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Introduction

Let Ω ⊂ Cn be a bounded open domain and 1 ≤ p <∞. We define the Bergman space
on Ω by

Lpa(Ω, λ) =

{
f ∈ O(Ω); ‖f‖p =

(∫
Ω

|f |pdλ
) 1

p

<∞

}
,

where λ denotes the restriction of the Lebesgue measure on Cn to Ω. One can show that
(Lpa(Ω, λ), ‖ · ‖p) is a Banach space and that for p = 2, the space L2

a(Ω, λ) together with
the L2(Ω, λ)-inner product is a functional Hilbert space.

In the theory of bounded operators on Bergman spaces, a topic one is particularly
interested in is the study of Toeplitz operators Tϕ ∈ L(L2

a(Ω, λ)), that is, compressions
to L2

a(Ω, λ) of multiplication operators Mϕ on L2(Ω, λ) with symbol φ ∈ L∞(Ω, λ). It
has long been known that on the classical Bergman space L2

a(D, λ) on the unit disk, a
Toeplitz operator Tϕ with continuous symbol ϕ ∈ C(D) is compact if and only if its
symbol vanishes on the unit circle. Furthermore, in every point in the unit circle, the
value of the symbol coincides with the limit of the Berezin transform Γ(Tϕ) at this point.
On a functional Hilbert space H ⊂ CΩ with normalized kernel function kz, the Berezin
transform of an operator T ∈ L(H) is given by

Γ(T ) : Ω→ C, Γ(T )(z) = 〈Tkz, kz〉.

This brought up the question whether one can also use the Berezin transform to char-
acterise compactness of operators in more general settings.
One of the most famous results in this direction was obtained by Axler and Zheng
in [AZ98] for the Bergman space L2

a(D, λ) on the unit disk. They showed that an op-
erator which is the finite sum of finite products of Toeplitz operators with L∞-symbols
is compact if and only if the boundary limit of its Berezin transform is zero. Englĭs
provided the same result in [Eng99] for the weighted Bergman spaces L2

a,ν(Ω, λ) on an
irreducible bounded symmetric domain Ω ⊂ Cn.

Although for p 6= 2, the Bergman space Lp(Ω, λ) is not a functional Hilbert space, it is
also possible to define a Berezin transform for bounded operators on these spaces. In
[Sua07], Suarez extended the Axler-Zheng theorem to operators in the closed subalgebra
generated by the Toeplitz operators with L∞-symbol on the Bergman spaces Lpa(Bn, λ)
(1 < p <∞) on the unit ball Bn in Cn.
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Introduction

Together with Mitkovski and Wick, in [MSW13], he also proved a version for the weighted
Bergman spaces Lpa,ν(Bn, λ) on the unit ball, where 1 < p <∞. Moreover, Mitkovski and
Wick showed in [MW14] that the same theorem also holds on the unweighted Bergman
spaces Lpa(Dn, λ) for 1 < p <∞ on the unit polydisk.

In case that one considers only operators in the Toeplitz algebra, that is, the closed
subalgebra of L(Lpa(Ω, λ)) generated by the Toeplitz operators Tϕ with continuous symbol
ϕ ∈ C(Ω), even more can be said.
C̆uc̆ković and Şahutoğlu proved in [C̆Ş13] that for operators in the Toeplitz algebra,
on the unweighted Bergman space L2

a(Ω, λ) on a smooth bounded pseudoconvex domain
Ω ⊂ Cn on which the ∂-Neumann operator is compact, the statement of the Axler-Zheng
theorem still holds.
Another interesting result on the compactness of Toeplitz operators with continuous
symbols was given by Trieu Le in [Le09]. One can prove that the set of holomorphic
polynomials on Bn is a dense subset of the unweighted Bergman space on the unit ball.
Le then defined Toeplitz operators on the L2(Ω, ν)-closure of the holomorphic polyno-
mials with respect to a wider class of measures ν and showed that, also in this case, a
Toeplitz operator is compact if its symbol vanishes on the unit sphere.

We will define Toeplitz operators on an even larger class of functional Hilbert spaces
H2
A (µ) that can be seen as a generalization of the Bergman spaces L2

a(Bn, λ) with respect
to both the set Ω and the underlying measure. In the first part of this thesis, we give
a brief overview on the theory of functional Hilbert spaces and the Berezin transform.
We also prove some results for operators on Hilbert spaces that will be useful later on.
At the beginning of Chapter 2, we show that a version of Le’s theorem also holds in
our framework. We then use this result to prove our main theorem which states that if
the multiplication tuple Tz on H2

A (µ) is essentially normal, then under certain technical
conditions, an operator T in the Toeplitz algebra is compact if and only if

lim
z→∂Ω

Γ(T )(z) = 0.

In addition, we obtain corollaries for the case when Ω is convex and for pseudoregular
open domains Ω ⊂ Cn, that is, bounded pseudoconvex domains on which the ∂-Neumann
operator is compact. In particular, we show that our main theorem includes both The-
orem 1.1 in [Le09] and Theorem 1 in [C̆Ş13] as special cases. For an overview on the
∂-Neumann problem, we refer the reader to the appendix, where we provide a survey on
the most important results in this topic.
In the last chapter, we use Gelfand theory to define the Toeplitz extension of the ideal
of compact operators on H2

A (µ). We use the essential spectrum of the multiplication
tuple Tz to replace some of the prerequisites in the main theorem by weaker conditions.
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1 Basics

1.1 Functional Hilbert spaces and the Berezin transform

In this thesis, we will characterize the compact operators in the Toeplitz algebra with
help of their Berezin transform. The setting we will work in is a certain class of functional
Hilbert spaces that can be considered as generalized Bergman spaces. Before we start
introducing these spaces, we would like to remind the reader of some basic definitions
in the theory of functional Hilbert spaces.

Definition 1.1. Let Ω be an arbitrary set and let CΩ be the set of all maps from Ω to
C. We call a Hilbert space H ⊂ CΩ a functional Hilbert space if, for every z ∈ Ω, the
point evaluation

δz : H −→ C, f 7→ f (z)

is continuous.

With each functional Hilbert space on a set Ω, we associate its reproducing kernel defined
as follows.

Definition 1.2. Let Ω be an arbitrary set and let H ⊂ CΩ be a functional Hilbert space.
We call the map

K : Ω× Ω −→ C
a reproducing kernel for H if it satisfies

1. K (·, z) ∈ H for all w ∈ Ω,

2. 〈f,K (·, z)〉H = f (z) for all f ∈ H, z ∈ Ω.

Obviously, each functional Hilbert space possesses a unique reproducing kernel. One can
easily see that the identity

K (w, z) = δwδ
∗
z

holds. Furthermore, one can show that

H = ∨{K(·, z); z ∈ Ω}.

If H has no common zeros, or equivalently K(·, z) 6= 0 for all z ∈ Ω, we define the
normalized kernel function by

k(w, z) =
K(w, z)

‖K(·, z)‖
=

K(w, z)√
K(z, z)

for z, w ∈ Ω.
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1 Basics

One of the main tools we will use in this thesis is the Berezin transform of an operator
in L (H).

Definition 1.3. Let Ω be an arbitrary set and H ⊂ CΩ a functional Hilbert space such
that H has no common zeros. For z ∈ Ω, we abbreviate

kz = k(·, z)

and define the Berezin transform of an operator X ∈ L(H) as

Γ(X) : Ω→ C, z 7→ 〈Xkz, kz〉.

One can easily deduce the following basic properties of the Berezin transformation.

Lemma 1.4. Let Ω be an arbitrary set and H ⊂ CΩ a functional Hilbert space that has
no common zeros. Furthermore, let B(Ω,C) denote the bounded functions from Ω into
C. The Berezin transformation

Γ : L (H) −→ B(Ω,C), X 7→ Γ (X)

is well defined, linear, contractive, and respects the involutions.

For our results, the behaviour of Γ(T )(z) for z −→ ∂Ω will be of particular importance.
We introduce some useful notations in the next definition.

Definition 1.5. Let Ω ⊂ Cn be a bounded open set and let (F, t) be a topological space.
In addition, let f : Ω→ (F, t) be a map and x ∈ F . We say

lim
z→∂Ω

f(z) = x

if for every neighbourhood U of x, there exists δ > 0 such that

f(z) ∈ U for all z ∈ Ω with dist(z, ∂Ω) < δ.

1.2 Operators on Hilbert spaces

Besides the basic results on the Berezin transform, we will in this place also mention
some general results about operators on Hilbert spaces that will be useful later on. We
start with defining contractions of class [C.0] on a Hilbert space.

Definition 1.6. Let H be a Hilbert space. A contraction T ∈ L (H) is said to be a
contraction of the class [C.0] if

lim
k→∞

T ∗k = 0 in (L (H) , τSOT ) .

Contractions of class [C.0] have an additional property, which is introduced in the next
definition.

2



1.2 Operators on Hilbert spaces

Definition 1.7. We call a contraction T completely non-unitary if there is no non-zero
reducing subspace for T on which its restriction is unitary.

Contractions of class [C.0] cannot have a non-zero unitary part, as the following lemma
shows.

Lemma 1.8. A contraction T on a Hilbert space H of the class [C.0] is completely
non-unitary.

Proof. Let T ∈ L(H) be a contraction with

SOT − lim
k→∞

T ∗k = 0.

Assume there is an orthogonal decomposition

H = HU ⊕HN

such that HU 6= {0} and

T = U ⊕N ∈ L (HU ⊕HN) ,

where U is an unitary operator. Let us consider the effect of the operator T ∗k on an
element f ∈ HU with f 6= 0. Since U is an unitary operator, U∗k is unitary as well and
we have

lim
k→∞
‖T ∗kf‖ = lim

k→∞
‖U∗kf‖ = lim

k→∞
‖f‖ = ‖f‖ 6= 0.

This is a contradiction to
SOT − lim

k→∞
T ∗k = 0

and hence the assumption was wrong, meaning that T is a completely non-unitary
contraction.

The next lemma deals with certain compact operators on a Hilbert space.

Lemma 1.9. Let H,K be Hilbert spaces and S ∈ L(H,K) a bounded operator. Then S
is compact if and only if the operator S∗S in L(H) is compact.

Proof. Suppose that the operator S∗S is compact. Then every bounded sequence (xn)n∈N
in H has a subsequence (xnk)k ∈ N such that the sequence (S∗Sxnk)n∈N is convergent in
H. Then we calculate for k, l ∈ N with the Cauchy Schwarz inequality

‖Sxnk − Sxnl‖2 = |〈S∗S(xnk − xnl), (xnk − xnl)〉|
≤ ‖S∗S(xnk − xnl)‖‖(xnk − xnl)‖
≤ ‖S∗S(xnk − xnl)‖(‖(xnk‖+ ‖xnl)‖)

The second term is bounded, since (xn)n∈N is a bounded sequence. (S∗Sxnk)k∈N is a
Cauchy sequence. Thus (Sxnk)k∈N is a Cauchy sequence and therefore convergent, since
K is complete. Hence S is compact. The converse implication is clear.

3



1 Basics

A class of of operators on Hilbert spaces that will play an important role later on are
the multiplication operators.

Definition 1.10. Let Ω ⊂ Cn be an arbitrary set. Consider two functional Hilbert spaces
H1, H2 ⊂ CΩ . The elements of

M(H1, H2) = {ϕ : Ω→ C;ϕH1 ⊂ H2}

are called multipliers from H1 to H2.
In the case H1 = H2 = H, we write M(H) instead of M(H,H).
For f : Ω→ C, the map

(ϕf) : Ω→ C

is defined by

(ϕf)(z) = ϕ(z)f(z) for all z ∈ Ω.

For a multiplier ϕ ∈M(H1, H2), we call the operator

Mϕ : H1 → H2, f 7→ ϕf

the multiplication operator with symbol ϕ.

Remark 1.11. By the closed graph theorem, multiplication operators are continuous.
For Ω ⊂ Cn and two functional Hilbert spaces H1, H2 ⊂ CΩ with reproducing kernels
K1, K2, one easily calculates that

M∗
ϕK2(·, z) = ϕ(z)K1(·, z) for all ϕ ∈M(H1, H2), z ∈ Ω.(∗)

If H1 = H2 = H and H has no common zeros, then

K(z, z) > 0 for all z ∈ Ω

and equation (∗) implies

‖ϕ‖∞,Ω ≤ ‖Mϕ‖ for all ϕ ∈M(H),

since

|ϕ(z)|2K(z, z) =
〈
ϕ(z)K(·, z), ϕ(z)K(·, z)

〉
≤ ‖M∗

ϕ‖2‖K(·, z)‖2

= ‖M∗
ϕ‖2K(z, z) for all z ∈ Ω.

4



1.2 Operators on Hilbert spaces

For an arbitrary measure µ on Ω and ϕ ∈ L∞(Ω, µ), the operator

Mϕ : L2(Ω, µ)→ L2(Ω, µ), [f ] 7→ [ϕf ]

is well defined, linear and continuous, since

‖ϕf‖L2(Ω,µ) =

∫
Ω

|ϕf |2dµ ≤ ‖ϕ‖2
L∞(Ω,µ)‖f‖2

L2(Ω,µ).

Hence

‖Mϕ‖ ≤ ‖ϕ‖L∞(Ω,µ).

In addition, a short calculation yields

M∗
ϕ = Mϕ.

5





2 Compact operators in the Toeplitz
algebra

2.1 The generalized Bergman spaces

Our main theorem extends two previous results on compact Toeplitz operators. The
first was formulated by Le in [Le09] and characterizes the compact Toeplitz operators
with continuous symbols on Bergman spaces on the unit ball in Cn with respect to suit-
able rotation invariant measures. The second was obtained by C̆uc̆ković and Şahutoğlu
in [C̆Ş13], where the compact operators in the Toeplitz algebra in the setting of Bergman
spaces on pseudoregular domains in Cn with respect to the Lebesgue measure are de-
scribed. We consider a class of functional Hilbert spaces that contains both of the above
classes as examples, namely the generalized Bergman spaces. Let Ω ⊂ Cn be a bounded
open set, µ ∈M+

(
Ω
)

a positive finite Borel measure and A ⊂ C(Ω) a closed subalgebra
with C[z]|Ω ⊂ A. We define

H2
A (µ) = A

L2(Ω,µ)
,

which is, together with the restricted L2(Ω, µ)-inner product, a Hilbert space. Suppose
that for every z ∈ Ω, (

{[f ]; f ∈ A}, ‖ · ‖L2(Ω,µ)

)
, [f ] 7→ f (z)

is a well defined continuous linear map, and denote by

δz : H2
A (µ)→ C

its continuous extension. Furthermore, let the map

ρ : H2
A (µ)→ CΩ, ρ ([f |) (z) = δz ([f ])

be injective. In this case, the space H2
A (µ) = Im (ρ) ⊂ CΩ together with the inner

product

〈ρ (f) , ρ (g)〉 = 〈f, g〉L2(Ω,µ)

becomes a functional Hilbert space. Later on, we will be especially interested in spaces
of the form H2

A (µ) that consist only of holomorphic functions. The next lemma shows
when this is the case.

7



2 Compact operators in the Toeplitz algebra

Lemma 2.1. Let Ω ⊂ Cn be a bounded open set and H2
A (µ) a functional Hilbert space

as above. Let

K : Ω× Ω→ C

be the unique reproducing kernel function for H2
A (µ). We denote by Ω∗ the set

Ω∗ = {z; z ∈ Ω}.

Then the following statements are equivalent:

(i) A|Ω ⊂ O(Ω) and sup
z∈K
‖δz‖ <∞ for all compact sets K ⊂ Ω,

(ii) H2
A (µ) ⊂ O(Ω),

(iii) The map Ω× Ω∗, (z, w) 7→ K(z, w) is holomorphic,

(iv) The map δ : Ω→ L(H2
A (µ) ,C), z 7→ δz is holomorphic.

Proof. (i)⇒ (ii). Assume that A|Ω ⊂ O(Ω) and that

sup
z∈K
‖δz‖ <∞ for all compact subsets K ⊂ Ω.

For a function f ∈ H2
A (µ), there exists a sequence (fn)n∈N in A such that

([fn])
n→∞−→ ρ−1(f) in H2

A (µ) .

Furthermore, for every compact subset K ⊂ Ω,

‖ρ([fn])(z)− f(z)‖ = ‖δz(ρ([fn])− f)‖
≤ sup

z∈K
‖δz‖‖ρ([fn])− f‖

= sup
z∈K
‖δz‖‖[fn]− ρ−1(f)‖,

and since sup
z∈K
‖δz‖ < ∞, the sequence ρ([fn]) converges to f uniformly on compact

subsets. We have

ρ([fn])(z) = fn(z) for all z ∈ Ω.

Thus the sequence (fn)n∈N also converges to f uniformly on compact subsets of Ω. Since
fn is holomorphic on Ω for all n ∈ N, f is holomorphic on Ω.

(ii) ⇒ (iii). Suppose now that every function in H2
A (µ) is holomorphic. For fixed

w ∈ Ω∗, the function K(·, w) is an element of H2
A (µ), and hence holomorphic.

8



2.1 The generalized Bergman spaces

Furthermore, for fixed z ∈ Ω, this implies that the map

Ω→ C, w 7→ K(z, w) = K(w, z)

is antiholomorphic and hence that

Ω∗ → C, w 7→ K(z, w)

is holomorphic. Hartog’s theorem then implies that the map

Ω× Ω∗ → C, (z, w) 7→ K(z, w)

is holomorphic.

(iii)⇒ (i). For f ∈ H2
A (µ) and z ∈ Ω, we have

|f(z)| = |〈f,K(·, z)〉| ≤ ‖f‖‖K(·, z)‖ = ‖f‖K(z, z)
1
2 .

Hence the continuity of K implies that convergent sequences in H2
A (µ) converge uni-

formly on all compact subsets of Ω. Since by (iii) all functions of the form K(·, w),
w ∈ Ω, are holomorphic and since the finite linear combinations of these functions are
dense in H2

A (µ), it follows that H2
A (µ) ⊂ O(Ω). Since A|Ω ⊂ H2

A (µ), we also obtain (i).

(ii)⇔ (iv). It is well known that the operator-valued map

δ : Ω→ L(H2
A (µ) ,C), z 7→ δz

is holomorphic if and only if all the functions

Ω→ C, z 7→ δz(f) = f(z) (f ∈ H2
A (µ))

are holomorphic. Thus (ii) and (iv) are equivalent.

We now introduce Toeplitz operators on the spaces of the form H2
A (µ).

Definition 2.2. For ϕ ∈ L∞(Ω, µ), we call the operator

Tϕ = ρ
(
PH2

A(µ)Mϕ

)
ρ−1 ∈ L

(
H2
A (µ)

)
the Toeplitz operator with symbol ϕ. Note that

‖Tϕ‖ = ‖ρ(PH2
A(µ)Mϕ)ρ−1‖ ≤ ‖ϕ‖L∞(Ω,µ).

The C∗-algebra

TA = C∗
({
Tϕ;ϕ ∈ C

(
Ω
)})

is called the Toeplitz algebra on H2
A (µ).

9



2 Compact operators in the Toeplitz algebra

The following lemma shows that we already know some Toeplitz operators on H2
A (µ).

Lemma 2.3. We have A|Ω ⊂M(H2
A (µ)) and M(f |Ω) = Tf for all f ∈ A.

Proof. Consider a function f ∈ A. The operator

Mf : L2(Ω, µ)→ L2(Ω, µ), [g] 7→ [fg]

is continuous and, since fA ⊂ A, leaves H2
A (µ) invariant. It follows that the operator

Mf : H2
A (µ)→ H2

A (µ)

is well defined, linear, and continuous. Consider now the continuous operator

ρMfρ
−1 ∈ L(H2

A (µ))

and [g] ∈ H2
A (µ) . We choose a sequence (gn)n∈N in A such that ([gn])n∈N converges to

[g] and calculate

ρMfρ
−1(ρ([g])(z) = lim

n→∞
ρ([fgn])(z)

= lim
n→∞

f(z)gn(z)

= f(z) lim
n→∞

ρ([gn])(z)

= f(z)ρ([g])(z) for all z ∈ Ω.

Hence f |Ω ∈M(H2
A (µ)) and

M(f |Ω) = ρMfρ
−1 = ρPH2

A(µ)Mf |H2
A(µ)ρ

−1 = Tf .

In the next lemma, we obtain yet another useful characterization of TA.

Theorem 2.4. For the C∗-algebra TA introduced in Definiton 2.2, we have

TA = C∗(Tz),

where C∗(Tz) denotes the unital C∗-algebra generated by Tz = (Tz1 , . . . , Tzn).

Proof. Consider the set

S = {ϕ ∈ C(Ω);Tϕ ∈ C∗(Tz)} ⊂ C(Ω),

which contains the constant function 1 and the coordinate functions z1, . . . , zn.

10



2.2 Characterization of compact Toeplitz operators

This set is a closed linear subspace of C(Ω), since the map

C(Ω)→ TA, ϕ 7→ Tϕ

is linear and continuous. Let now ϕ ∈ C(Ω) and f ∈ A with ϕ, f ∈ S. In the proof of
Lemma 2.3 it is shown that the operator

Mf : H2
A (µ)→ H2

A (µ) , [g] 7→ [fg]

is well defined, continuous and linear. Thus, since

Tϕf = ρPH2
A(µ)Mϕfρ

−1

= ρPH2
A(µ)MϕMfρ

−1

= ρPH2
A(µ)MϕPH2

A(µ)Mfρ
−1

= ρPH2
A(µ)Mϕρ

−1ρPH2
A(µ)Mfρ

−1

= TϕTf ,

the function ϕf is also an element of S.
Furthemore, for ϕ ∈ S, we have

Tϕ = T ∗ϕ ∈ C∗(Tz),

so S contains ϕ.
Hence, since the coordinate functions lie in A, the set S ⊂ C(Ω) is a closed subspace
containing C[z, z]|Ω. By the Stone-Weierstrass theorem, it follows that S = C(Ω) and
TA = C∗(Tz).

One of our main objectives in this thesis is to show that the compactness of an operator in
the Toeplitz algebra depends on the behaviour of its Berezin transform when approaching
boundary points. Of particular interest are the so called peak points for the algebra A
which are defined in the following way.

Definition 2.5. A point z0 ∈ ∂Ω is called a peak point for A if there exists a function
f ∈ A satisfying

f (z) = 1 > |f (z) | for all z ∈ Ω \ {z0}.

We write ∂pA for the set of all peak points for A in ∂Ω.

2.2 Characterization of compact Toeplitz operators

Our goal in the following sections is to characterise the compact operators in the Toeplitz
algebra. As a first step, we look at the generators of the Toeplitz algebra. The next
theorem contains a sufficient condition for such a Toeplitz operator to be compact in
case that all functions in H2

A (µ) are holomorphic. This result will play an important
role in the proof of a more general theorem for operators in the Toeplitz algebra later
on.

11



2 Compact operators in the Toeplitz algebra

Theorem 2.6. Let Tϕ be a Toeplitz operator with symbol ϕ ∈ C
(
Ω
)

on a functional
Hilbert space H2

A (µ) constructed as in Section 2.1. In addition, suppose that

H2
A (µ) ⊂ O (Ω) .

If ϕ|∂Ω = 0, then Tϕ is compact.

Proof. We begin by showing that the assertion holds for every Toeplitz operator Tξ with
a symbol ξ ∈ C

(
Ω
)

that vanishes not only on the boundary itself, but on U ∩ Ω for
some open neighbourhood U ⊃ ∂Ω. Given a bounded sequence(fk)k∈N in H2

A (µ), we
will show that the sequence (Tξfk)k∈N has a converging subsequence.
By a theorem of Eberlein and Smulian (see Theorem V.6.1 in [DS58]), (fk)k∈N possesses
a weakly convergent subsequence

(
fkj
)
j∈N. Let f ∈ H2

A (µ) denote the weak limit of this

subsequence. By Lemma 2.1, the map

δ : Ω→ L
(
H2
A (µ) ,C

)
, z 7→ δz

is continuous, because all elements of H2
A (µ) are holomorphic functions. In consequence,

the set
{δz; z ∈ K} ⊂ H2

A (µ)

is compact for every compact set K ⊂ Ω. The sequence
(
〈·, fkj〉

)
j∈N of continuous linear

forms 〈·, fkj〉 ∈ H2
A (µ)′converges pointwise, hence uniformly on all compact subsets of

H2
A (µ), to the functional 〈·, f〉. In particular, the sequence (fkj)j∈N converges uniformly

on compact subsets of Ω to f . Since ρ(A) ⊂ H2
A (µ) is dense, there is a sequence (Fj)j∈N

in A such that

‖ρ(Fj)− fkj‖H2
A(µ)

j→∞−→ 0.

This implies pointwise convergence on H2
A (µ) and by the same argument as above, also

uniform convergence on compact subsets of Ω. Therefore

Fj|Ω = ρ (Fj)
j→∞−→ f

uniformly on compact subsets of Ω. The hypothesis that ξ|U∩Ω = 0 for some open
neighbourhood U ⊃ ∂Ω implies that supp(ξ) is a compact subset of Ω. We then have

ξFj
j→∞−→ h

uniformly on Ω, where the function h : Ω→ C is defined as

h (z) =

{
ξ (z) f (z) , z ∈ supp (ξ)

0, else.

12



2.3 Compact operators in the Toeplitz algebra

It follows that

Tξ
(
fkj − ρ (Fj)

)
= ρ

(
PH2

A(µ)Mξ

)
ρ−1

(
fkj − ρ (Fj)

) k→∞−→ 0 in H2
A (µ)

and that

Tξ (ρ (Fj)) = ρ
(
PH2

A(µ)Mξ

)
ρ−1 (ρFj)

= ρ
(
PH2

A(µ)Mξ

)
(Fj)

k→∞−→ ρPH2
A(µ) (h)

as ρ and PH2
A(µ) are continuous. Together, this yields

lim
k→∞

Tξ
(
fkj
)

= lim
k→∞

Tξ (ρ (Fj)) + lim
k→∞

Tξ
(
fkj − ρ (Fj)

)
= ρPH2

A(µ) (h) ∈ H2
A (µ) ,

so Tξ is a compact operator.
Consider now ϕ ∈ C(Ω) with ϕ|∂Ω = 0. For ε > 0, there exists an open neighbourhood
U ⊃ ∂Ω in Cn with

|ϕ(z)| ≤ ε for all z ∈ U ∩ Ω.

We choose an open neighbourhood V ⊃ ∂Ω with V ⊂ V ⊂ U and a cut-off function
θ ∈ C(Ω) such that 0 ≤ θ ≤ 1 on Ω, θ|Ω∩(Cn\U) = 1, and θ|V ∩Ω = 0. The operator Tθϕ is

then compact, since θϕ ∈ C(Ω) vanishes on V ∩ Ω . We then have

‖Tθϕ − Tϕ‖ ≤ ‖(1− θ)ϕ‖∞,Ω
≤ ‖(1− θ)ϕ‖∞,U∩Ω

≤ ε.

As ε was arbitrary, the operator Tϕ can be approximated in the operator norm by
compact operators and is hence compact.

2.3 Compact operators in the Toeplitz algebra

In Satz 6.22 in [Kre11], it was proven that for a Toeplitz operator Tϕ ∈ L(H2
A (µ)) with

ϕ ∈ C(Ω), we have

ϕ(z0) = lim
z→z0

Γ(Tϕ)(z) for all z0 ∈ ∂pA.

If we require the peak points to be dense in ∂Ω, then in Theorem 2.6, the condition
ϕ|∂Ω = 0 follows from the condition that

lim
z→∂Ω

Γ(Tϕ)(z) = 0.

The last condition also makes sense in the case of an arbitrary operator in the Toeplitz
algebra. It turns out, that in certain cases, this is indeed the condition that characterizes
the compact operators in the Toeplitz algebra. Before we are able to prove this result,
we need to make some preparations. Let us first define what it means for an operator
tuple to be essentially normal.

13



2 Compact operators in the Toeplitz algebra

Definition 2.7. Let H be a Hilbert space. We call a commuting tuple

T = (T1, · · · , Tn) ∈ L(H)n

essentially normal if

T ∗j Tj − TjT ∗j compact for all j ∈ 1, · · · , n.

Another important tool will be the class of Hankel operators.

Definition 2.8. Let H2
A (µ) be as in Section 2.1 and let

PH2
A(µ) : L2(Ω, µ)→ H2

A (µ)

be the projection onto H2
A (µ). We define the Hankel operator with symbol ϕ ∈ L∞(Ω, µ)

as

Hϕ : H2
A (µ)→ L2(Ω, µ), f 7→ (I − PH2

A(µ))Mϕf.

We want to use Hankel operators to show the compactness of operators of the form

Tϕξ − TϕTξ ∈ L(H2
A (µ)),

where ϕ, ξ ∈ C(Ω) are continuous symbols. The main idea is contained in the next
lemma.

Lemma 2.9. Let ϕ, ξ ∈ L∞(Ω, µ) be functions with induced Toeplitz operators
Tϕ, Tξ ∈ L(H2

A (µ)). Then we have

• H∗ϕHξ = ρ−1(Tϕξ − TϕTξ)ρ.

• Hϕξ = Hϕρ
−1Tξρ+ (I − PH2

A(µ))MϕHξ.

Proof. Let g ∈ H2
A (µ) and f ∈ L2(Ω, µ) be arbitrary functions. We calculate

〈H∗ϕf, g〉H2
A(µ) = 〈f,Hϕg〉L2(Ω,µ)

= 〈f, (I − PH2
A(µ))Mϕg〉L2(Ω,µ)

= 〈f,Mϕg〉L2(Ω,µ) − 〈f, PH2
A(µ)Mϕg〉L2(Ω,µ)

= 〈Mϕf, g〉L2(Ω,µ) − 〈MϕPH2
A(µ)f, g〉L2(Ω,µ)

= 〈PH2
A(µ)Mϕf, g〉H2

A(µ) − 〈PH2
A(µ)MϕPH2

A(µ)f, g〉H2
A(µ)

As f and g were arbitrary, we obtain

H∗ϕ = PH2
A(µ)Mϕ − PH2

A(µ)MϕPH2
A(µ).

14



2.3 Compact operators in the Toeplitz algebra

It follows that

H∗ϕHξ = PH2
A(µ)Mϕ(I − PH2

A(µ))Mξ|H2
A(µ)

= PH2
A(µ)Mϕξ|H2

A(µ) − PH2
A(µ)Mϕ|H2

A(µ)PH2
A(µ)Mξ|H2

A(µ)

= ρ−1Tϕξρ− ρ−1Tϕρρ
−1Tξρ

= ρ−1(Tϕξ − TϕTξ)ρ.

The calculation

Hϕξ = (I − PH2
A(µ))Mϕξ|H2

A(µ)

= (I − PH2
A(µ))MϕMξ|H2

A(µ)

= (I − PH2
A(µ))Mϕ(PH2

A(µ)Mξ|H2
A(µ) + (I − PH2

A(µ))Mξ|H2
A(µ))

= (I − PH2
A(µ))Mϕ|H2

A(µ)PH2
A(µ)Mξ|H2

A(µ) + (I − PH2
A(µ))Mϕ(I − PH2

A(µ))Mξ|H2
A(µ))

= Hϕρ
−1Tξρ+ (I − PH2

A(µ))MϕHξ

yields the second equality.

Remark 2.10. The identity

H∗ξHξ = ρ−1(T|ξ|2 − T ∗ξ Tξ)ρ

together with Theorem 2.6 and Lemma 1.9 shows that on each analytic functional Hilbert
space H2

A (µ) ⊂ O(Ω) every Hankel operator with continuous symbol ϕ ∈ C(Ω) such that

ϕ|∂Ω = 0

is compact.

The following lemmata show how the essential normality of the multiplication tuple
Tz ∈ L(H2

A (µ))n will be used.

Lemma 2.11. The set

B = {ϕ ∈ C(Ω);Hϕ compact }

is a closed subalgebra of C(Ω) that contains A.

Proof. It follows immediately from the second part of Lemma 2.9 that B is an algebra.
Since for every ϕ ∈ L∞(Ω, µ)

‖Hϕ‖ = ‖(I − PH2
A(µ))Mϕ|H2

A(µ)‖ ≤ ‖Mϕ‖ ≤ ‖ϕ‖L∞(Ω,µ),

the map

C(Ω) −→ L(H2
A (µ) , L2(Ω, µ)), ϕ 7→ Hϕ

is continuous, so B is closed as an inverse image of a closed set. By the proof of
Lemma 2.3, for f ∈ A, g ∈ H2

A (µ), we have Mfg ∈ H2
A (µ). We conclude

Hfg = (I − PH2
A(µ))Mfg = 0,

which in particular means that Hf is compact for all f ∈ A, so A ⊂ B.
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2 Compact operators in the Toeplitz algebra

Remark 2.12. Note that with the same proof, one can also show that

{ϕ ∈ L∞(Ω, µ);Hf compact } ⊂ L∞(Ω, µ)

is a closed subalgebra.

Compactness of the Hankel operators with continuous symbols is equivalent to the es-
sential normality of Tz, as one can see from the next lemma.

Lemma 2.13. The following conditions are equivalent:

(i) Tz = (Tz1 , · · · , Tzn) ∈ L(H2
A (µ))n is essentially normal,

(ii) z1, . . . zn ∈ B,

(iii) B = C(Ω),

(iv) Tϕξ − TϕTξ ∈ L(H2
A (µ)) is compact for all ϕ, ξ ∈ C(Ω).

Proof. Since the coordinate functions zj are elements of A, we have for j ∈ {1, . . . , n}

T ∗zjTzj − TzjT
∗
zj

= Tzjzj − TzjTzj .

The first part of Lemma 2.9 then yields that

T ∗zjTzj − TzjT
∗
zj

= ρH∗zjHzjρ
−1.

Hence, the essential normality of Tz is equivalent to the compactness of the operators

H∗zjHzj for 1 ≤ j ≤ n.

By Lemma 1.9, these operators are compact if and only if the Hankel operators

Hzj for j ∈ {1, . . . , n}

are compact.
Assume now that z1, . . . , zj ∈ B. By Lemma 2.11, the set B is then a closed subalgebra
containing C[z, z]. The Stone-Weierstrass theorem then yields B = C(Ω).

Let now on the other hand all Hankel operators with continuous symbol on Ω be compact.
Then by Lemma 2.9, the operators

Tϕξ − TϕTξ

are compact for all ϕ, ξ ∈ C(Ω).
In order to show the implication (iv) ⇒ (i), suppose that TϕTξ − Tϕξ ∈ L(H2

A (µ))
is compact for all f, g ∈ C(Ω). This implies the essential normality of Tz, since for
j ∈ {1, . . . , n}

T ∗zjTzj − TzjT
∗
zj

= TzjTzj − TzjTzj
= (TzjTzj − Tzjzj) + (Tzjzj − TzjTzj),

which is compact as a sum of compact operators.
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2.3 Compact operators in the Toeplitz algebra

Another tool that will be important later on is the essential norm of an operator.

Definition 2.14. Let X be a Banach space and S ∈ L(X) a bounded linear operator on
X. We define the essential norm of S as

‖S‖e = inf{‖S −K‖;K ∈ L(X) compact }.

The next lemma yields some information about the essential norm of a Toeplitz operator
with continuous symbol. However, we have to require that the generalized Bergman
space H2

A (µ) consists only of holomorphic functions.

Lemma 2.15. Let H2
A (µ) be a functional Hilbert space as in Section 2.1 which addition-

ally satisfies H2
A (µ) ⊂ O(Ω). Furthermore, let Tϕ ∈ L(H2

A (µ)) be the Toeplitz operator
with symbol ϕ ∈ C(Ω). Then the inequality

‖Tϕ‖e ≤ ‖ϕ‖∞,∂Ω

holds.

Proof. Since Ω is a bounded subset of Cn, ∂Ω is compact. Let

α > ‖ϕ‖∞,∂Ω ≥ 0

be arbitrary. Since ϕ is continuous on Ω, we can find an open neighbourhood U ⊃ ∂Ω
with

|ϕ(w)| < α for all w ∈ U ∩ Ω.

By Urysohn’s Lemma, there exists a function ψ ∈ C(Ω) with

1. 0 ≤ ψ(z) ≤ 1 for all z ∈ Ω,

2. ψ = 1 on Ω ∩ (Cn \ U),

3. ψ = 0 on ∂Ω.

By Theorem 2.6, the operator S = Tϕψ is compact. For the essential norm of Tϕ, we
then have

‖Tϕ‖e ≤ ‖Tϕ − S‖ ≤ sup(|(1− ψ(z))ϕ(z)|; z ∈ Ω) ≤ α.

Since α > ‖ϕ‖∞,∂Ω was arbitrary, it follows that

‖Tϕ‖ ≤ ‖ϕ‖∞,∂Ω.
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2 Compact operators in the Toeplitz algebra

These preparations enable us to formulate the main theorem. A version for Bergman
spaces with respect to the Lebesgue measure on a certain class of bounded domains in
Cn is proven by C̆uc̆ković and Sahutolgu in [C̆Ş13]. We will consider this situation as
an example later on. Note that if

w − lim
z→∂Ω

k(·, z) = 0,

then the Berezin transform Γ(K)(z) of every compact operator K ∈ L(H2
A (µ)) converges

to zero, as z −→ ∂Ω. Indeed, for every sequence (zn)n∈N that converges to the boundary
of Ω, the sequence (kzn)n∈N is weakly convergent to zero. Hence (Kkzn)n∈N converges to
zero in norm and

lim
n→∞

|Γ(K)(zn)| = |〈Kkzn , kzn〉| ≤ ‖Kkzn‖‖kzn‖ ≤ ‖Kkzn‖
n→∞−→ 0.

This yields one implication in the next theorem.

Theorem 2.16. Let H2
A (µ) be a functional Hilbert space as in Section 2.1, which in

addition satisfies H2
A (µ) ⊂ O(Ω). Assume that Tz ∈ L(H2

A (µ))n is essentially normal
and that

w − lim
z→∂Ω

k(·, z) = 0.

Furthermore, let ∂pA ⊂ ∂Ω be a dense subset. Then an operator T ∈ TA is compact if
and only if

lim
z→∂Ω

Γ(T )(z) = 0.

Proof. Let T ∈ TA = C∗({Tϕ;ϕ ∈ C(Ω)}) be an operator such that

lim
z→∂Ω

Γ(T )(z) = 0.

Then T is the limit with respect to the operator norm of finite sums of operators of the
form

Tϕ1 · · ·Tϕm with m ∈ N and ϕ1, . . . , ϕm ∈ C(Ω).

By an elementary induction, it follows that any such product is of the form

Tϕ1···ϕm +K

with a suitable compact operator K ∈ L(H2
A (µ)). The case m = 2 follows immediately

from Lemma 2.13. If the assertion has been shown for products of length m and if
ϕ1, . . . , ϕm+1 ∈ C(Ω), then using the induction hypothesis we find a compact operator
K ∈ L(H2

A (µ)) such that

Tϕ1 · · ·Tϕm+1 = (Tϕ1···ϕm +K)Tϕm+1 .
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2.3 Compact operators in the Toeplitz algebra

The case m = 2 then yields the existence of a compact operator K̃ ∈ L(H2
A (µ)) with

Tϕ1 · · ·Tϕm+1 = Tϕ1···ϕm+1 + K̃ +KTϕm+1 .

Hence, for every ε > 0, there are a function ξε ∈ C(Ω) and a compact operator
Kε ∈ L(H2

A (µ)) with

‖T − Tξε −Kε‖ < ε.

Since the Berezin transform is contractive, it follows that

|Γ(T )− Γ(Tξε)− Γ(Kε)| < ε

on Ω. By hypothesis

w − lim
z→∂Ω

k(·, z) = 0.

Hence

lim
z→∂Ω

Γ(Kε)(z) = 0.

Since by hypothesis

lim
z→∂Ω

Γ(T )(z) = 0,

we can choose an open neighbourhood U ⊃ ∂Ω such that

|Γ(Tξε)| < 2ε

on U ∩ Ω. From Satz 6.22 in [Kre11] we know that

|ξε| ≤ 2ε on ∂pA.

Since by hypothesis ∂pA ⊂ ∂Ω is dense, it follows that

‖ξε‖∞,∂Ω ≤ 2ε.

By Lemma 2.15, there is a compact operator Cε ∈ K(H2
A (µ)) with

‖Tξε − Cε‖ < 3ε.

But then

‖T − Cε −Kε‖ < 4ε

and since ε is arbitrary, we conclude that T is compact.
The reverse implication is clear.

The question arises under which circumstances the requirements in the above theorem
are satisfied. In the next two sections, we will consider some situations in which Theorem
2.16 is applicable.
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2 Compact operators in the Toeplitz algebra

2.4 A class of Bergman spaces on pseudoregular
domains

The first class of spaces we want to look at are Bergman spaces on pseudogular open
domains in Cn. Before we can define pseudoregular open sets, we need to introduce
the ∂-Neumann operator. For more information about the ∂-Neumann problem and
pseudoregular sets, consider the appendix.

Definition 2.17. By Theorem 2.9 (1) in [Str10], on a bounded pseudoconvex domain
Ω ⊂ Cn, the complex Laplacian

∂∗ ∂ + ∂ ∂∗

has a bounded inverse N on the square-integrable (0,1)-forms on Ω. We call N the
∂-Neumann operator of Ω.

A pseudoregular set is then defined as follows.

Definition 2.18. We call a bounded open set Ω ⊂ Cn pseudoregular if Ω is pseudoconvex
with smooth boundary and if, in addition, the ∂-Neumann operator N of Ω is compact.

We can now define Bergman spaces on these sets.

Definition 2.19. Let Ω be a bounded domain in Cn and λ ∈ M(Ω) the restriction of
the Lebesgue measure on Cn to Ω. The Bergman space on Ω is defined as

L2
a(Ω, λ) =

{
f ∈ O(Ω); ‖f‖p =

(∫
Ω

|f |pdλ
) 1

p

<∞

}
.

One can show that (L2
a(Ω, λ), ‖ · ‖L2(Ω,λ)) is a functional Hilbert space. It is well known

that the Bergman space is a closed subspace of L2(Ω, λ) (see Corollary 1.10 in [Ran86]).
For Bergman spaces on pseudoregular domains, C̆uc̆ković and Şahutoğlu proved a version
of Theorem 2.16 in [C̆Ş13] which we now obtain as a corollary. While working with
Bergman spaces, the domain algebra plays a central role.

Definition 2.20. Let Ω ⊂ Cn be a bounded domain. Then we call

A(Ω) = {f ∈ C(Ω); f |Ω ∈ O(Ω)}

the domain algebra of Ω.

Since we would like to apply our results to the Bergman spaces defined above, we have
to make sure they are of the right form.
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2.4 A class of Bergman spaces on pseudoregular domains

Lemma 2.21. Let Ω ⊂ Cn a pseudoregular set and let µ ∈ M+(Ω) denote the trivial
extension of the usual Lebesgue measure λ on Ω. The Bergman space L2

a(Ω, λ) is a
functional Hilbert space of the form H2

A (µ) as defined in Section 2.1 with A = A(Ω).

Proof. Since Ω is pseudoregular, it is pseudoconvex with class C∞ boundary, so by
Theorem 20 in [BS99], the domain algebra is a dense subset of L2

a(Ω, λ). We now need
to show that for every z ∈ Ω, the map

δA(Ω)
z : {[f ]; f ∈ A(Ω)} → C, [f ] 7→ f(z)

is a well defined continuous linear map. Let z ∈ Ω be arbitrary. Since Ω ⊂ Cn is open,
there is r > 0 such that the open polydisk Pr(z) is entirely contained in Ω. For every
f ∈ A(Ω), by 1.6 in [ABR01], we then have,

f(z) =
1

(πr2)n

∫
Pr(z)

f(w)dλ(w).

This implies

|f(z)| ≤ 1

(πr2)n

∫
Pr(z)

|f(w)|dλ(w)

≤ K1

(∫
Pr(z)

1dλ(w)

∫
Pr(z)

|f(w)|2dλ(w)

) 1
2

≤ K1K2

(∫
Ω

|f(w)|2dµ(w)

) 1
2

= K‖f‖L2(Ω,µ).

Here

K1 =
1

(πr2)n
, K2 =

(∫
Pr(z)

1dλ(w)

) 1
2

and K = K1K2

are constants only depending on z. So for every z ∈ Ω the map δ
A(Ω)
z is well-defined,

linear and continuous and therefore has a continuous extension to H2
A (µ) = A

L2(Ω,µ)

which we denote by δz. We then look at the linear map

ρ : H2
A (µ)→ CΩ, ρ([f ])(z) = δz([f ]) for all z ∈ Ω, [f ] ∈ H2

A (µ) .

Let [f ] ∈ H2
A (µ) with

ρ([f ])(z) = 0 for all z ∈ Ω.

Since A(Ω) is a dense subset of H2
A (µ), we can choose a sequence (fn)n∈N in A(Ω) with

[fn]
n→∞−→ [f ] in H2

A (µ) .

21



2 Compact operators in the Toeplitz algebra

We then have, by the continuity of δz,

lim
n→∞

fn(z) = lim
n→∞

δz([fn])

= δz( lim
n→∞

[fn])

= δz([f ])

= ρ([f ])(z)

= 0 for all z ∈ Ω.

Since [fn] converges towards [f ] in L2(Ω, µ), there is a µ-zero set N ⊂ Ω and a subse-
quence (fnk)k∈N of (fn)n∈N such that

fnk(z)
k→∞−→ f(z) for all z ∈ Ω \N.

We conclude, that

f(z) = 0 on Ω ∩N c.

Since µ is the trivial extension of λ to Ω, the boundary of Ω is a µ-null set, so we have

[f ] = 0.

Hence, the map ρ is injective. By construction ρ(H2
A (µ)) consists precisely of all func-

tions f : Ω → C for which there is an L2(Ω, µ)-Cauchy sequence (fk)k∈N in A such
that

f(z) = lim
k→∞

fk(z) for all z ∈ Ω.

Since µ is the trivial extension of the Lebesgue measure on Ω and since

A|Ω ⊂ L2
a(Ω, λ)

is dense, it follows that

ρ(H2
A (µ)) = L2

a(Ω, λ).

Note that, for f ∈ C(Ω), the Toeplitz operators on L2
a(Ω, λ)

Tf = ρ(P |H2
A(µ)Mf )ρ

−1 ∈ L(L2
a(Ω, λ))

with respect to Definition 2.2 coincide withe the usual Toeplitz operators defined by

PL2
a(Ω,λ)(Mf |Ω)|L2

a(Ω,λ).

Theorem 1 in [C̆Ş13] then follows as a corollary from Theorem 2.16.
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2.5 Generalized Bergman spaces on convex sets

Corollary 2.22. Let Ω be a bounded pseudoregular domain in Cn. Let TA(Ω) denote the
Toeplitz algebra on the Bergman space on Ω with respect to the Lebesgue measure. Then
T ∈ TA(Ω) is compact if and only if

lim
z→∂Ω

Γ(T )(z) = 0

Proof. By the definition of pseudoregularity, the ∂-Neumann operator is compact on Ω.
Thus, Proposition 4.1 and Proposition 4.2 in [Str10] imply that all Hankel operators
on L2

a(Ω, λ) with continuous symbols are compact. By Lemma 2.13, this is equivalent
to the condition that the multiplication tuple Tz ∈ L(L2

a(Ω, λ))n is essentially normal.
Since Ω ⊂ Cn is a bounded domain with C1-boundary, Theorem 3.3.4 and Theorem
3.3.6 in [JP00] yield that

w − lim
z→∂Ω

k(·, z) = 0.

By construction of L2
a(Ω, λ), every function in L2

a(Ω, λ) is holomorphic. Moreover, a
remark from C̆uc̆ković and Şahutoğlu in [C̆Ş13] states that the strictly pseudoconvex
points form a dense subset of ∂Ω. Since by Theorem 2.3 in [Noe08], on bounded pseu-
doconvex domains in Cn with smooth boundary, every strictly pseudoconvex point is a
peak point for the domain algebra, the set ∂pA(Ω) is a dense subset of ∂Ω. Hence the
statements follow from Theorem 2.16.

2.5 Generalized Bergman spaces on convex sets

We consider again arbitrary functional Hilbert spaces of the form H2
A (µ) as defined in

Section 2.1. One of the central requirements in Theorem 2.16 is that for the normalized
kernel function of H2

A (µ)

w − lim
z→∂Ω

k(·, z) = 0.

In general, it is not obvious whether this condition is satisfied. However, we are able
to show that it always holds for generalized Bergman spaces on convex domains in Cn.
The proof consists of several steps. We start with showing that, for convex Ω, the space
H2
A (µ) has the l∞-interpolation property, as defined in [DE12].

Definition 2.23. A functional Hilbert space H on an open set Ω ⊂ Cn possesses the
l∞-interpolation property if, for every sequence (zk)k∈N in Ω converging to a boundary
point z0 ∈ ∂Ω, there exists a subsequence (wk)k∈N of (zk)k∈N in Ω with

{(h(wk))k∈N;h ∈M(H)} = l∞

In order to show that generalized Bergman spaces on convex sets possess this property,
the next lemma will be helpful. It can also be found in [DE12] and it states that, for
every boundary point Ω, there exists a function in A which is almost a peak function.
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2 Compact operators in the Toeplitz algebra

Lemma 2.24. Let Ω ⊂ Cn be a bounded open convex set. For every z0 ∈ ∂Ω, there is a
function h ∈ A with h (Ω) ⊂ D and h (z0) = 1.

Proof. Since Ω is convex and we have z0 ∈ ∂Ω, the separation theorems yield a homoge-
nous polynomial p (z) =

∑n
i=1 aizi of degree one, satisfying

Re (p (z)) < Re (p (z0)) for all z ∈ Ω.

The algebra A contains the restrictions of the polynomials, hence we have p|Ω ∈ A. Then

ep =
∞∑
k=0

pk

k!

is also an element of A, since A is a Banach algebra. Therefore ep is a multiplier on
H2
A (µ). The real exponential function is strictly increasing, hence we have

|ep(z)| = eRe(p(z)) < eRe(p(z0)) = |ep(z0)|

for all z ∈ Ω. The function h : Ω→ C with

h (z) =
ep(z)

ep(z0)
for all z ∈ Ω

then possesses the required properties.

By Lemma 2.3 and Remark 1.11, the restriction of the function h to Ω is then a multiplier
on H2

A (µ) with multiplier norm

‖h|Ω‖M = ‖h‖∞,Ω = 1.

The following lemma will allow us to show that the contraction Mh|Ω possesses a
w∗-continuous H∞ (D)-functional calculus.

Lemma 2.25. The operator T = Mh|Ω ∈ L (H2
A (µ)) is a contraction of class [C.0].

Proof. It is to show that

SOT − lim
k→∞

T ∗k = 0,

which means that for every f ∈ H2
A (µ),

lim
k→∞
‖T ∗kf‖ = 0.

The space H2
A (µ) is a scalar-valued functional Hilbert space, hence it possesses a re-

producing kernel K : Ω× Ω→ C for which

∨ ({K (·, z) ; z ∈ Ω}) = H2
A (µ) .

24



2.5 Generalized Bergman spaces on convex sets

For a function f = K (·, z) with z ∈ Ω, we can calculate

‖T ∗kf‖ = ‖M∗k
h|ΩK (·, z) ‖

= ‖h (z)
k
K (·, z) ‖

= |h (z) |k‖f‖ k→∞−→ 0,

for all z ∈ Ω, since |h (z) | < 1 and for every g ∈ H2
A (µ)

〈M∗k
h|Ωf, g〉 = 〈f,Mk

h|Ωg〉
= 〈f, h|kΩg〉
= 〈h|kΩg, f〉
= 〈h|kΩg,K(·, z)〉
= h|kΩ(z)g(z)

= 〈h|kΩ(z)f, g〉

With help of the triangle inequality, we also get

lim
k→∞
‖T ∗kf‖ = 0 for all f ∈ span ({K (·, z) ; z ∈ Ω}) .

The sequence of operators
(
T ∗k
)
k∈N is norm-bounded, since T is a contraction. The

latter and the convergence of the sequence on a dense subset of H2
A (µ) prove the SOT-

convergence.

Concluding from Lemma 1.8 that T is a completely non-unitary contraction, Corollary
14.1.14 in [DAE+03] yields a unique w∗-continuous algebra homomorphism

Φ : H∞ (D)→ L
(
H2
A (µ)

)
with ‖Φ‖ = 1, Φ (1) = 1H2

A(µ) and Φ (z) = T . The next lemma specializes how the
homomorphism Φ looks like in this case.

Lemma 2.26. In the situation above, the algebra homomorphism Φ acts as

Φ (f) = Mf◦(h|Ω) for all f ∈ H∞ (D) .

Proof. The map Φ is an algebra homomorphism with Φ (z) = T , hence for a polynomial
p, it acts as

Φ (p) = p (T ) = p
(
Mh|Ω

)
= Mp◦(h|Ω).

Let now f ∈ H∞ (D) be arbitrary. According to Exercise II.4 in [Gar81] and Lemma
14.1.6 in [DAE+03], the polynomials are w∗-sequentially dense in H∞ (D).
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2 Compact operators in the Toeplitz algebra

Thus there exists a sequence (pk)k of polynomials converging to f with respect to the
w∗-topology. Since Φ is w∗-continuous,

Φ (pk)
k→∞−→ Φ (f) in

(
L
(
H2
A (µ)

)
, τw∗

)
.

This implies convergence in the weak operator topology and since, according to Lemma
14.1.6 in [DAE+03], pointwise convergence in H∞ (D) follows from w∗-convergence, it
follows that

(Φ (f)u) (z) = 〈Φ (f)u,K (·, z)〉
= lim

k→∞
〈Φ (pk)u,K (·, z)〉

= lim
k→∞
〈Mpk◦(h|Ω)u,K (·, z)〉

= lim
k→∞

(pk ◦ (h|Ω)) (z)u (z)

= (f ◦ h) (z)u (z) for all u ∈ H2
A (µ) and z ∈ Ω.

Corollary 2.27. Let the function h be as in the preceeding lemma. Then for every
f ∈ H∞(D),

f ◦ (h|Ω) ∈M(H2
A (µ)).

The next lemma, originally stated in [DE12] even for functional Banach spaces, indicates
why these results are important.

Lemma 2.28. Let H be a functional Hilbert space on a bounded open set Ω ⊂ Cn with
1 ∈ H. If for every boundary point z0 ∈ ∂Ω, there exists a multiplier h of H such that
h (Ω) ⊂ D,

lim
z→z0

h (z) = 1

and

{f ◦ h; f ∈ H∞ (D)} ⊂ M (H) ,

then H has the l∞-interpolation property.

Proof. In the proof we will use the well-known fact that the classical Hardy space on the
unit disk possesses the l∞-interpolation property ( see [Hof62], p.204). If we consider a
sequence (zk)k∈N in Ω with

zk
k→∞−→ z0

for a point z0 in ∂Ω, then for a multiplier h ∈M(H) as above, the sequence (h(zk))k∈N
is a sequence in the open unit disk D ⊂ C with

lim
k→∞

h(zk) = 1.
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2.5 Generalized Bergman spaces on convex sets

SinceM(H2(D)) = H∞(D) and the classical Hardy space possesses the l∞-interpolation
property, we can find a subsequence (wk)k∈N of (zk)k∈N with

{(f(h(wk)))k∈N; f ∈ H∞(D)} = l∞.

We required that f ◦ h ∈M(H) for all f ∈ H∞(D). So we obtain

{(g(wk))k∈N; g ∈M(H)} ⊃ l∞.

In addition, since by Remark 1.11 every multiplier g ∈M(H) is bounded on Ω, it follows

{(g(wk))k∈N; g ∈M(H)} = l∞.

Theorem 2.29. Let Ω ⊂ Cn be a bounded convex open set and H2
A (µ) a functional

Hilbert space on Ω as in Section 2.1. Then the spaceH2
A (µ) possesses the l∞-interpolation

property.

Proof. Lemma 2.24 and Corollary 2.27 allow us to apply Lemma 2.28 from which the
assertion follows.

Lemma 2.30. Let H be a functional Hilbert space on a bounded open set Ω ⊂ Cn with
reproducing kernel K : Ω×Ω −→ C such that H has the l∞- property and 1 ∈ H. Then
we have

w − lim
z→∂Ω

k(·, z) = 0.

Proof. Assume that there were a zero-neighbourhood U ⊂ H with respect to the weak
topology and a sequence (zj)j∈N such that

dist(zj, ∂Ω)
j→∞−→ 0,

and

k(·, zj) /∈ U for all j.

Since the space H possesses the l∞-interpolation property, there is a subsequence (zjk)k∈N
of (zj)j∈N such that

{(h(zjk))k∈N;h ∈M(H)} = l∞.

By the proof of Lemma 3.2 in [DE12], we then conclude that

{(〈f, k(·, zjk)〉)k∈N; f ∈ H} = l2.

We infer that (k(·, zjk))k∈N is a weak zero sequence, which is a contradiction to our
assumption. Hence the assumption was wrong and

w − lim
z→∂Ω

k(·, z) = 0.
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2 Compact operators in the Toeplitz algebra

Hence we conclude that for a bounded convex open set Ω ⊂ Cn, the normalized kernel
functions converge to zero for z −→ ∂Ω.

Lemma 2.31. Let Ω ⊂ Cn be a bounded convex open set and let H2
A (µ) be a functional

Hilbert space on Ω as defined in Section 2.1. Then

w − lim
z→∂Ω

k(·, z) = 0.

Proof. By Theorem 2.29, H2
A (µ) possesses the l∞-interpolation property. The result

then follows from Lemma 2.30.

We can now formulate a corollary of Theorem 2.16 for functional Hilbert spaces of the
form H2

A (µ) as in Section 2.1 on bounded convex open sets Ω ⊂ Cn.

Corollary 2.32. Let Ω ⊂ Cn be a bounded convex open set and let H2
A (µ) be a functional

Hilbert space on Ω as defined in Section 2.1, which in addition satisfies H2
A (µ) ⊂ O(Ω).

Assume that Tz ∈ L(H2
A (µ))n is essentially normal and that ∂pA ⊂ ∂Ω is a dense subset.

Then an operator T ∈ TA is compact if and only if

lim
z→∂Ω

Γ(T )(z) = 0.

On the unit ball Bn ⊂ Cn, it turns out that we can apply Theorem 2.16 not only to the
Bergman space with respect to the Lebesgue measure, but also to a class of Bergman
spaces formed with respect to a larger class of measures. In his paper “Compact Toeplitz
operators with continuous symbols” ( [Le09]), Trieu Le considers a normalized regular
positive Borel measure µ on the unit interval in R with 1 ∈ supp(µ) and the unique
rotation invariant probability measure σ on the unit sphere. Let ν̃ = µ× σ denote their
product measure on [0, 1]× ∂Bn. The measure ν̃ is again a positive Borel measure. The
map

λµ : C
(
Bn
)
−→ C, f 7→

∫
[0,1]×∂Bn

f (rξ) d (µ× σ) (r, ξ)

is a positive linear functional with

‖λµ‖ = λµ (1) = 1.

By the Riesz representation theorem , there is a unique positive regular Borel measure
ν = νµ on Bn such that ∫

Bn
fdν = λµ (f)

is valid for all f ∈ C
(
Bn
)
. We then look at the Bergman space defined as

L2
a(Bn, ν) = H2

A(Bn)(ν) = A (Bn)
L2(Bn,ν)

.
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2.5 Generalized Bergman spaces on convex sets

By Propositions 1.4.8 and 1.4.9 in [Rud80], for multiindices α, β ∈ Nn, we can calculate∫
Bn
zαz̄βdν (z) =

∫
[0,1]×∂Bn

r|α|+|β|ξαξ̄βd (µ× σ) (r, ξ)

=

(∫
[0,1]

r|α|+|β|dµ

)(∫
∂Bn

ξαξ̄βdσ (ξ)

)

=


0, α 6= β

(n− 1)!α!

(n+ |α| − 1)!

∫ 1

0

r2|α|dµ, α = β
.

We define for k ∈ N

ak =

∫
[0,1]

r2kdµ (> 0) .

Hence, we obtain an orthonormal basis of L2
a(Bn, ν) consisting of the functions

eα =

(
(n+ |α| − 1)!

(n− 1)!α!a|α|

) 1
2

zα (α ∈ Nn) .

The orthonormality follows from the calculation above. To see that (eα)α∈Nn is complete,
not that the closed linear span of

{eα;α ∈ Nn}

is a closed subset of L2(Bn, ν) that contains all polynomials and therefore also the algebra

A (Bn) = C[z]|Bn
C(Bn)

.

We begin by stating a rather technical lemma that will be helpful later on.

Lemma 2.33. For the orthonormal basis (eα)α∈Nn defined above, the sum∑
α∈Nn

|eα(z)|2

is convergent for all z ∈ Bn.

Proof. For z ∈ Bn, we have∑
α∈Nn

|eα(z)|2 =
∑
α∈Nn

(n+ |α| − 1)!

(n− 1)!a|α|

|zα|2

α!

=
∞∑
k=0

(n+ k − 1)!

(n− 1)!k!ak

∑
|α|=k

k!

α!
|zα|2

=
∞∑
k=0

(n+ k − 1)!

(n− 1)!k!ak

(
|z|2
)k
.
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2 Compact operators in the Toeplitz algebra

We show in two steps that the last series is convergent. First we prove that

lim
k→∞

a
1
k
k = 1.

Note that, for 0 < ε < 1 and k ≥ 1,

(
(1− ε)2k µ ([1− ε, 1])

) 1
k ≤

(∫
[1−ε,1]

r2kdµ

) 1
k

≤
(∫

[0,1]

r2kdµ

) 1
k

≤ ‖r2k‖
1
k

L∞(µ).

Since 1 ∈ supp (µ),

(1− ε)2 ≤ lim
k→∞

(ak)
1
k

≤ lim
k→∞

(ak)
1
k

≤ lim
k→∞
‖r2k‖

1
k

L∞(µ)

= ‖r2‖L∞(µ)

≤ 1.

Thus it follows that

lim
k→∞

a
1
k
k = 1.

Since for k ≥ n− 1,

(
k

1
k

)n−1
(

1

ak

) 1
k

≤
(

(k + 1) · · · (k + (n− 1))

ak

) 1
k

=

(
(n+ k − 1)!

k!ak

) 1
k

≤
(

(2k)(n−1)
) 1
k

(
1

ak

) 1
k

,

it follows that the power series

∞∑
k=0

(n+ k − 1)!

(n− 1)!k!ak
zk

has radius of convergence R = 1.
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2.5 Generalized Bergman spaces on convex sets

In order to apply Theorem 2.16 to the situation above, we have to show that the Bergman
spaces on the unit ball, with respect to measures ν defined as above, are functional
Hilbert spaces of the form H2

A (µ).

Lemma 2.34. Consider the Bergman space L2
a(Bn, ν) on the closed unit ball Bn ⊂ Cn

with respect to a Borel measure ν defined as above and let A(Bn) be the domain algebra
on the unit ball in Cn. Then the point evaluations

{[f ]; f ∈ A(Bn)} → C, [f ] 7→ f(z) (z ∈ Bn)

possess continuous extensions

δz : L2
a(Bn, ν)→ C

and the induced map

ρ : L2
a(Bn, ν)→ CBn , ρ([f ])(z) = δz([f ]) for all z ∈ Bn

is injective with

Im(ρ) ⊂ O(Ω).

Hence Im(ρ) is a functional Hilbert space of the form H2
A (µ) as in Section 2.1 which in

addition satisfies H2
A (µ) ⊂ O(Ω).

Proof. Let us first consider a polynomial p ∈ C[z]. We can write p as

p (z) =
∑
|α|≤N

cαeα (z) for z ∈ Bn.

Applying the Cauchy-Schwarz inequality leads to

|p (z) | ≤

 ∑
|α|∈Nn

|eα (z) |2
 1

2
∑
|α|≤N

|cα|2
 1

2

= Cz‖p‖L2(Bn,ν),

where

Cz =

(∑
α∈Nn

|eα (z) |2
) 1

2

.
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2 Compact operators in the Toeplitz algebra

Consider a function f ∈ A (Bn). Since A (Bn) is the closure of the set of holomorphic
polynomials in C(Bn), we can find a sequence (pk)k∈N in C[z] with

pk
k→∞−→ f

uniformly on Bn. This implies ‖f − pk‖
k→∞−→ 0 in L2(Bn, ν) and therefore

|f (z) | = lim
k→∞
|pk (z) |

≤ Cz lim
k→∞
‖pk‖L2(Bn,ν)

= Cz‖f‖L2(Bn,ν) for all z ∈ Bn.

Hence (
{[f ] ∈ L2(Bn, ν); f ∈ A (Bn)}, ‖ · ‖L2(Bn,ν)

)
−→ C, [f ] 7→ f (z)

is a well defined continuous linear map and has a unique continuous linear extension

δz : L2
a(Bn, ν) −→ C.

If
f =

∑
α∈N

cαeα ∈ L2
a(Bn, ν)

satisfies
δz (f) = 0

for all z ∈ Bn, it follows that∑
α∈Nn

cαeα (z) =
∑
α∈Nn

cαδz (eα)

= δz

(∑
α∈Nn

cαeα

)
= 0 for all z ∈ Bn.

The series above can be seen as a power series∑
α∈Nn

c̃αz
α,

as eα = kαz
α for some kα > 0. Since this power series is converging to zero on the whole

unit ball, it follows that all the coefficients are zero. So c̃α = 0 for all α ∈ Nn and hence
cα = c̃α

kα
= 0, which leads to f = 0. Altogether, this means that the map

ρ : L2
a(Bn, ν) −→ CBn , ρ (f) (z) = δz (f)

is well defined, linear and injective. For f ∈ L2
a(Bn, ν), ρ (f) ∈ O (Bn) is the holomorphic

function with power series expansion

ρ (f) (z) =
∑
α∈Nn

〈f, eα〉L2(Bn,ν)eα (z) (z ∈ Bn).

.
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We denote by

H2
A(Bn)(ν) = ρL2

a(Bn, ν) ⊂ O(Bn)

the functional Hilbert space associated with

L2
a(Bn, ν) = H2

A(Bn)(ν)

as explained in Section 2.1. In a next step, we show that the multiplication tuple with
the coordinate functions on such a space is essentially normal.

Lemma 2.35. Consider the Bergman space L2
a(Bn, ν) on the closed unit ball Bn ⊂ Cn

with respect to a Borel measure ν defined as above. Then the multiplication tuple

Tz = (Tz1 , · · · , Tzn) ∈ L(H2
A(Bn)(ν))n

is essentially normal.

Proof. This lemma can be found in [C̆C99], but for the sake of completeness we include
a proof. We have to show that the operator Tk = T ∗zkTzk − TzkT

∗
zk

is compact for every
1 ≤ k ≤ n. We will only consider the case k = 1, as the other cases can be treated
analogously. The strategy is to approximate the operator T1 by a sequence of finite rank
operators. Therefore, we define operators Sm, m ∈ N, by

Sm(eα) =

{
(T ∗z1Tz1 − Tz1T

∗
z1

)(eα), α ∈ Nn with |α| ≤ m,

0 , otherwise.

With the definition wα = ‖zα+e1‖
‖zα‖ , where e1 ∈ Nn with e11 = 1 and e1i = 0 for

i ∈ {2, . . . ,m}, we obtain that

Tz1(eα) = z1(
zα

‖zα‖
) =

zα+e1

‖zα‖
= wα

zα+e1

‖zα+e1‖
.

Furthermore, we calculate

T ∗z1(eα) =
∑
β∈Nn

〈
T ∗z1

(
zα

‖zα‖

)
,
zβ

‖zβ‖

〉
eβ

=
∑
β∈Nn

〈
zα

‖zα‖
, Tz1

(
zβ

‖zβ‖

)〉
eβ

=
∑
β∈Nn

〈
zα

‖zα‖
, wβ

zβ+e1

‖zβ+e1‖

〉
eβ

= wα−e1eα−e1 ,

where we read the last term as zero in the case α1 = 0.
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2 Compact operators in the Toeplitz algebra

This means

T1(eα) = (w2
α − w2

α−e1)
zα
‖zα‖

.

The weights wα are given by

w2
α = (

‖zα+e1‖
‖zα‖

)2

=

(n−1)!(α+e1)!
(n+|α+e1|−1)!

∫ 1

0
r2|α+e1|dµ

(n−1)!α!
(n+|α|−1)!

∫ 1

0
r2|α|dµ

=
(α1 + 1)

∫ 1

0
r2|α|+2dµ(r)

(n+ |α|)
∫ 1

0
r2|α|dµ(r)

.

As an application of Hölder’s inequality, we obtain that(∫ 1

0

r2|α|dµ(r)

)2

=

(∫ 1

0

r|α|+1r|α|−1dµ(r)

)2

≤
(∫ 1

0

r2|α|+2dµ(r)

)(∫ 1

0

r2|α|−2dµ(r)

)
for all α ∈ Nn \ {0}, or equivalently, that∫ 1

0
r2|α|dµ(r)∫ 1

0
r2|α|−2dµ(r)

≤
∫ 1

0
r2|α|+2dµ(r)∫ 1

0
r2|α|dµ(r)

.

In consequence, the function ρ : N→ [0, 1] defined by

ρ(k) =

(∫ 1

0
r2k+2dµ(r)

)
(∫ 1

0
r2kdµ(r)

)
is increasing. Thus, for k →∞, it converges to some ρ0 ∈ [0, 1]. We look at the difference

∆(α) = w2
α − w2

α−e1 =
α1 + 1

n+ |α|
ρ(|α|)− α1

n+ |α| − 1
ρ(|α| − 1)

and calculate, as ρ is an increasing function,

∆(α) ≥ α1 + 1

n+ |α|
ρ(|α| − 1)− α1

n+ |α| − 1
ρ(|α| − 1)

=

(
(α1 + 1)(n+ |α| − 1)− α1(n+ |α|)

(n+ |α|)(n+ |α| − 1)

)
ρ(|α| − 1)

=

(
n+ |α| − α1 − 1

|α|2 + (2n− 1)|α|+ n2 − n

)
ρ(|α| − 1).
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The last term converges to zero as |α| −→ ∞, since

0 = lim
|α|→∞

n− 1

|α|2 + (2n− 1)|α|+ n2 − n

≤ lim
|α|→∞

n+ |α| − α1 − 1

|α|2 + (2n− 1)|α|+ n2 − n

≤ lim
|α|→∞

n+ |α|
|α|2 + (2n− 1)|α|+ n2 − n

= 0.

On the other hand, we obtain

∆(α) ≤ α1 + 1

n+ |α|
ρ(|α|)− α1

n+ |α|
ρ(|α| − 1)

=

(
α1

n+ |α|

)
(ρ(|α|)− ρ(|α| − 1)) +

1

n+ |α|
ρ(|α|)

≤ (ρ(|α|)− ρ(|α| − 1)) +
1

n+ |α|
ρ(|α|),

which also converges to zero as |α| → ∞. Thus

lim
|α|→∞

∆(α) = 0.

Hence the operator T1 is compact as a limit of finite rank operators. A similar argument
yields the compactness of the operators

Tk, k ∈ {2, . . . , n}.

Hence Tz ∈ L(H2
A(Bn)(ν))n is essentially normal.

Therefore, we can formulate the following corollary.

Corollary 2.36. Let L2
a(Bn, ν) be a Bergman space on the closed unit ball Bn ⊂ Cn with

respect to a Borel measure ν defined as above. Then an operator T ∈ TA(Bn) is compact
if and only if

lim
|z|→1

Γ(T )(z) = 0.

Proof. Note that since the unit ball in Cn is strictly pseudoconvex, Theorem 2.3 in
[Noe08] implies that every point in its boundary is a peak point for the ball algebra
A(Bn). By Lemma 2.34, Lemma 2.35, and the convexity of Bn, the requirements of
Corollary 2.32 are satisfied. This yields the result.

As a special case, we obtain Theorem 1.1 in [Le09].

Corollary 2.37. Let L2
a(Bn, ν) be a Bergman space on the closed unit ball Bn ⊂ Cn with

respect to a Borel measure ν defined as above. Then a Toeplitz operator
Tϕ ∈ L(H2

A(Bn)(ν)) with continuous symbol ϕ ∈ C(Bn) is compact if and only if

ϕ|∂Bn = 0.
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2 Compact operators in the Toeplitz algebra

Proof. As Bn is convex, Lemma 2.29 and Lemma 2.30 lead to

w − lim
|z|→1

k(·, z) = 0.

Thus we can apply Satz 6.18 from [Kre11] and obtain

lim
z→z0

Γ(Tϕ)(z) = ϕ(z0)

for all peak points z0 ∈ ∂Bn. Since every point in the boundary of the unit ball is a
peak point for the ball algebra, we have

lim
z→z0

Γ(Tϕ)(z) = ϕ(z0) for all z0 ∈ ∂Ω.

By Corollary 2.36, we conclude that the compactness of Tϕ is equivalent to

ϕ(z0) = lim
z→z0

Γ(Tϕ)(z) = 0 for all z0 ∈ ∂Ω.

Note that in the setting of Corollary 2.37, the Toeplitz operators

Tϕ ∈ L(H2
A(Bn)(ν)), ϕ ∈ C(Bn),

are canonically unitarily equivalent to the Toeplitz operators

Tϕ = PL2
a(Bn,ν)Mϕ|L2

a(Bn,ν) ∈ L(L2
a(Bn, ν))

via the unitary map

ρ : L2
a(Bn, ν)→ H2

A(Bn)(ν).
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In Theorem 2.6, we showed that, on suitable analytic functional Hilbert spaces, a
Toeplitz operator Tf with f ∈ C(Ω) is compact if its symbol vanishes on the boundary
of Ω. In this chapter, we will prove that if the multiplication tuple Tz is essentially
normal, it suffices to know that the restriction of the symbol to a certain subset of the
boundary, namely the essential spectrum of the operator tuple Tz, is the zero-function.
This enables us to replace the requirement ∂pA = ∂Ω in Theorem 2.16 by a weaker
condition.

We consider a functional Hilbert space of the form H2
A (µ) on a bounded domain

Ω ⊂ Cn as in Section 2.1 and the corresponding Toeplitz algebra TA = C∗(Tz). Fur-
thermore, we assume from now on that the multiplication tuple Tz ∈ L(H2

A (µ))n is
essentially normal.

3.1 Joint spectra

Since we want to determine the compact operators in TA, it will be useful to introduce
the Calkin algebra on H2

A (µ), which is the quotient of the bounded operators on H2
A (µ)

modulo the compact operators.

Definition 3.1. Let K denote the set of compact operators on H2
A (µ). Then we call

C(H2
A (µ)) = L(H2

A (µ))
/
K

the Calkin algebra for H2
A (µ) and we denote by

π : L(H2
A (µ))→ C(H2

A (µ)), T 7→ π(T ) = [T ]

the quotient mapping.

We now look at the range of the C∗-algebra TA under the quotient mapping π into the
Calkin algebra.
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3 Exact Toeplitz Sequences

Remark 3.2. The set

CA = π(TA) ⊂ C(H2
A (µ))

is a C∗-algebra, as π is a ∗-homomorphism. The essential normality of Tz ensures that
CA is commutative, since by Lemma 2.13, operators of the form

TfTg − TgTf for f, g ∈ C(Ω)

are compact. Since

CA = π(TA) = π(C∗(Tz)) = C∗(π(Tz)) = C∗([Tz]) ⊂ C(H2
A (µ)),

CA is generated by [Tz] = ([Tz1 ], . . . , [Tzn ]).

It turns out that there exists a strong connection between the elements of CA and the con-
tinuous functions on the joint spectrum of the tuple [Tz] in CA. The latter is introduced
in the next definition.

Definition 3.3. Let C be a commutative unital Banach algebra and let
x = (x1, . . . , xn) ∈ Cn be a finite tuple. We define the joint spectrum of x by

σC(x) = {λ ∈ Cn; 1 /∈
n∑
i=1

(λi − xi)C}.

In a first step, we observe that there exists a homeomorphism between the Gelfand space
of C and the joint spectrum of a generating tuple of C.

Lemma 3.4. Let C be a commutative unital C∗- algebra and let ∆C denote the Gelfand
space of C, which is defined as the space of the non-trivial multiplicative linear functionals
of C equipped with the relative w∗-topology of C ′. Suppose that the C∗-algebra C is
generated by a finite tuple x = (x1, . . . , xn) ∈ Cn. Then the map

κ : ∆C −→ σC(x), λ 7→ λ(x) = (λ(x1), . . . , λ(xn))

is a well-defined homeomorphism.

Proof. Let φ ∈ ∆C . Suppose 1 ∈
∑n

i=1 (φ(xi)− xi)C. Then there exist c1, . . . , cn ∈ C
satisfying

1 =
n∑
i=1

(φ(xi)− xi)ci.
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3.1 Joint spectra

Hence

1 = φ(1) = φ(
n∑
i=1

(φ(xi)− xi)ci) =
n∑
i=1

(φ(xi)− φ(xi))φ(ci) = 0,

so our assumption was wrong. Therefore we conclude 1 /∈
∑n

i=1 (φ(xi)− xi)C, which
means φ(x) ∈ σC(x). So the map κ is well-defined. In order to show that it is also
surjective, let λ ∈ σC(x). Then

I =
n∑
i=1

(λi − xi)C ⊂ C

is a proper ideal. By Zorn’s lemma, every proper ideal is contained in a maximal ideal.
We can therefore find a maximal ideal IM in C with

I ⊂ IM .

By standard Gelfand theory, there exists a non-trivial multiplicative linear functional
φ ∈ ∆C such that

ker(φ) = IM.

Hence

I ⊂ ker(φ) ⊂ C.

Therefore,

φ(
n∑
i=1

(λi − xi)ci) = 0 for all ci ∈ C.

For k ∈ {1, . . . , n}, choosing ci = 0 for i 6= k and ck = 1 leads to

λk − φ(xk) = 0,

and we obtain

λ = φ(x).

Since the functionals λ ∈ ∆C are ∗-homomorphisms, and in particular also continuous,
they are uniquely determined by their action on the generators x1, . . . , xnof the C∗-
algebra C. Hence κ is injective.
We would now like to show that κ is also continuous. Therefore, we consider a net (λi)i∈I
in ∆C converging to a non-trivial multiplicative linear form λ ∈ ∆C with respect to the
Gelfand topology. Since this topology is the restriction of the w∗-topology on C ′ to ∆C ,
it follows

λi(xj)
i→∞−→ λ(xj) for all j ∈ {1, . . . , n}.
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3 Exact Toeplitz Sequences

Hence

κ(λi) = λi(x)
k→∞−→ λ(x) = κ(λ),

thus κ is continuous.
The Gelfand space ∆C is a compact Hausdorff space and σC(x) is a Hausdorff space.
This implies that the continuous and bijective map κ is already a homeomorphism.

In particular, it follows that σC(x) ⊂ Cn is a non-empty compact subset of Cn.
The next lemma yields an isomorphism between CA and the continuous functions on
σCA([Tz]).

Lemma 3.5. For an element [x] ∈ CA, we denote its Gelfand transform by [̂x]. Then
the map

i : CA −→ C(σCA([Tz])), [x] 7→ [̂x] ◦ κ−1

is an isomorphism between C∗-algebras.

Proof. By Remark 3.2, the tuple [Tz] generates CA as a commutative unital C∗-algebra.
Hence, Lemma 3.4 implies that the map

κ : ∆CA → σCA([Tz]), λ 7→ λ([Tz])

is a homeomorphism. It is easy to see that the function

κ̃ : C(∆CA)→ C(σCA([Tz])), f 7→ f ◦ κ−1

is then an isomorphism of C∗-algebras. Furthermore, the Gelfand-Naimark theorem
(see e.g. Theorem 1.1.1 in [Arv76]) states that the map

γ : CA → C(∆CA), [x] 7→ [̂x]

is a ∗-isomorphism. We conclude that the composition

i = κ̃ ◦ γ : CA −→ C(σCA([Tz])), [x] 7→ [̂x] ◦ κ−1

is then an isomorphism between C∗-algebras.

We now obtain a C∗-homomorphism from C(Ω) into the continuous functions on σCA([Tz]).

Lemma 3.6. The composition

Φ : C(Ω) −→ CA
∼−→ C(σCA([Tz ])), f 7→ i([Tf ])

with i as in Lemma 3.5 is a unital C∗-homomorphism with

Φ(zi) = zi|σCA ([Tz ]) for i ∈ {1, . . . , n},

where the right-hand side stands for the i-th coordinate function of Cn restricted to the
compact set σCA([Tz ]) ⊂ Cn.
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3.1 Joint spectra

Proof. By the essential normality of the multiplication tuple Tz ∈ L(H2
A (µ))n, it follows

from Lemma 2.13 that Φ is multiplicative, since operators of the form

Tfg − TfTg ∈ L(H2
A (µ))

for f, g ∈ C(Ω) are compact. Furthermore, since

T ∗f = Tf for all f ∈ C(Ω),

the map

C(Ω)→ CA, f 7→ [Tf ]

is a unital homomorphism between C∗-algebras. Together with Lemma 3.5, it follows
that the map Φ is a unital ∗−homomorphism as well. For λ ∈ σCA([Tz]), we can find a
φ ∈ ∆CA such that

λ = κ(φ) = φ([Tz]).

This leads to

Φ(zi)(λ) =
(

[̂Tzi ] ◦ κ−1
)

(λ) = [̂Tzi ](κ
−1(λ)) = [̂Tzi ](φ) = φ([Tzi ]) = λi.

Hence

Φ(zi) = zi|σCA ([Tz ]).

We can now conclude that the joint spectrum of [Tz] in CA is entirely contained in the
closure of Ω.
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Lemma 3.7. For the joint spectrum of [Tz], we have

σCA([Tz]) ⊂ Ω.

Proof. Since the map

C(Ω)→ CA, f 7→ [Tf ],

is a unital algebra homomorphism, it decreases joint spectra. Hence

σCA([Tz]) ⊂ σC(Ω)(z1, . . . , zn) = Ω.

We have already seen that the map Φ acts as the restriction map on the coordinate
functions. The next lemma shows that this is true on the whole space C(Ω).

Corollary 3.8. The map Φ defined in Lemma 3.6 acts as

Φ(f) = f |σCA ([Tz ]).

Proof. The map Φ is a homomorphism between the unital C∗-algebras
C(Ω) = C∗(z1, . . . , zn) and C(σCA([Tz])) that coincides on 1, z1, . . . , zn with the
C∗- homomorphism

C(Ω)→ C(σCA([Tz])), f 7→ f |σCA ([Tz ]).

Since by the Stone-Weierstrass theorem

C(Ω) = C∗(z1, . . . zn),

it follows that

Φ(f) = f |σCA ([Tz ]) for all f ∈ C(Ω).

3.2 The Toeplitz extension

Note that

TA +K = π−1(π(TA)) ⊂ L(H2
A (µ))

is a C∗-subalgebra. We now use the homomorphism Φ from Lemma 3.6 to construct a
homomorphism from TA +K into the continuous functions on σCA([Tz]).
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3.2 The Toeplitz extension

Lemma 3.9. The composition

Ψ : TA +K π−→ CA
∼−→ C(σCA([Tz]))

is the unique C∗-homomorphism with Ψ|K = 0 and

Ψ(Tf ) = f |C(σCA ([Tz ])) for all f ∈ C(Ω).

Furthermore,

0 −→ K ↪→ TA +K Ψ−→ C(σCA([Tz])) −→ 0

is an exact sequence of C∗-algebras. We call this sequence the Toeplitz extension
(of K by C(σCA([Tz]))). In particular, for f ∈ C(Ω), the equivalence

Tf ∈ K ⇔ f |σCA ([Tz ]) = 0

holds.

Proof. By the definition of Ψ, it is clear that Ψ is a C∗-homomorphism satisfying

Ψ|K = 0,

and since Ψ(Tf ) = Φ(f), we obtain

Ψ(Tf ) = f |C(σCA ([Tz ])) for all f ∈ C(Ω).

As every C∗-homomorphism on TA +K is already determined by its values on elements
of the form Tf + K, where f ∈ C(Ω) and K ∈ K, it follows that Ψ is unique. For
T ∈ ker(Ψ), it follows [T ] = 0 in CA, hence

ker(Ψ) = K

and, since π is surjective, Ψ is a surjection as well. This proves the exactness of the
sequence

0 −→ K ↪→ TA +K Ψ−→ C(σCA([Tz])) −→ 0

and the last equivalence.

Under certain circumstances, this leads to the joint spectrum being contained in the
boundary of Ω. In particular, if H2

A (µ) ⊂ O(Ω), Theorem 2.6 yields that the condition

Tf ∈ K for all f ∈ C(Ω) with f |∂Ω = 0

in the first part of the next lemma is always satisfied.
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Lemma 3.10. If Tf ∈ K holds for all f ∈ C(Ω) with f |∂Ω = 0, then σCA([Tz]) is entirely
contained in the boundary of Ω. Furthermore, if the equivalence

Tf ∈ K ⇔ f |∂Ω = 0

holds, we have

σCA([Tz]) = ∂Ω.

Proof. Suppose that

Tf ∈ K for all f ∈ C(Ω) with f |∂Ω = 0.

Assume there was λ ∈ σCA([Tz]) with λ /∈ ∂Ω. By Urysohn’s Lemma, we can find a
function f ∈ C(Ω) with f(λ) = 1 and f |∂Ω = 0. But then Tf ∈ K and hence, by the
preceding lemma,

f |σCA ([Tz ]) = 0,

which contradicts f(λ) = 1. So we conclude that σCA([Tz ]) ⊂ ∂Ω. In case even the
equivalence

Tf ∈ K ⇔ f |∂Ω = 0

holds, a similar argument shows ∂Ω ⊂ σCA([Tz]).

The next lemma shows that every operator in TA + K can be expressed as a sum of a
Toeplitz operator with continuous symbol and a compact operator.

Lemma 3.11. We have

TA +K = {Tf +K; f ∈ C(Ω) and K ∈ K}.

Proof. Consider an operator T ∈ TA +K. Then

Ψ(T ) ∈ C(σCA([Tz]))

and, by the Tietze extension theorem, we can choose a function f ∈ C(Ω) with

Ψ(T ) = f |σCA ([Tz ]).

If we apply the C∗-homomorphism Ψ to the Toeplitz operator with symbol f, we obtain

Ψ(Tf ) = f |σCA ([Tz ]) = Ψ(T ).

The exactness of the sequence

0 −→ K ↪→ TA +K Ψ−→ C(σCA([Tz ])) −→ 0

then yields T − Tf ∈ K.
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3.3 Essential spectrum and Shilov boundary

Remark 3.12. If Tz ∈ L(H2
A (µ))n is essentially normal and

(∗) lim
z→∂Ω

Γ(K)(z) = 0

for every compact operator K ∈ K(H2
A (µ)), then Lemma 3.11 shows that the validity of

the following two statements

• For f ∈ C(Ω) : Tf compact ⇔ lim
z→∂Ω

Γ(Tf )(z) = 0.

• For T ∈ TA : T compact ⇔ lim
z→∂Ω

Γ(T )(z) = 0.

is equivalent. Recall that the condition (∗) is satisfied whenever

w− lim
z→∂Ω

k(·, z) = 0.

3.3 Essential spectrum and Shilov boundary

We know from Proposition 1.14 in [Con85] that, for a bounded operator T on H2
A (µ),

the identity

σCA([T ]) = σC(H2
A(µ))([T ])

holds. In addition, Theorem 1.4.16 in [Mur90] yields that the spectrum of [T ] in the
Calkin algebra C(H2

A (µ)) coincides with the essential spectrum of the operator T , which
is defined as follows.

Definition 3.13. Let H be a Hilbert space and T ∈ L(H) a bounded operator. We
define the essential spectrum of T as

{λ ∈ C;λI − T is not a Fredholm operator }

As mentioned above, for an operator T ∈ TA, we have

σe(T ) = σCA([T ]).

In [EP96], Eschmeier and Putinar use the Koszul complex to define the essential Taylor
spectrum σe(T ) of a commuting tuple T = (T1, . . . , Tn) of bounded operators on a
Hilbert space H (or, more generally, on Banach spaces). By Corollary 2.6.11 in [EP96],
the essential spectrum of a commuting tuple T ∈ L(H)n coincides with the Taylor
spectrum σ(LT , C(H)) of the induced tuple of left multiplication operators

LTi : C(H)→ C(H), [x] 7→ [Tix] (1 ≤ i ≤ n)

on the Calkin algebra.
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By a result of Curto (Theorem 1 in [Cur82]), it follows that, for Tz ∈ L(H2
A (µ))n, the

identity

σ(LTz , C(H2
A (µ))) = σ(LTz , CA)

holds. If Tz is essentially normal, then CA is commutative and one can show that

σ(LTz , CA) = σCA([Tz]).

Hence, in the setting of Section 3.1 and Section 3.2 the identity

σe(Tz) = σCA([Tz])

holds. Under certain conditions, the essential spectrum of Tz contains the Shilov bound-
ary of A, which is defined as follows.

Definition 3.14. Let X be a compact Hausdorff space and let A be an algebra of con-
tinuous C-valued functions on X which separates the points of X. We define the Shilov
boundary of A as

∂Shilov(A) =
⋂

(S ⊂ X closed ; sup{|a(x)|; x ∈ X} = sup{|a(x)|; x ∈ S} for all a ∈ A) .

One can show (Theorem 9.1 in [AW98]), that

‖a‖∞,∂Shilov = ‖a‖∞,X for all a ∈ A.

In case that all functions in H2
A (µ) are holomorphic and Ω is connected, the essential

spectrum contains the Shilov boundary of A.

Theorem 3.15. Suppose that the multiplication tuple Tz ∈ L(H2
A (µ))n is essentially

normal and that H2
A (µ) ⊂ O(Ω). Suppose in addition that Ω is connected. Then

∂Shilov(A) ⊂ σe(Tz).

Proof. Since by Lemma 3.6 and Corollary 3.8 ,

i([Tf ]) = Φ(f) = f |σe(Tz) for all f ∈ C(Ω),

we obtain the equality

f(σe(Tz)) = σC(σe(Tz))(f |σe(Tz)) = σCA([Tf ]) = σC(H2
A(µ))([Tf ]) = σe(Tf )

for every function f ∈ C(Ω). For a function f ∈ A, the inclusion

f(Ω) ⊂ σ(Tf )

holds.
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Indeed, for λ ∈ Ω and g ∈ H2
A (µ),

(f(λ)− Tf )g = (f(λ)− f)g ∈ {h ∈ H2
A (µ) ;h(λ) = 0} 6= H2

A (µ) ,

since H2
A (µ) contains the constant functions. So (f(λ)− Tf ) is not surjective and thus,

f(λ) is an element of the spectrum. Hence,

f(Ω) = f(Ω) ⊂ σ(Tf ).

For f ∈ A, we consider a point µ ∈ σ(Tf ) with

|µ| = r(Tf )

where r(Tf ) denotes the spectral radius of Tf . By Proposition 6.7 in [Con85],

∂σ(Tf ) ⊂ σπ(Tf ),

where σπ(Tf ) is the approximate point spectrum of Tf . Hence µ is an element of σπ(Tf ).
From the preceding parts of this proof, we know that

σe(Tf ) = f(σe(Tz)) ⊂ f(Ω) ⊂ σ(Tf ).

Let us now assume that µ wasn’t in the essential spectrum of Tf . Then µ − Tf is a
Fredholm operator, which implies that the symbol f doesn’t equal the constant function
µ, since the image of µ− Tf has finite codimension in H2

A (µ). In addition, the range of
µ − Tf is closed in H2

A (µ), so by Propostion 6.4 in [Con85], if µ − Tf were injective it
would also be bounded below. As this is impossible, since µ ∈ σπ(Tf ), we conclude that
µ ∈ σp(Tf ). Hence, there exists a function g ∈ H2

A (µ) \ {0} with

(µ− f |Ω)g = (µ− Tf )g = 0

on Ω. The function g vanishes on Ω \ Z(µ− f,Ω), where

Z(µ− f,Ω) = {z ∈ Ω;µ− f(z) = 0}.

Since Ω is connected and f 6= µ on Ω, Z(µ− f,Ω) is a thin set. Thus the continuity of
g as an element of H2

A (µ) ⊂ O(Ω) implies

g(z) = 0 for all z ∈ Ω,

which contradicts g ∈ H2
A (µ) \ {0}. The above argument still holds for an arbitrary

element of σπ(Tf ), thus it follows that for each f ∈ A

σπ(Tf ) ⊂ σe(Tf ).

Altogether, we obtain

f(Ω) ⊂ σ(Tf ) ⊂ Dr(Tf )(0) = Dre(Tf )(0) = D‖f‖σe(Tz)
(0).
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This means

‖f‖Ω = ‖f‖σe(Tz).

By the definition of the Shilov boundary, this implies

∂Shilov(A) ⊂ σe(Tz).

We are now able to formulate a more general version of Theorem 2.16.

Theorem 3.16. Suppose that Tz ∈ L(H2
A (µ))n is essentially normal and that

(i) w − lim
z→∂Ω

k(·, z) = 0,

(ii) A|Ω ⊂ O(Ω),

(iii) ∂Shilov(A) ⊃ σe(Tz).

Then, for T ∈ TA, we have

T compact ⇔ lim
z→∂Ω

Γ(X)(z) = 0.

Proof. Suppose that T ∈ TA is a compact operator. Since by hypothesis

w − lim
z→∂Ω

k(·, z) = 0,

we obtain that

lim
z→∂Ω

Γ(T )(z) = 0.

Conversely, suppose that T ∈ TA is an operator with

lim
z→∂Ω

Γ(T )(z) = 0.

By Remark 3.12, we may assume that T = Tf for some f ∈ C(Ω). For a peak point
z0 ∈ ∂pA, Satz 6.18 in [Kre11] yields

lim
z→z0

Γ(Tf )(z) = f(z0).

Consider the set of peak points of A as a uniform algebra which is defined as the set of
all λ ∈ Ω for which there exists a function f ∈ A with

f(λ) = 1 > |f(z)| for all z ∈ Ω \ {λ}.
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Since all functions in A|Ω are holomorphic, every point in the above set is a boundary
point of Ω. To see this, assume there were λ ∈ Ω and f ∈ A ⊂ O(Ω) such that

f(λ) = 1 > |f(z)| for all z ∈ Ω \ {λ}.

Then the image of the connected component C(λ) of λ in Ω would be open with

1 ∈ f(C(λ)) ⊂ D1(0),

which is not possible. Hence, the set of peak points of A as a uniform algebra is contained
in the boundary of Ω and thus coincides with our usual definition of the peak set of A.
We may then apply Corollary 4.3.7 (ii) in [Dal00] which yields that the peak points for
A form a dense subset of the Shilov boundary. The continuity of f leads to

f = 0 on ∂Shilov(A) ⊃ σe(Tz).

The compactness of Tf then follows from Lemma 3.9.

Remark 3.17. Note that the hypotheses of Theorem 2.16 imply that A|Ω ⊂ O(Ω) and
that σe(Tz) ⊂ ∂Ω = ∂Shilov(A).

Example 3.18. Consider Ω = Bn \{0} and let µ ∈M(Ω) be the trivial extension of the
Lebesgue measure λ on Ω to Ω = Bn.
Then A(Ω) coincides with A = A(Bn) and the corresponding functional Hilbert space
constructed as in Section 2.1 is the usual (unweighted) Bergman space L2

a(Bn, λ) on the
unit ball Bn.
Since the Shilov boundary for A(Bn) is the unit sphere in Cn, it is not dense in the
topological boundary of Ω. One can check that the multiplication tuple Tz is essentially
normal and its essential spectrum coincides with the unit sphere.
Hence H2

A (µ) presents an elementary example of a situation where Theorem 3.16 is
applicable, but Theorem 2.16 is not.
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4 Appendix

4.1 The ∂-Neumann problem and pseudoregular sets

In Section 2.4, we consider functional Hilbert spaces on pseudoregular domains in Cn.
The definition of these sets is strongly connected with the ∂-Neumann problem. This
problem, first studied by D.C. Spencer, deals with the invertability of the complex Lapla-
cian on the square integrable (0, 1)-forms on Ω. It was first solved by Hörmander and
Kohn. A survey on the ∂-problem can be found for example in [Str10], but we want
to collect some of the most important results on the existence and compactness of the
∂-Neumann operator in this appendix. We begin by introducing the square integrable
forms on a bounded set Ω ⊂ Cn.

Let E = Cn, p ∈ N and let

Λ0 = C and Λp = {w;w : Ep → C R-multilinear and alternating} for p ≥ 1

denote the C-vector space of alternating R-multilinear maps on Ep. Recall that we can
define a C-multilinear alternating map by

(Λ1)p → Λp, (ϕ1, . . . , ϕp) 7→ ϕ1 ∧ . . . ∧ ϕp,

where

(ϕ1 ∧ . . . ∧ ϕp)(v1, . . . , vp) = det((ϕi(vj))(1<≤i,j≤p))

For p, q ≤ 1, this induces unique C- bilinear maps

∧ : Λp × Λq → Λp+q, (v, w) 7→ v ∧ w,

with

(v1 ∧ . . . ∧ vp) ∧ (w1 ∧ . . . ∧ wq) = (v1 ∧ . . . ∧ vp ∧ w1 ∧ . . . ∧ wq).

For a ∈ C, we define

a ∧ w = w ∧ a = aw.

One can show that the map ∧ is associative with v ∧ w = (−1)pq(w ∧ v).
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We can now introduce differential forms. Let Ω ⊂ Cn be an open set. We call a map

w : Ω→ Λr

an r-form over Ω in n coordinates.
If we consider Λ1 as an R-vector space, then the maps

dzj : Cn → C, z 7→ zj and dzj : Cn → C, z 7→ zj (1 ≤ j ≤ n)

form an R-basis of Λ1. For r ∈ {1, . . . , n}, a basis of Λr is given by the forms

dzi1 ∧ . . . dzip ∧ dzj1 , . . . dzjq

(p, q ∈ {1, . . . n} with p+ q = r, 1 ≤ i1 < . . . < ip ≤ n, 1 ≤ j1 < . . . < jq ≤ n).

This leads to the definition of a (p, q)-form over Ω.
For p, q ∈ N with p+ q = r, we call an r-form w with basis representation

w =
∑
I

∑
J

fI,JdzI ∧ dzJ ,

where the sums are formed over all strictly increasing index tuples

I = (i1, . . . , ip) ∈ {1, . . . , n}p J = (j1, . . . , jq) ∈ {1, . . . , n}q

and

dzI = dzi1 ∧ . . . ∧ dzip , dzJ = dzj1 ∧ . . . ∧ dzjq,

a (p, q)-form over Ω.
Let from now on Ω ⊂ Cn be a bounded open set and let λ denote the restriction of the
usual Lebesgue measure to Ω.
We consider the (0,q)-forms

w =
∑
I

wIdzI ,

with coefficients wI ∈ L2(Ω, λ). Then we define a vector space

L2
(0,q)(Ω, λ) = {w;w(0, q)-form with

∑
I

‖wI‖2
L2(Ω,λ) <∞},

which we can equip with the inner product

〈v, w〉L2
(0,q)

=
∑
I

〈vI , wI〉L2(Ω) for all v, w ∈ L2
(0,q)(Ω).
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4.1 The ∂-Neumann problem and pseudoregular sets

For j ∈ {1 . . . , q}, we look at the functions f ∈ L2(Ω, λ) for which there exists a function
g ∈ L2(Ω, λ) with ∫

Ω

f
∂ϕ

∂zj
dλ = −

∫
Ω

gϕdλ for all ϕ ∈ C∞c (Ω),

where

C∞c (Ω) = {ϕ ∈ C∞(Ω); supp(ϕ) ⊂ Ω compact }.

Since C∞c (Ω) ⊂ L2(Ω, λ) is dense, if such a g exists, it is unique and we then define

∂f

∂zj
= g.

For f ∈ C∞c (Ω), this coincides with the usual partial derivative ∂f
∂zj

of f . On the set

dom(∂q) = {w =
∑
I

wIdzI ∈ L2
(0,q)(Ω);

∂wI
∂zj

exists

for all strictly increasing tuples I ∈ {1, . . . , n}q}

we define the ∂-operator by

∂qw =
n∑
j=1

∑
I

∂

∂zj
wIdzj ∧ dzI ∈ L(0,q+1)(Ω, λ).

In this way we obtain a linear operator

∂q : dom(∂q)→ L2
(0,q+1)(Ω), w 7→ ∂w.

Since C∞c (Ω)(0,q) ⊂ dom(∂q), dom(∂q) is a dense subset of L2
(0,q)(Ω, λ).

Hence, ∂q possesses a unique Hilbert space adjoint

∂
∗
q : dom(∂

∗
q)→ L2

(0,q)(Ω, λ),

where

dom(∂
∗
q) = {u ∈ L2

(0,q+1)(Ω, λ); there exists v ∈ L2
(0,q)(Ω, λ)

with 〈u, ∂qw〉L2
(0,q+1)

(Ω,λ) = 〈v, w〉L2
(0,q+1)

(Ω,λ) for all w ∈ dom∂q}.

This enables us to introduce the complex Laplacian on Ω. Let

dom(�q) = {w ∈ L2
(0,q)(Ω);w ∈ dom(∂

∗
q−1) ∩ dom(∂q)

with ∂
∗
q−1w ∈ dom(∂q−1) and ∂qw ∈ dom(∂

∗
q)}.
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Then , for q ∈ {1, . . . , n}, we define the complex Laplacian �q as

�q : dom(�q)→ L2
(0,q)(Ω, λ), w 7→ ∂q−1∂

∗
q−1w + ∂

∗
q∂qw.

The ∂-Neumann problem deals with the question of whether the complex Laplacian �q

has a bounded inverse on the square integrable (0, q)-forms on Ω. The solution goes
back to Kohn and Hörmander and can be found for example in the following theorem
from [Str10].

Theorem 4.1. Let n ≥ 2 and Ω ⊂ Cn a bounded pseudoconvex domain. Then, for
1 ≤ q ≤ n, the Laplacian �q is has a bounded inverse, the ∂-Neumann operator Nq.

Proof. Theorem 2.9 in [Str10]

Before we can use the ∂-Neumann operator to define pseudoregular sets in Cn, we
first want to remind the reader of some basic definitions in complex analysis of several
variables. The first thing we want to mention are strictly plurisubharmonic functions.

Definition 4.2. Let U ⊂ Cn be an open set.

• We call a function r ∈ C2(U,R) strictly plurisubharmonic in p ∈ U if the Levi
matrix Lp(r) = ((∂j∂kr)(p))(1≤j,k≤n) is positve definite. Furthermore, we call r
strictly plurisubharmonic if it is strictly plurisubharmonic in every p ∈ U .

• We call a function ρ : U → R an exhaustion function for U if , for all c ∈ R, the
set Uc = {z ∈ U ; ρ(z) < c} ⊂ U is relatively compact in U.

The above definition enables us to introduce pseudoconvex sets.

Definition 4.3. Let D ⊂ Cn be an open subset.

• We call D pseudoconvex if there exists a strictly plurisubharmonic exhaustion func-
tion for D.

• If D is bounded, we call D strictly pseudoconvex in p ∈ ∂D if there exists an open
neighbourhood U of p and a strictly plurisubharmonic function r ∈ C2(U,R) with
D ∩ U = {z ∈ U ; r(z) < 0}.

• If D is bounded, we call D strictly pseudoconvex if there exist an open set U ⊃ ∂D
and a function r ∈ C2(U,R) such that r is strictly plurisubharmonic with
D ∩ U = {z ∈ U ; r(z) < 0}.

Strictly pseudoconvex points are peak points for the domain algebra, as the next lemma
states.

Lemma 4.4. Let Ω ⊂ Cn be a smooth bounded pseudoconvex domain which is strictly
pseudoconvex in p ∈ ∂Ω. Then p is a peak point for the domain algebra A(Ω).

Proof. The proof follows from Theorem 2.3 in [Noe08].
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4.1 The ∂-Neumann problem and pseudoregular sets

A pseudoregular open set is then defined as follows.

Definition 4.5. We call a bounded open set Ω ⊂ Cn pseudoregular if Ω is pseudoconvex
with smooth boundary and if, in addition, the ∂-Neumann operator N1 of Ω is compact.

The reason why we are interested in pseudoregular sets is that, for the Bergman space
L2
a(Ω, λ) (Definition 2.19), the compactness of the ∂-Neumann operator N1 implies a

useful property of the Bergman projection on Ω. Note that by Lemma 2.1 in [Str10],
ker(∂0) ⊂ L2(Ω, λ) is a closed subset. One can show that

ker(∂0) = L2
a(Ω, λ).

Hence, the projection

P : L2(Ω, λ)→ ker(∂0)

is the Bergman projection on Ω. Then the following theorem, originally stated in [Str10],
yields that the Bergman projection commutes essentially with every multiplication op-
erator with continuous symbol on Ω.

Theorem 4.6. Let Ω ⊂ Cn be a bounded domain on which the ∂-Neumann operator is
compact. Then for every f ∈ C(Ω) the operator PMf −MfP is compact.

Proof. Proposition 4.1 in [Str10].

By the proof of Lemma 2.9, this yields that for a pseudoregular set Ω ⊂ Cn, all Hankel
operators on the Bergman space L2

a(Ω, λ) with continuous symbols are compact.
Lemma 2.13 then implies that the multiplication tuple Tz on L2

a(Ω, λ) is essentially
normal. The next lemma states another important property of pseudoregular domains.

Lemma 4.7. Let Ω ⊂ Cn be a pseudoregular set. Then the set of strictly pseudoconvex
points is dense in ∂Ω.

Proof. Corollary 1 in [ŞS06].

In Remark 1.3 (a) in [KS93], Salinas and Krantz give a list of conditions under which
the ∂-Neumann operator N1 of Ω is compact. Examples include domains of finite type,
smooth convex domains, Reinhardt domains without analytic disk in their boundary,
and domains whose boundary satisfies the property (P) defined by Catlin.
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tionalen Hilberträumen, 2011, Bachelor’s thesis.

[KS93] S.G. Krantz and N. Salinas, Proper holomorphic mappings and the Cowen-
Douglas class, Proc. Amer. Math. Soc. 117 (1993), 99–105.

[Le09] T. Le, Compact Toeplitz operators with continuous symbols, Glasg. Math. J.
51 (2009), 257–261.

[MSW13] M. Mitkovski, D. Suarez, and B. Wick, The essential norm of operators on
Ap(Bn), Integral Equations Operator Theory 75 (2013), 197–233.

[Mur90] G.J. Murphy, C∗-algebras and operator theory, Academic Press, London,
1990.

[MW14] M. Mitkovski and B. Wick, The essential norm of operators on Ap(Dn), Con-
ference Proceedings of OT 24 (2014), 165–211.

[Noe08] A. Noell, Peakpoints for pseudoconvex domains: A survey, J. Geom. Anal.
18 (2008), 1058–1087.

[Ran86] R. M. Range, Holomorphic functions and integral representations in several
complex variables, Springer, New York, 1986.

[Rud80] W. Rudin, Function theory in the unit ball of Cn, Springer, New York, 1980.
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