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Introduction
The classical Wold decomposition theorem, which for instance can be found in [4],
states that every isometry on a Hilbert space decomposes into a direct sum of a
unitary operator and a unilateral shift.
More precisely, for every isometry T ∈ B(H) on a complex Hilbert space H, this
Hilbert space will decompose into an orthogonal sum H = H0 ⊕ H1 of reducing
subspaces H0,H1 ⊂ H for T such that T restricted to H0 is unitary and T restricted
to H1 is unitarily equivalent to a unilateral shift. In this case, the spaces H0 and
H1 are uniquely determined by

H0 =
⋂
n∈N

T nH

and
H1 =

∨
n∈N

T nE,

where E = H	TH. The space E is a closed subspace of H such that E⊥T nE holds
for all n ∈ N∗. We will call such spaces wandering subspaces for T .

If one drops the requirement that T is an isometry, it is still reasonable to define
the spaces above. Hence for a bounded linear operator T ∈ B(H) we set

H∞(T ) =
⋂
n∈N

T nH

and call T analytic if H∞(T ) = {0}. Also, for a subset M ⊂ H we define

[M ]T =
∨
n∈N

T nM.

This is the smallest closed subspace of H that contains M and is invariant under T .
In Theorem 2.9 we will see that if T is an analytic operator and fulfils

‖Tx+ y‖2 ≤ 2
(
‖x‖2 + ‖Ty‖2

)
(0.1)
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for all x, y ∈ H, then T possesses the so called wandering subspace property, that
is,

H = [H	 TH]T .

In analogy to the classical Wold decomposition theorem we will say that an operator
T ∈ B(H) admits a Wold-type decomposition if H∞(T ) is a reducing subspace for
T such that the restriction

T |H∞(T ) : H∞(T )→ H∞(T )

is unitary and H admits the orthogonal decomposition

H = H∞(T )⊕ [H	 TH]T .

By definition an operator T ∈ B(H) is concave if∥∥∥T 2x
∥∥∥2

+ ‖x‖2 ≤ 2 ‖Tx‖2 (0.2)

holds for all x ∈ H. The main result of this thesis is Theorem 3.3, which is due to
Shimorin [8] and states that concave operators and operators fulfilling (0.1) admit
Wold-type decompositions. In particular, conditions (0.1) and (0.2) both hold for
isometries, so Theorem 3.3 contains the classical Wold decomposition theorem as a
special case.

In the first chapter we will introduce our definitions and notations as well as gather
some general results that will be required in the later parts.

Then, in the second chapter we will prove the above-stated wandering subspace
theorem, loosely following arguments found in Chapter 9.3 of [2]. In particular, we
show that for an operator T ∈ B(H) that fulfils (0.1), its Cauchy dual T ′ = T (T ∗T )−1

is concave. Additionally, we will see that T admits a Wold-type decomposition if
and only if T ′ is analytic. Hence the proof of Theorem 2.9 reduces to showing that
T ′ is analytic.

Thereafter, we prove the already mentioned Wold-type decomposition theorem in
Chapter 3, following ideas from the original proof by Shimorin given in [8]. Crucial
steps are showing that a left invertible operator admits a Wold-type decomposition

2



if and only if its Cauchy dual does so, as well as proving a wandering subspace
theorem for analytic, concave operators due to Richter, see Theorem 1 in [5].

Finally, in Chapter 4 we introduce functional Hilbert spaces and then apply the
developed theory to shift operators on the analytic functional Hilbert spaces H(Kα)
given by the reproducing kernels

Kα : D× D→ C, Kα(z, w) =
( 1

1− zw

)α+2
(α > −2).

In particular, we will see that for −1 ≤ α ≤ 0 the shift operator S on H(Kα)
satisfies a Beurling-type theorem, that is to say each restriction S|M of S to a closed
invariant subspace M of S possesses the wandering subspace property, whereas for
α > 4 this is no longer the case.
Furthermore, we consider the Dirichlet shift as an example of a concave operator.
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1 Preliminaries
This chapter’s purpose is to introduce relevant definitions and notations and fur-
thermore to discuss some basic results that will be needed later on.

1.1 Terminology and notation
For the rest of this thesis, let H be a complex Hilbert space and, if not stated
otherwise, let T ∈ B(H) be a bounded linear operator on H.

Recall that a closed linear subspace W ⊂ H is called an invariant subspace for T if
TW ⊂ W and a reducing subspace for T if W is invariant for both T and T ∗.

For our purposes, the subspaces

H∞(T ) =
⋂
n∈N

T nH

and, for a subset M ⊂ H,
[M ]T =

∨
n∈N

T nM

play an important role. In particular, we are interested in operators T ∈ B(H) such
that H∞(T ) = {0}, since these behave especially nicely. This leads to the following
definition.

Definition 1.1. An operator T ∈ B(H) is said to be analytic if H∞(T ) = {0}.

Another object we are interested in are so-called wandering subspaces.

Definition 1.2. A closed subspace W ⊂ H is called a wandering subspace for T, if

W ⊥ T nW

holds for all n ∈ N∗.
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1 Preliminaries

Remark 1.3. Let T ∈ B(H) be an isometry. Then, a closed subspace W ⊂ H is a
wandering subspace for T if and only if

T kW ⊥T nW

holds for all distinct n, k ∈ N.

Proof. Suppose that W is a wandering subspace for T and let w, v be elements of
W . For natural numbers n > k, we then have

〈T kw, T nv〉 = 〈T kw, T k(T n−kv)〉 = 〈w, T n−kv〉 = 0

and thus T kW ⊥T nW . The converse implication is obvious.

Remark 1.4. For any subset M ⊂ H, the space [M ]T is the smallest closed subspace
of H which contains M and is invariant under T .

Proof. By definition, [M ]T is a closed subspace of H containing M . To see that
[M ]T is invariant under T let m ∈ [M ]T . Then there exists a sequence (mn)n in
LH

(⋃
k∈N T

kM
)
converging to m. Obviously, Tmn ∈ LH

(⋃
k∈N T

kM
)
holds for all

n ∈ N, so

Tm = lim
n→∞

Tmn ∈ LH
⋃
k∈N

T kM

 = [M ]T .

Now, let A be a closed subspace of H that contains M and is invariant under T .
Then we have

T kM ⊂ T kA ⊂ A

for all k ∈ N and therefore ⋃
k∈N

T kM ⊂ A.

Since A is a closed subspace, we conclude [M ]T ⊂ A.

In case T ∗T is invertible, it is helpful to study the operator defined below.

Definition 1.5. If T ∗T is invertible, we define the Cauchy dual T ′ of T by

T ′ = T (T ∗T )−1.

Remark 1.6. If T ∗T is invertible, then T ′∗T ′ is invertible and T ′′ = T holds.
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1.1 Terminology and notation

Proof. A simple computation shows that

T ′∗T ′ =
(
T (T ∗T )−1

)∗ (
T (T ∗T )−1

)
= (T ∗T )−1.

So T ′∗T ′ is invertible and

T ′′ = T ′(T ′∗T ′)−1 = T (T ∗T )−1T ∗T = T.

We end this section by introducing the properties that we are primarily interested
in, namely what it means for an operator T ∈ B(H) to admit a Wold-type decom-
position or to possess the wandering subspace property.

Definition 1.7. An operator T ∈ B(H) is said to admit a Wold-type decomposition
if H∞(T ) is a reducing subspace for T , the restriction

T |H∞(T ) : H∞(T )→ H∞(T )

is unitary and H admits the orthogonal decomposition

H = H∞(T )⊕ [H	 TH]T .

Definition 1.8. We say that an operator T ∈ B(H) possesses the wandering sub-
space property if

H = [H	 TH]T .
An operator T ∈ B(H) satisfies a Beurling-type theorem if each restriction T |M of T
to a closed invariant subspace M of T possesses the wandering subspace property.

Remark 1.9. An operator T ∈ B(H) possesses the wandering subspace property if
and only if there is a wandering subspace W for T such that H = [W ]T . In this
case, W = H	 TH.

Proof. Let W ⊂ H be a wandering subspace for T such that H = [W ]T . Then we
have

H	 TH = [W ]T 	 T [W ]T =
 ∨
n∈N

T nW

	
 ∨
n∈N∗

T nW

 = W.

Hence H = [W ]T = [H	 TH]T , so T possesses the wandering subspace property.

On the other hand, if T possesses the wandering subspace property, then the closed
linear subspace W = H 	 TH obviously is a wandering subspace for T such that
H = [W ]T .

7



1 Preliminaries

Remark 1.10. An analytic operator that possesses the wandering subspace property
obviously admits a Wold-type decomposition.

1.2 Basic results
In this section we gather some results that will be needed throughout the thesis. We
start with the following proposition.

Proposition 1.11. Let T ∈ B(H). Then the following conditions are equivalent:

(i) T is injective with closed range.

(ii) T ∗T is invertible.

(iii) T is left invertible.

In this case, T ′n is injective with closed range for all n ∈ N.

Proof. Let T ∈ B(H) be injective with closed range. For x ∈ kerT ∗T , we have

‖Tx‖2 = 〈T ∗Tx, x〉 = 0

and hence x = 0, since T is injective. Therefore T ∗T is injective as well. Further-
more, for y ∈ (ImT ∗T )⊥ we have

‖Ty‖2 = 〈T ∗Ty, y〉 = 0,

hence y = 0. We conclude that

(ImT ∗T )⊥ = {0}

holds. Consequently, ImT ∗T ⊂ H is dense. By the closed range theorem, T ∗ has
closed range, whence

T ∗TH = T ∗(TH + kerT ∗) = T ∗(TH + (TH)⊥) = T ∗H

is closed. Thus T ∗T is surjective and hence invertible.

Next, suppose that T ∗T is invertible. Then (T ∗T )−1T ∗ ∈ B(H) obviously is a left
inverse for T .
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1.2 Basic results

Finally, suppose that T is left invertible with left inverse S ∈ B(H). Then T
obviously is injective. From

T ∗S∗ = (ST )∗ = I,

we conclude that T ∗ is right invertible and hence surjective. Therefore, T has closed
range.

In this situation, T ′∗T ′ is invertible by Remark 1.6, hence T ′ is injective with closed
range and thus the same is true for T ′n for any n ∈ N.

The next proposition describes the orthogonal complement of an intersection of
closed subspaces.

Proposition 1.12. Let (Wj)j∈J be a family of closed subspaces Wj ⊂ H. Then, ⋂
j∈J

Wj

 ⊥ =
∨
j∈J

W⊥
j

holds.

Proof. Since the Wj are closed subspaces, Wj = W⊥⊥
j holds for all j ∈ J . Thus, for

x ∈

 ⋃
j∈J

W⊥
j

 ⊥,
we have

x ∈
(
W⊥
j

)
⊥ = Wj

for all j ∈ J and therefore
x ∈

⋂
j∈J

Wj.

Conversely, for
x ∈

⋂
j∈J

Wj,

obviously x ∈ Wj = W⊥⊥
j holds for all j ∈ J , so

x ⊥
⋃
j∈J

W⊥
j ,
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1 Preliminaries

which implies

x ∈

 ⋃
j∈J

W⊥
j

 ⊥.
This shows ⋂

j∈J
Wj =

 ⋃
j∈J

W⊥
j

 ⊥.
Taking orthogonal complements we obtain ⋂

j∈J
Wj

 ⊥ =
 ⋃

j∈J
W⊥
j

 ⊥⊥ = LH
 ⋃

j∈J
W⊥
j

 =
∨
j∈J

W⊥
j

as claimed.

We conclude this chapter with the result below.

Proposition 1.13. For T ∈ B(H), the relation

H	 TH = H∞(T )⊥ ∩
[
T
(
H∞(T )⊥

)]
⊥

holds.

Proof. Obviously,

H	 TH ⊂ H∞(T )⊥ ∩
[
T
(
H∞(T )⊥

)]
⊥

holds. Conversely, let h ∈ H∞(T )⊥ ∩
[
T
(
H∞(T )⊥

)]
⊥ and let k ∈ H be arbitrary.

We may write
k = k∞ + k⊥

for some k∞ ∈ H∞(T ) and k⊥ ∈ H∞(T )⊥. Since TH∞(T ) ⊂ H∞(T ), this implies

〈h, Tk〉 = 〈h, Tk∞〉+ 〈h, Tk⊥〉 = 0.

Hence, we have h ∈ H 	 TH.
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2 A wandering subspace theorem
In this chapter, we will show that an analytic operator T ∈ B(H), which fulfils

‖Tx+ y‖2 ≤ 2
(
‖x‖2 + ‖Ty‖2

)
(2.1)

for all x, y ∈ H, possesses the wandering subspace property. This result for instance
appears in Chapter 9 of [2]. We first note some basic properties of such operators.

Proposition 2.1. Let T be a linear operator on H for which (2.1) holds. Then

(i) T is bounded, i.e. T ∈ B(H),

(ii) T is injective and has closed range.

In particular, the Cauchy dual T ′ of T exists.

Proof. By setting y = 0, condition (2.1) yields

‖Tx‖2 ≤ 2 ‖x‖2

for x ∈ H and thus (i). Analogously, setting x = 0 yields

‖y‖2 ≤ 2 ‖Ty‖2

for y ∈ H, so T is bounded below and thus injective with closed range. In particular,
by Proposition 1.11, the Cauchy dual T ′ of T exists.

Next, we want to show that for an operator T ∈ B(H) fulfilling (2.1), the Cauchy
dual T ′ is concave in the sense of the following definition.

Definition 2.2. An operator T ∈ B(H) is said to be concave if∥∥∥T 2x
∥∥∥2

+ ‖x‖2 ≤ 2 ‖Tx‖2 (2.2)

holds for all x ∈ H.
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2 A wandering subspace theorem

Lemma 2.3. Let T ∈ B(H) be an operator such that (2.1) holds. Then the Cauchy
dual T ′ of T is concave.

Proof. By Proposition 2.1 the operator T ∗T is invertible. Since

〈T ∗Tx, x〉 = ‖Tx‖2 ≥ 0

holds, T ∗T is positive. So, by the continuous functional calculus, T ∗T has a positive
square root and we may consider the operator (T ∗T )− 1

2 ∈ B(H). The computation∥∥∥T (T ∗T )− 1
2x
∥∥∥2

= 〈T (T ∗T )− 1
2x, T (T ∗T )− 1

2x〉 = 〈(T ∗T ) 1
2x, (T ∗T )− 1

2x〉

= 〈x, x〉 = ‖x‖2

shows that T (T ∗T )− 1
2 is an isometry. Using this observation and substituting

y = (T ∗T )− 1
2 z,

we can rewrite condition (2.1) as∥∥∥Tx+ (T ∗T )− 1
2 z
∥∥∥2
≤ 2

(
‖x‖2 + ‖z‖2

)
for all x, z ∈ H. By introducing the operator

L : H⊕H → H, (x, z) 7→ Tx+ (T ∗T )− 1
2 z,

this takes the even more concise form

‖L(x, z)‖2 ≤ 2 ‖(x, z)‖2 .

Thus, ‖L‖ ≤
√

2, and hence

〈(2I − LL∗)x, x〉 = 2 ‖x‖2 − ‖L∗x‖2 ≥ 2 ‖x‖2 − ‖L‖2 ‖x‖2 ≥ 0 (x ∈ H),

so LL∗ ≤ 2I. Furthermore,

L∗ =
(
T, (T ∗T )− 1

2
)∗

=
(

T ∗

(T ∗T )− 1
2

)

yields
LL∗ = TT ∗ + (T ∗T )−1
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and thus

T ′(T ′∗T ′)−1(T ′∗T ′)−1T ′∗ + T ′∗T ′ = TT ∗ + (T ∗T )−1 = LL∗ ≤ 2I

by Remark 1.6 and its proof. We conclude that

0 ≤ T ′∗
[
2I − T ′(T ′∗T ′)−1(T ′∗T ′)−1T ′∗ + T ′∗T ′

]
T ′

= 2T ′∗T ′ − T ′∗T ′(T ′∗T ′)−1(T ′∗T ′)−1T ′∗T ′ − (T ′∗)2T ′2

= 2T ′∗T ′ − I − (T ′∗)2T ′2,

or equivalently,

2 ‖T ′x‖2 − ‖x‖2 −
∥∥∥T ′2x∥∥∥2

= 〈(2T ′∗T ′ − I − (T ′∗)2T ′2)x, x〉 ≥ 0

for all x ∈ H. So, T ′ is concave.

Remark 2.4. The above proof shows that for an operator T ∈ B(H) fulfilling condi-
tion (2.1) the operator T ∗T is invertible with

TT ∗ + (T ∗T )−1 ≤ 2I.

The reverse implication holds, too.

Proof. Let T ∈ B(H) be an operator such that T ∗T is invertible with

TT ∗ + (T ∗T )−1 ≤ 2I.

The same arguments as above show that

L : H⊕H → H, (x, z) 7→ Tx+ (T ∗T )− 1
2 z,

is a well-defined linear operator with

LL∗ = TT ∗ + (T ∗T )−1 ≤ 2I.

Consequently,

0 ≤ 〈(2I − LL∗)x, x〉 = 2 ‖x‖2 − ‖L∗x‖2

holds for all x ∈ H and we conclude

‖L‖2 = ‖L∗‖2 ≤ 2.
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2 A wandering subspace theorem

Let x, y ∈ H be arbitrary. Since T ∗T is invertible, there is a unique z ∈ H such that
y = (T ∗T )− 1

2 z. Furthermore, in the proof above we have shown that T (T ∗T )− 1
2 is

an isometry. Thus

2
(
‖x‖2 + ‖Ty‖2

)
− ‖Tx+ y‖2 = 2

(
‖x‖2 + ‖z‖2

)
−
∥∥∥Tx+ (T ∗T )− 1

2 z
∥∥∥2

= 2 ‖(x, z)‖2 − ‖L(x, z)‖2

≥
(
2− ‖L‖2

)
‖(x, z)‖2

≥ 0.

Hence T fulfils condition (2.1) as claimed.

Now, we turn to the study of concave operators.

Proposition 2.5. Let T ∈ B(H) be concave. Then T is injective with closed range
and the inequalities

(i) ‖T n+1x‖ ≥ ‖T nx‖,

(ii) ‖T nx‖2 ≤ ‖x‖2 + n
(
‖Tx‖2 − ‖x‖2

)
hold for all x ∈ H and n ∈ N.

Proof. Since T is concave,

2 ‖Tx‖2 ≥
∥∥∥T 2x

∥∥∥2
+ ‖x‖2 ≥ ‖x‖2

holds for all x ∈ H, so T is bounded below and hence injective with closed range.
For x ∈ H, n ∈ N and y = T nx, the concavity property gives the inequality∥∥∥T n+2x

∥∥∥2
−
∥∥∥T n+1x

∥∥∥2
=
∥∥∥T 2y

∥∥∥2
− ‖Ty‖2

≤ ‖Ty‖2 − ‖y‖2

=
∥∥∥T n+1x

∥∥∥2
− ‖T nx‖2 .

Assume there were k ∈ N and x ∈ H such that∥∥∥T k+1x
∥∥∥ < ∥∥∥T kx∥∥∥ .
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In that case, by the previous inequality,∥∥∥T n+1x
∥∥∥2
− ‖T nx‖2 ≤

∥∥∥T k+1x
∥∥∥2
−
∥∥∥T kx∥∥∥2

< 0

holds for all n ≥ k. We conclude

0 ≤
∥∥∥T n+1x

∥∥∥2
< ‖T nx‖2

for all n ≥ k, so
(
‖T nx‖2

)
n≥k

is a bounded, decreasing sequence in R and thus
convergent. This leads to the contradiction

0 = lim
n→∞

(∥∥∥T n+1x
∥∥∥2
− ‖T nx‖2

)
≤
∥∥∥T k+1x

∥∥∥2
−
∥∥∥T kx∥∥∥2

< 0.

Thus, the assumption was false and claim (i) follows.

Since T is concave, the first part of the proof shows that

‖T nx‖2 − ‖x‖2 =
n−1∑
k=0

(∥∥∥T k+1x
∥∥∥2
−
∥∥∥T kx∥∥∥2

)
≤

n−1∑
k=0

(
‖Tx‖2 − ‖x‖2

)
holds for all x ∈ H and n ∈ N, which clearly implies (ii).

Consequently, for a concave operator T ∈ B(H), the intersection

H∞(T ) =
⋂
n∈N

T nH

is a closed invariant subspace for T . The next lemma describes how the restriction

T |H∞(T ) : H∞(T )→ H∞(T )

behaves.

Lemma 2.6. Let T ∈ B(H) be concave. Then we have

TH∞(T ) = T ∗H∞(T ) = H∞(T ),

and the restriction
T |H∞(T ) : H∞(T )→ H∞(T )

is unitary. In particular, H∞(T ) is a reducing subspace for T .
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2 A wandering subspace theorem

Proof. By Proposition 2.5, T is injective, hence

TH∞(T ) = T
⋂
n∈N

T nH =
⋂
n≥1

T nH = H∞(T )

holds. Therefore,
S : H∞(T )→ H∞(T ), x 7→ Tx

is well-defined and bijective, hence invertible.
Let y ∈ H∞(T ) be arbitrary and set x = Sy ∈ H∞(T ). For all n ∈ N, there is a
yn ∈ H such that x = T nyn. We have

T n−1(Tyn) = x = T n−1yn−1 (n ∈ N∗)

and since T is injective, we conclude Tyn = yn−1 for all n ∈ N∗ and y1 = y.
The concavity of T implies

‖yn‖2 + ‖yn+2‖2 ≤ 2 ‖yn+1‖2

for all n ∈ N. As in the proof of the last proposition, it follows that

‖yn+1‖ ≥ ‖yn‖

for all n ∈ N. Using Proposition 2.5 we obtain that

‖yn‖ = ‖Tyn+1‖ ≥ ‖yn+1‖

holds for all n ∈ N, whence the sequence (‖yn‖)n∈N is constant. We obtain

‖Sy‖ = ‖x‖ = ‖y0‖ = ‖y1‖ = ‖y‖

and conclude that the surjective operator S is a unitary.

By the previous proposition, T is norm-increasing, so

〈(T ∗T − I)x, x〉 = ‖Tx‖2 − ‖x‖2 ≥ 0

holds for all x ∈ H. This shows that T ∗T − I is positive, and therefore has a square
root (T ∗T − I) 1

2 ∈ B(H). For x ∈ H∞(T ), we have∥∥∥(T ∗T − I) 1
2x
∥∥∥2

= 〈(T ∗T − I)x, x〉 = ‖Tx‖2 − ‖x‖2 = 0.

This yields (T ∗T − I) 1
2x = 0 and consequently T ∗Tx = x. By

T ∗H∞(T ) = T ∗TH∞(T ) = H∞(T )

the claim follows.
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Lastly, for a left invertible operator T ∈ B(H), we need to express the kernel of T ′n
differently.

Proposition 2.7. Let T ∈ B(H) be left invertible. For each n ∈ N∗, we have

kerT ′∗n = E + TE + · · ·+ T n−1E =
n−1∨
k=0

T kE,

where E = H	 TH = kerT ∗.
In particular, the identities H∞(T ′)⊥ = [E]T and H∞(T )⊥ = [E]T ′ hold.

Proof. First note that T is injective with closed range and that the Cauchy dual T ′
of T exists by Proposition 1.11. Let k ∈ {0, . . . , n− 1} and x = T ky ∈ T kE for an
y ∈ E. Since

T ′∗T = (T ∗T )−1T ∗T = I

and y ∈ kerT ∗ = kerT ′∗, we conclude

T ′∗
n
x = T ′∗

n
T ky = T ′∗

n−k
T ′∗

k
T ky = T ′∗

n−k−1
T ′∗y = 0.

Hence x ∈ kerT ′∗n. Therefore,
n−1∨
k=0

T kE ⊂ kerT ′∗n

holds.

To prove the reverse inclusion, we first show that

P = I − TT ′∗

is the orthogonal projection onto E. Since T has closed range, we have

H = TH⊕ E.

Furthermore, we have
TT ′∗Tx = Tx

for all x ∈ H and
TT ′∗E = T (T ∗T )−1T ∗E = {0}

holds, so TT ′∗ is the orthogonal projection onto TH. Thus, P projects onto

H	 TH = E.
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2 A wandering subspace theorem

For all n ∈ N∗, we have

I − T nT ′∗n =
n−1∑
k=0

(
T kT ′∗

k − T k+1T ′∗
k+1) =

n−1∑
k=0

T kPT ′∗
k
.

Let x ∈ kerT ′∗n be arbitrary. Then the claim follows from

x = (I − T nT ′∗n)x =
n−1∑
k=0

T kPT ′∗
k
x ∈

n−1∑
k=0

T kE.

In particular, using Propositions 1.11 and 1.12, we conclude

H∞(T ′)⊥ =
 ⋂

n∈N
T ′nH

 ⊥ =
∨
n∈N

(T ′nH)⊥ =
∨
n∈N

kerT ′∗n

=
∨
n∈N

n−1∨
k=0

T kE =
∨
n∈N

T nE = [E]T .

Note that kerT ′∗ = ker(T ∗T )−1T ∗ = kerT ∗ = E. Then the other identity is a
consequence of Remark 1.6, since

H∞(T )⊥ = H∞(T ′′)⊥ = [kerT ′∗]T ′ = [E]T ′ .

Corollary 2.8. A left invertible operator T ∈ B(H) possesses the wandering sub-
space property if and only if the Cauchy dual T ′ of T is analytic.

By combining the previous results, we are now able to prove that analytic operators
fulfilling (2.1) possess the wandering subspace property. In particular, this implies
that such operators admit a Wold-type decomposition.

Theorem 2.9 (Wandering subspace property). Let T ∈ B(H) be analytic and such
that

‖Tx+ y‖2 ≤ 2
(
‖x‖2 + ‖Ty‖2

)
holds for all x, y ∈ H. Then T possesses the wandering subspace property.
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Proof. By Proposition 2.1, the Cauchy dual T ′ of T is a well-defined bounded linear
operator on H and by Proposition 2.7 it suffices to show that

Ĥ = H∞(T ′) = {0}.

According to Lemma 2.3, T ′ is concave and thus, by Lemma 2.6,

T ′Ĥ = T ′∗Ĥ = Ĥ

holds and T ′|Ĥ : Ĥ → Ĥ is unitary. Hence we have

TĤ = T ′(T ′∗T ′)−1Ĥ = T ′Ĥ = Ĥ.

Consequently, for k ∈ N,

Ĥ = T kĤ =
⋂
n∈N

T nĤ = {0}.
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3 Wold-type decompositions for
operators close to isometries

The goal of this chapter is to prove a result of Shimorin from [8], which states that
concave operators and operators fulfilling (2.1) admit Wold-type decompositions.
For an isometry T ∈ B(H), we have∥∥∥T 2x

∥∥∥2
+ ‖x‖2 = ‖Tx‖2 + ‖Tx‖2 ≤ 2 ‖Tx‖2

and

‖Tx+ y‖2 = ‖Tx‖2 + ‖y‖2 + 2 Re〈Tx, y〉 ≤ 2
(
‖Tx‖2 + ‖y‖2

)
= 2

(
‖x‖2 + ‖Ty‖2

)
for all x, y ∈ H. Thus isometries are concave and fulfil (2.1).

3.1 Properties of concave operators
In this section, we will prove two results concerning concave operators that will be
needed to show the main theorem. Note that by Proposition 2.5 concave operators
are injective with closed range and hence left invertible by Proposition 1.11.

Lemma 3.1. A left invertible operator T ∈ B(H) admits a Wold-type decomposition
if and only if its Cauchy dual T ′ admits a Wold-type decomposition.
In this case, H∞(T ) = H∞(T ′) and [E]T = [E]T ′ hold, where E = H 	 TH.

Proof. Suppose that T admits a Wold-type decomposition. Then

T ′H∞(T ′) = T ′
⋂
n∈N

T ′nH =
⋂
n∈N

T ′n+1H =
⋂
n∈N

T ′nH = H∞(T ′)

and, by Proposition 2.7, we have the orthogonal decomposition

H = H∞(T )⊕ [E]T = H∞(T )⊕H∞(T ′)⊥.
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3 Wold-type decompositions for operators close to isometries

Thus H∞(T )⊥ = H∞(T ′)⊥. We infer that

H∞(T ′)⊥ = H∞(T )⊥ = [E]T ′

is invariant under T ′. Therefore, H∞(T ′) is a reducing subspace for T ′. By Propo-
sition 1.11,

H∞(T ′) =
⋂
n∈N

T ′nH

is a closed subspace of H and we obtain

H∞(T ′) = H∞(T ′)⊥⊥ = H∞(T )⊥⊥ = H∞(T ).

An application of Proposition 2.7 yields the orthogonal decompositions

H = H∞(T )⊕ [E]T
= H∞(T )⊕ [E]T ′
= H∞(T ′)⊕ [E]T ′ .

Since by hypothesis H∞(T ) is reducing for T and T |H∞(T ) is unitary, it follows that

IH∞(T ) =
(
T |H∞(T )

)∗ (
T |H∞(T )

)
= (TT ∗)|H∞(T )

and thus
(TT ∗)−1|H∞(T ) = IH∞(T ).

Therefore
T ′|H∞(T ) =

(
T (T ∗T )−1

) ∣∣∣
H∞(T )

= T |H∞(T )

is unitary. Hence, T ′ admits a Wold-type decomposition. The reverse implication
follows since T ′′ = T .

Crucial to the proof of Shimorin’s theorem is the following result due to Richter,
namely Theorem 1 in [5].

Lemma 3.2. Let T ∈ B(H) be an analytic, concave operator. Then T possesses the
wandering subspace property.

Proof. By part (i) of Proposition 2.5 the operator T ∗T − I is positive, so we may
consider its positive square root D = (T ∗T − I) 1

2 . For x ∈ H, we find

‖Dx‖2 = ‖Tx‖2 − ‖x‖2 .
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3.1 Properties of concave operators

Hence part (ii) of Proposition 2.5 can be restated as

‖T nx‖2 − ‖x‖2 ≤ n ‖Dx‖2 (3.1)

for all x ∈ H and n ∈ N.

Let L = T ′∗. In the proof of Proposition 2.7 we have shown that

P = I − TL

is the orthogonal projection onto E = H	 TH and that

(I − T nLn)x ∈ [E]T

for all x ∈ H. As a closed, convex set [E]T is weakly closed. Thus to complete the
proof it suffices to show that for each x ∈ H a subsequence of (I−T nLn)x converges
weakly to x.

We will first show that

‖x‖2 =
n−1∑
k=0

∥∥∥PLkx∥∥∥2
+ ‖Lnx‖2 +

n∑
k=1

∥∥∥DLkx∥∥∥2
(3.2)

holds for all x ∈ H and n ∈ N∗. Let x ∈ H. For n = 1 we find

‖Px‖2 + ‖Lx‖2 + ‖DLx‖2 = ‖Px‖2 + ‖Lx‖2 + ‖TLx‖2 − ‖Lx‖2

= ‖Px‖2 + ‖(I − P )x‖2 = ‖x‖2 ,

thus establishing the claim for n = 1. Substituting x = Lny in the above equation,
we obtain

‖Lny‖2 = ‖PLny‖2 +
∥∥∥Ln+1y

∥∥∥2
+
∥∥∥DLn+1y

∥∥∥2

for all y ∈ H and n ∈ N. Using this in conjunction with the induction hypothesis
for n ∈ N, we find

‖x‖2 =
n−1∑
k=0

∥∥∥PLkx∥∥∥2
+ ‖Lnx‖2 +

n∑
k=1

∥∥∥DLkx∥∥∥2

=
n∑
k=0

∥∥∥PLkx∥∥∥2
+
∥∥∥Ln+1x

∥∥∥2
+

n+1∑
k=1

∥∥∥DLkx∥∥∥2

for all x ∈ H, hence proving the claim.
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3 Wold-type decompositions for operators close to isometries

Let x ∈ H. We may rearrange condition (3.2) to see that

0 ≤
∥∥∥Ln+1x

∥∥∥2
= ‖x‖2 −

n∑
k=0

∥∥∥PLkx∥∥∥2
−

n+1∑
k=1

∥∥∥DLkx∥∥∥2

≤ ‖x‖2 −
n−1∑
k=0

∥∥∥PLkx∥∥∥2
−

n∑
k=1

∥∥∥DLkx∥∥∥2
= ‖Lnx‖2

holds for all n ∈ N∗. Thus,
(
‖Lnx‖2

)
n≥1

is a bounded, decreasing sequence in R,
hence convergent. Denote by c the limit of this sequence and, using Proposition 2.5,
define

ck = inf
n≥k

(
‖T nLnx‖2 − ‖Lnx‖2

)
≥ 0

for k ∈ N∗. Conditions (3.1) and (3.2) then imply

n∑
k=1

ck
k
≤

n∑
k=1

1
k

(∥∥∥T kLkx∥∥∥2
−
∥∥∥Lkx∥∥∥2

)
≤

n∑
k=1

∥∥∥DLkx∥∥∥2
≤ ‖x‖2

for all n ∈ N∗. Since the sequence (ck)k≥1 is increasing, it follows that ck = 0 for all
k ≥ 1 or, equivalently, that there is a strictly increasing sequence (nk)k≥1 in N such
that

‖T nkLnkx‖2 − ‖Lnkx‖2 (k→∞)−−−−→ 0.

But then
‖T nkLnkx‖2 (k→∞)−−−−→ c.

In particular, (T nLnx)n∈N contains a bounded subsequence and therefore a weakly
convergent subsequence (T nkLnkx)k∈N with limit y ∈ H. For N ∈ N, we have

T nkLnkx ∈ TNH

for all k ≥ N . Since TNH is weakly closed, y ∈ TNH follows. Hence,

y ∈
⋂
N∈N

TNH = H∞(T ) = {0}

and the claim follows by noting that (I − T nkLnk)x converges weakly to x.
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3.2 Shimorin’s theorem

3.2 Shimorin’s theorem
Bringing together the previous results, it is now quite straightforward to prove the
following theorem originally found by Shimorin.

Theorem 3.3 (Wold-type decomposition for operators close to isometries).
Let T ∈ B(H) be either concave or such that the inequality

‖Tx+ y‖2 ≤ 2
(
‖x‖2 + ‖Ty‖2

)
holds for all x, y ∈ H. Then T admits a Wold-type decomposition.

Proof. First consider a concave operator T . According to Lemma 2.6, H∞(T ) is
reducing for T and

T |H∞(T ) : H∞(T )→ H∞(T )
is unitary. Hence, it remains to show that H∞(T )⊥ = [H	 TH]T .

Let U = H∞(T )⊥. Since H∞(T ) is reducing for T so is U . Therefore

S = T |U : U → U

is well-defined and obviously concave. Additionally, we have

H∞(S) ⊂ H∞(T ) ∩H∞(T )⊥ = {0}.

Consequently, S is analytic. By Lemma 3.2 applied to S and by Proposition 1.13,
it follows that

H∞(T )⊥ = U = [U 	 SU ]S =
[
U ∩ (TU) ⊥

]
T

= [H	 TH]T .

Next, assume T fulfils the inequality. By Lemma 2.3, the Cauchy dual T ′ is concave,
so the already proven part states that T ′ admits a Wold-type decomposition. The
claim follows from Lemma 3.1.

As an immediate consequence, we find the classical Wold-type decomposition theo-
rem for isometries.

Corollary 3.4. Isometries admit a Wold-type decomposition.
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4 Application to shift operators
on spaces of analytic functions

In this final chapter we look at concrete examples. In order to do this, we first
introduce analytic functional Hilbert spaces and then work with shift operators on
those. For a special class of these spaces we will show that the shift operator satisfies
a Beurling-type theorem, but we will also see that this is not the case in general.

4.1 Functional Hilbert spaces
We want to give a very brief introduction to functional Hilbert spaces and kernel
functions. A more general and more exhaustive introduction to this topic can be
found in Chapter 1 of [1]. We also refer to [1] for proofs of the given results.

In the following let X be an arbitrary set. We denote by CX the set of all mappings
from X to C.

Definition 4.1. A Hilbert space H ⊂ CX is called a functional Hilbert space if the
point-evaluation functional

δx : H → C, f 7→ f(x)

is continuous for every x ∈ X.

Definition 4.2. Let H ⊂ CX be a Hilbert space. A map K : X×X → C such that

(i) K(·, x) ∈ H for all x ∈ X,

(ii) 〈f,K(·, x)〉 = f(x) for all x ∈ X and f ∈ H,

is called a reproducing kernel for H.
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4 Application to shift operators on spaces of analytic functions

Proposition 4.3. Let H ⊂ CX be a Hilbert space. Then H is a functional Hilbert
space if and only if there is a reproducing kernel K for H. In this case, K is uniquely
determined by H.

Definition 4.4. A map K : X ×X → C is called positive definite if

n∑
i,j=1

K(xi, xj)zizj ≥ 0

holds for all n ∈ N, x1, . . . , xn ∈ X and z1, . . . , zn ∈ C.

Proposition 4.5. Let K : X ×X → C be positive definite. Then there is a unique
functional Hilbert space H ⊂ CX with reproducing kernel K.

In Example 2.52 of [9], Wernet shows that for α > −2 the map

Kα : D× D→ C, Kα(z, w) =
( 1

1− zw

)α+2
=
∞∑
k=0

ak(zw)k,

where
ak = 1

k!
Γ(α + k + 2)

Γ(α + 2) > 0 (k ∈ N),

is positive definite. The corresponding functional Hilbert space H(Kα) ⊂ O(D) has
orthonormal basis

bk = √akzk (k ∈ N).

This was shown for instance in Theorem 1.15 of [10].

In particular, for α = −1 this yields the Hardy space

H−1 = H(K−1) =

f ∈ O(D); sup
0<r<1

∫
T

|f(rξ)|2 dξ <∞


with ak = 1 for k ∈ N and orthonormal basis

bk = zk (k ∈ N).
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4.2 Weighted shifts on H(Kα)

Furthermore, for α = 0 we obtain the Bergman space

H0 = H(K0) =

f ∈ O(D);
∫
D

|f |2 dλ <∞

 ,
with ak = k + 1 for k ∈ N and orthonormal basis

bk =
√
k + 1zk (k ∈ N).

4.2 Weighted shifts on H(Kα)
In the following let α > −2 be a real number and let H = Hα = H(Kα) be the
unique functional Hilbert space with reproducing kernel Kα. A function f ∈ H is
given by its Taylor expansion

f(z) =
∞∑
k=0

fkz
k

for all z ∈ D as well as by its representation in the orthonormal basis

f =
∞∑
k=0

f̃kbk =
∞∑
k=0

(
f̃k
√
ak
)
zk

in the Hilbert space H. Since point-evaluation on H is continuous, we also have

f(z) =
∞∑
k=0

(
f̃k
√
ak
)
zk

for all z ∈ D. Hence fk = f̃k
√
ak holds for all k ∈ N and the Taylor expansion of f

on D also converges to f in the Hilbert space H.

Let
ck =

√
ak
ak+1

for k ∈ N and c−1 = 0. Since

ak
ak+1

= (k + 1)Γ(α + k + 2)
Γ(α + k + 3) = k + 1

α + k + 2
(k→∞)−−−−→ 1

holds, the weighted shift S defined by

Sbk = ckbk+1 (k ∈ N)
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4 Application to shift operators on spaces of analytic functions

is a well-defined bounded linear operator on H. From

Szk = 1
√
ak
Sbk = 1

√
ak+1

bk+1 = zk+1 (k ∈ N),

it follows that
S = Mz : H → H, f 7→ zf

is the multiplication operator with symbol z. The calculation

〈bn, S∗bk〉 = 〈Sbn, bk〉 = 〈cnbn+1, bk〉 = 〈bn, ck−1bk〉 (n, k ∈ N)

shows that

S∗bk =

ck−1bk−1, k 6= 0,
0, k = 0.

Hence SS∗ and S∗S are diagonal operators with

SS∗bk = c2
k−1bk, S∗Sbk = c2

kbk

for all k ∈ N. From c2
k > 0 for k ∈ N and

sup
k∈N

1
c2
k

<∞,

we infer that S∗S is invertible and its inverse is the diagonal operator given by the
weight sequence

(
c−2
k

)
k∈N

. Since a diagonal operator is positive if and only if its
defining weights are all non-negative,

2I − SS∗ − (S∗S)−1 ≥ 0

holds if and only if
2− c2

k−1 −
1
c2
k

≥ 0

holds for all k ∈ N.

Theorem 4.6. The multiplication operator

Mz : Hα → Hα, f 7→ zf

fulfils condition (2.1) if and only if −1 ≤ α ≤ 0. In this case, Mz satisfies a
Beurling-type theorem.
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4.2 Weighted shifts on H(Kα)

Proof. By Remark 2.4, S = Mz fulfils condition (2.1) if and only

2I − SS∗ − (S∗S)−1 ≥ 0

holds. The remarks preceding this theorem show that this is equivalent to the
condition

2− c2
k−1 −

1
c2
k

≥ 0 (k ∈ N).

For k = 0 we find

2− c2
−1 −

1
c2

0
= 2− a1

a0
= 2− Γ(α + 3)

Γ(α + 2) = 2− (α + 2) = −α ≥ 0

if and only if α ≤ 0. Additionally,

2− c2
k−1 −

1
c2
k

= 2− kΓ(α + k + 1)
Γ(α + k + 2) −

1
k + 1

Γ(α + k + 3)
Γ(α + k + 2)

= 2− k

α + k + 1 −
α + k + 2
k + 1 ≥ 0

holds for all k ∈ N∗ if and only if −1 ≤ α ≤ 0, as an easy computation shows.

In this case, let M ⊂ H be a closed invariant subspace for S. Since S satisfies
condition (2.1) the same is true for

T = S|M : M →M.

Obviously, H∞(T ) ⊂ H∞(S). If f ∈ H∞(S), then because of

f ∈
⋂
k∈N

zkO(D)

the function f has a zero of infinite order at z = 0. Thus, H∞(S) = {0}. By
Theorem 2.9, T possesses the wandering subspace property and hence S satisfies a
Beurling-type theorem.

For α > −1 let λα be the weighted normalised Lebesgue measure on D defined by

λα = πΓ(α + 2)
Γ(α + 1)

(
1− |z|2

)α
λ,
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4 Application to shift operators on spaces of analytic functions

where λ denotes the Lebesgue measure on D. If we define the associated weighted
Bergman space by

L2
a(D, λα) = O(D) ∩ L2(D, λα),

then Corollary 1.19 in [6] shows that

H(Kα) = L2
a(D, λα).

Hence the preceding considerations show thatMz ∈ B (L2
a(D, λα)) satisfies a Beurling-

type theorem for −1 < α ≤ 0. An application of Theorem 1.4 in [7] shows that this
actually holds for −1 < α ≤ 1. Shimorin conjectured that it is false for α > 1.
At least for α > 4 we will follow an idea from [3] to show that Mz ∈ B (L2

a(D, λα))
does not satisfy a Beurling-type theorem. We start with some preparations.

Definition 4.7. Let f ∈ H\{0}. We define ord0(0) =∞ and

ord0(f) = inf
{
k ∈ N; f (k)(0) 6= 0

}
.

For a closed subspace M ⊂ H, let

ord0(M) = inf {ord0(f); f ∈M} .

Remark 4.8. Let M ⊂ H be a closed subspace such that M 6= {0}. Then

ord0(zM) = ord0(M) + 1

holds. Hence, if M is invariant for S = Mz : H → H, it follows that

M 	 zM 6= {0}.

Note that zM ⊂ H is a closed subspace again, since S is left invertible.

Proof. Obviously,
(zf)′(0) = f(0)

holds for all f ∈ H. Thus,

ord(M) = inf {ord0(f); f ∈M} = inf {ord0(zf)− 1; f ∈M} = ord0(zM)− 1.
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4.2 Weighted shifts on H(Kα)

Lemma 4.9. Let A ⊂ D be a subset with 0 6∈ A. Then

MA = {f ∈ H; f |A = 0} ⊂ H

is a closed invariant subspace for S with

dim (MA 	 zMA) = 1.

Proof. Obviously, MA ⊂ H is a closed invariant subspace for S. This implies

dim (MA 	 zMA) ≥ 1,

since MA 	 zMA 6= {0} by Remark 4.8. Choose a function f ∈ (MA 	 zMA) \{0}.
Then f(0) 6= 0, since otherwise there would be a function F ∈ H with f = zF by
Theorem 2.5 in [10] and because of a 6∈ A we would obtain the contradiction

f = zF ∈ zMA.

Let g ∈MA 	 zMA be any other function. Then

h = g − g(0)
f(0)f

is a function in MA 	 zMA with h(0) = 0. Hence h = 0 and g ∈ Cf .

Proposition 4.10. The identity

⋃
a∈D

{
1− za
1− |a|2

; z ∈ D
}

=
{
w ∈ C; Rew >

1
2

}

holds.

Proof. For a ∈ D\{0}, let

Ψa : D→ C, z 7→ 1− az
1− |a|2

.

Obviously,

Ψa(D) = D |a|
1−|a|2

(
1

1− |a|2

)
,
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4 Application to shift operators on spaces of analytic functions

where Dr(w) denotes the open disc in C with centre w and radius r. Hence we find

⋃
a∈D

{
1− za
1− |a|2

; z ∈ D
}

=
⋃

a∈D\{0}
Ψa(D) =

⋃
0<r<1

Ψr(D).

Let 0 < r < 1 and w ∈ Ψr(D). Then

Rew >
1

1− r2 −
r

1− r2 = 1
1 + r

>
1
2

holds and we conclude
⋃
a∈D

{
1− za
1− |a|2

; z ∈ D
}
⊂
{
w ∈ C; Rew >

1
2

}
.

Since
1

1 + r

(r↑1)−−−→ 1
2 ,

a simple calculation shows that the reverse inclusion holds, too.

With this, we now are able to prove that Mz ∈ B (L2
a(D, λα)) does not satisfy a

Beurling-type theorem for α > 4.

Theorem 4.11. Let α > 4. Then the multiplication operator

S = Mz : Hα → Hα, f 7→ zf

does not satisfy a Beurling-type theorem.

Proof. For a ∈ D\{0}, define

Ma = M{a} = {f ∈ H; f(a) = 0} ⊂ H.

Then the function
ϕa = 1− Kα(·, a)

Kα(a, a)
belongs to Ma and satisfies

〈zf, ϕa〉 = 〈zf, 1〉 − af(a)
Kα(a, a) = 0
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4.2 Weighted shifts on H(Kα)

for all f ∈Ma. Thus, by Lemma 4.9,

Ma 	 zMa = Cϕa.

If S|Ma : Ma →Ma possesses the wandering subspace property, then

Ma =
∨
k∈N

zk (Ma 	 zMa) =
∨
k∈N

zkϕa.

holds by Remark 1.9. Therefore we obtain the identity

{a} = {z ∈ D; f(z) = 0 for all f ∈Ma} = {z ∈ D; ϕa(z) = 0} = Z(ϕa).

On the other hand, for z ∈ D an elementary computation with complex powers
shows that ϕa(z) = 0 if and only if(

1− za
1− |a|2

)α+2

= 1.

For z ∈ C, denote by arg−π(z) the principal value of the argument of z. Then, for
Rew > 1

2 , the identity

wα+2 = e(α+2) log|w|ei(α+2) arg−π(w) = 1

holds if and only if |w| = 1 and

(α + 2) arg−π(w) ∈ 2πZ.

In this case, ∣∣∣arg−π(w)
∣∣∣ < arg−π

(
1
2 ,
√

3
2

)
= π

3 ,

hence it follows by Proposition 4.10 that there is a point a ∈ D with Z(ϕa) 6= {a} if
and only if

(α + 2)π3 > 2π.

This happens precisely if α + 2 > 6, or equivalently, if α > 4.

Consequently, for every α > 4, there is a number a ∈ D such that the restriction
of S to the closed invariant subspace Ma does not possess the wandering subspace
property.

Lastly, we will look to the Dirichlet shift as an example of a concave operator.
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4 Application to shift operators on spaces of analytic functions

4.3 The Dirichlet shift
The functional Hilbert space D ⊂ O(D) determined by the reproducing kernel

KD : D× D→ C, KD(z, w) = 1
zw

log 1
1− zw =

∞∑
k=0

ak(zw)k,

where
ak = 1

k + 1
for k ∈ N, is called the Dirichlet space and possesses the orthonormal basis

bk = √akzk (k ∈ N).

If, for k ∈ N, we define

ck =
√

ak
ak+1

,

it follows that

0 < ck =
√
k + 2
k + 1

(k→∞)−−−−→ 1.

Hence the Dirichlet shift S = Mz : D → D is a well-defined, left invertible operator.
Since

S∗Sbk = c2
kbk, S∗2S2bk = c2

kc
2
k+1bk

for all k ∈ N, we find(
S∗2S2 − 2S∗S + I

)
bk =

(
c2
kc

2
k+1 − 2c2

k + 1
)
bk

=
(
k + 2
k + 1

k + 3
k + 2 − 2k + 2

k + 1 + 1
)
bk

= 0.

Thus, the Dirichlet shift S = Mz ∈ B(D) is a concave operator. Let M be a closed
invariant subspace for S. Then the restriction

T = S|M : M →M

is a concave operator as well. Since

H∞(T ) ⊂ H∞(S) ⊂
⋂
k∈N

zkO(D) = {0},

it also is analytic. Applying Lemma 3.2 shows that T has the wandering subspace
property. This proves the following result.
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4.3 The Dirichlet shift

Theorem 4.12. The Dirichlet shift

Mz : D → D, f 7→ zf

satisfies a Beurling-type theorem.

37





Bibliography
[1] C. Barbian. Positivitätsbedingungen funktionaler Hilberträume und Anwendun-

gen in der mehrdimensionalen Operatorentheorie. Diplomarbeit. Universität
des Saarlandes, 2001.

[2] P.L. Duren and A. Schuster. Bergman Spaces. Mathematical surveys and
monographs. Amer. Math. Soc., Providence, Rhode Island, 2004.

[3] H. Hedenmalm and K. Zhu. On the failure of optimal factorization for certain
weighted bergman spaces. Complex Variables 19 (1992), 165-176.

[4] B.S. Nagy, C. Foias, H. Bercovici, and L. Kérchy. Harmonic Analysis of Op-
erators on Hilbert Space. Universitext. Springer, New York, 2010.

[5] S. Richter. Invariant subspaces of the Dirichlet shift. J. Reine Angew. Math.
386 (1988), 205-220.

[6] D. Schillo. Toeplitz and Hankel operators on weighted Bergman spaces and the
Fock space. Master’s thesis. Universität des Saarlandes, 2014.

[7] S. Shimorin. On Beurling-type theorems in weighted `2 and Bergman spaces.
Proc. Amer. Math. Soc. 131 (2002), 1777-1787.

[8] S. Shimorin. Wold-type decompositions and wandering subspaces for operators
close to isometries. J. Reine Angew. Math. 531 (2001), 147-189.

[9] M. Wernet. On semi-Fredholm theory and essential normality. Dissertation.
Universität des Saarlandes, 2014.

[10] M. Wernet. Wesentlich normale Hilbermoduln über Gebieten in Cd. Diplomar-
beit. Universität des Saarlandes, 2008.

39


	Introduction
	Preliminaries
	Terminology and notation
	Basic results

	A wandering subspace theorem
	Wold-type decompositions for operators close to isometries
	Properties of concave operators
	Shimorin's theorem

	Application to shift operators on spaces of analytic functions
	Functional Hilbert spaces
	Weighted shifts on H(K)
	The Dirichlet shift

	Bibliography

