction of K to Y × Y . If HY

is the reproducing kernel Hilbert space on Y with kernel KY , then

HY = {f
∣∣
Y

: f ∈ H},

and for g ∈ HY , we have

||g||HY = inf{||f ||H : f ∈ H with f
∣∣
Y

= g}.

Proof. See [Aro50, Part I, Section 5].

A.2. Multipliers

Definition A.8. Let H be a Hilbert function space on a set X. A function ϕ :
X → C is called a multiplier if ϕ ·H ⊂ H. The algebra of all multipliers is called
the multiplier algebra and denoted by Mult(H).

It is elementary to see that the multiplier algebra is indeed an algebra. Moreover,
a standard application of the closed graph theorem shows that every ϕ ∈ Mult(H)
induces a bounded linear operator

Mϕ : H → H, f 7→ ϕ · f.

The multiplier norm of a multiplier ϕ is defined as ||ϕ||M = ||Mϕ||.
We will only consider the case where H has no common zeros. By Lemma A.4 (d),

this is equivalent to demanding that the kernel of K be non-zero on the diagonal.
In this case, the assignment ϕ 7→Mϕ is one-to-one, so that we can regard Mult(H)
as a subalgebra of L(H).

Lemma A.9. Let H be a reproducing kernel Hilbert space on a set X with kernel
K without common zeros, and let ϕ be a multiplier on H.

(a) M∗
ϕK(·, λ) = ϕ(λ)K(·, λ) for λ ∈ X.

(b) ||ϕ||M ≥ ||ϕ||∞.
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(c) The linear functional Mult(H)→ C, ϕ 7→ ϕ(λ), is WOT-continuous.

Proof. (a) For all f ∈ H, we have

〈f,M∗
ϕK(·, λ)〉 = 〈ϕ · f,K(·, λ)〉 = ϕ(λ)f(λ) = 〈f, ϕ(λ)K(·, λ)〉.

(b) If H has no common zeros, then K(·, λ) 6= 0 for all λ ∈ X, so part (a) shows
that

||ϕ||M = ||M∗
ϕ|| ≥ |ϕ(λ)|

for all λ ∈ X.
(c) This follows from the identity

ϕ(λ) =
〈MϕK(·, λ), K(·, λ)〉

K(λ, λ)

for ϕ ∈ Mult(H).

We also require the following standard fact about the multiplier algebra.

Lemma A.10. If H is a reproducing kernel Hilbert space on X without common
zeros, then Mult(H) is a WOT-closed subalgebra of L(H).

Proof. It is clear that Mult(H) is a subalgebra of L(H). To show that it is WOT-
closed, suppose that (Mϕα)α is a net of multiplication operators on H which con-
verges to T in the weak operator topology. An application of Lemma A.9 (c) shows
that the net (ϕα)α converges pointwise on X to a function ϕ. Consequently, we have
for all f ∈ H and λ ∈ X the identity

(Tf)(λ) = lim
α

((Mϕαf)(λ)) = ϕ(λ)f(λ),

so that ϕ ∈ Mult(H) and T = Mϕ.

A.3. Vector-valued Hilbert function spaces

It is possible to generalize the theory of Hilbert function spaces of scalar-valued
functions to a vector-valued setting. The reader is referred to the Sections 2.5 and
2.8 in [AM02] for an introduction, and to the first chapter of the thesis [Bar07] for
a comprehensive treatment of this subject. We will only need the most basic case,
which is the tensor product of a scalar-valued Hilbert function space with another
Hilbert space.
Suppose that H is a (scalar-valued) Hilbert function space on a set X, and let E

be Hilbert space of dimension n, where n is finite. Identifying an elementary tensor
f ⊗ v with the function

X → E , λ 7→ f(λ)v,

125



A. Reproducing kernel Hilbert spaces

the spaceH⊗E can be regarded as a space of E-valued functions onX. Alternatively,
H ⊗E can be viewed as a direct sum of n copies of H. As in the scalar-valued case,
there is a notion of multipliers.

Definition A.11. Let H be a Hilbert function space on a set X and let E be a
finite-dimensional Hilbert space. A multiplier on H ⊗ E is a map Φ : X → L(E)
such that for each F ∈ H, the map

X → E , λ 7→ Φ(λ)F (λ)

is contained in H.

If H ⊗ E is identified with Hn, operators on H ⊗ E can be identified with n× n-
matrices of operators on H. Thus, multipliers on H ⊗ E can be thought of as
n×n-matrices of functions on H. Just as in the scalar-valued case, every multiplier
Φ induces a bounded multiplication operatorMΦ on H⊗E , and the multiplier norm
of Φ is defined by ||Φ||M = ||MΦ||.
We require a result that characterises multipliers in terms of the reproducing

kernel of the Hilbert function spaces. A map K : X ×X → L(E) is called positive
definite if for any finite sequence (λi)

n
i=1 of points in X, the operator matrix(

K(λi, λj)
)n
i,j=1

is positive.

Lemma A.12. Let H be a reproducing kernel Hilbert space on X with reproducing
kernel K, and let E be a finite-dimensional Hilbert space. For a map Φ : X → L(E),
the following assertions are equivalent:

(i) Φ ∈ Mult(H ⊗ E) with ||Φ||M ≤ 1.

(ii) The map

L : X ×X → L(E), (λ, µ) 7→
(

idE −Φ(λ)Φ(µ)∗
)
K(λ, µ)

is positive definite.

Proof. The scalar-valued case of this lemma is, for example, [AM02, Corollary 2.37].
The vector-valued case can be found, for example, in [Esc11, Satz 2.2]. Because this
reference is not widely available, we briefly sketch the argument.
Let Φ be a multiplier on H ⊗ E . The vector-valued analogue of Lemma A.9 (a)

asserts that M∗
Φ(K(·, λ)x) = K(·, λ)Φ(λ)∗x for all λ ∈ X and x ∈ E . Moreover, the

defining property of K is easily seen to imply that

〈f,K(·, λ)x〉H⊗E = 〈f(λ), x〉E
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for f ∈ H ⊗ E , λ ∈ X and x ∈ E . Using these facts, it is straightforward to deduce
for λ1, . . . , λn ∈ X and x1, . . . , xn ∈ E the identity

n∑
i,j=1

〈L(λi, λj)xj, xi〉 = ||
n∑
j=1

K(·, λj)xj||2 − ||
n∑
j=1

K(·, λj)Φ(λj)
∗xj||2

= ||
n∑
j=1

K(·, λj)xj||2 − ||M∗
Φ

n∑
j=1

K(·, λj)xj||2.

The implication (i)⇒ (ii) readily follows from this observation. Conversely, Lemma
A.4 (c) implies that the set of all elements K(·, λ)x, where λ ∈ X and x ∈ E , is total
in H⊗E . Thus, if L is positive definite, then the last identity shows the existence of
a contraction T on H ⊗ E with T (K(·, λ)x) = K(·, λ)Φ(λ)∗x for λ ∈ X and x ∈ E .
It is easy to check that

〈(T ∗f)(λ), x〉 = 〈Φ(λ)f(λ), x〉

holds for all f ∈ H ⊗ E , λ ∈ X and x ∈ E . Hence Φ is a contractive multiplier.

The classical Schur product theorem [Sch11] asserts that the entrywise product
of positive matrices is again positive. We need the following generalization.

Theorem A.13. Let K1 : X ×X → C and K2 : X ×X → L(E) be positive definite
maps on a set X. Then the pointwise product

K1K2 : X ×X → C, (λ, µ) 7→ K1(λ, µ)K2(λ, µ)

is again positive definite.

Proof. See, for example, [Bar07, Propostion 1.1.9], or [Ful11, Theorem 2.3] for an
even more general version.
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