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Introduction

For a complex Hilbert space & and a set Q, a Hilbert space .7 C & is called a functional
Hilbert space if all point evaluations

0.0 H = E,0,(f)=r(z) (zeQ)
are continuous. The map
k: QxQ— L(&),k(z,w) =6,0,,
is called the reproducing kernel of .7, since it has the property that

<f<W) 7v>(5" - <f7k('7w)v>jf

holds for all w € Q and v € &. Such a reproducing kernel is positive definite, that is, we
have

Z (k(z,zi) Vj,Vj>g >0

i,j=0

for all finite sequences (z;)7_, in Q and (v;)?_, in &. Conversely one can show that, for
every positive definite map k: Q x Q — L (&), there exists a unique functional Hilbert
space S C & with reproducing kernel k. Identifying C = L(C), one also calls the
function k: Q x Q — C induced by a positive definite map k: Q x Q — L(C) positive
definite. Whenever k: Q x Q — C is positive definite, we denote by .7 (&) the functional
Hilbert space with reproducing kernel kIdgs. If & = C we write J¢, = 57, (C). In the
following we consider kernels of the form

1
1- 27:0 Un (Z> Up (W)

where u,: Q — C (n € N) are functions such that there exists a zo € Q with u, (z0) =0
for all n € N. Kernels of this type are called normalized complete Nevanlinna-Pick (CNP)
kernels, and solve the Nevanlinna-Pick Problem (see [1]]). A central role in the present
thesis is taken by functional Hilbert spaces e%”ﬁ (&), whose kernels k have a complete

s: QAxQ—C, s(z,w) =

Y

Nevanlinna-Pick factor, i.e., we have k = sg, where s is a normalized CNP kernel and
g1 QxQ — Cis positive definite. Now let &1 and &, be two complex Hilbert spaces

and % C &2 (i = 1,2) functional Hilbert spaces with reproducing kernels k;: Q x Q —
L(&;). The elements of

Mult (1, #3) = {@: Q — L(&1,6); 91 C A3}



are called multipliers from .77 to 7. Here, if f: Q — & is a function, the map ¢ f: Q —
& is defined by
(@f)2)=0(2)f(z) (2€9Q).
For ¢ € Mult (74, .74), we denote by
My: H3 — 75, Mof = 0f

the multiplication operator with symbol @. Let .7 C C® be a scalar-valued functional
Hilbert space and & an arbitrary Hilbert space. We call a function ¢ : Q — & a multiplier
from 7 to 7 (&) and simply write ¢ € Mult (77, 7 (&£)) if the function

LG9 Q5 L(C,8), 0" (2) (W) = wo (2)

belongs to Mult (.77, .7 (&)). Similarly, we call a scalar-valued function ¢: Q — C a
multiplier of JZ if ¢ regarded as a function ¢: Q — L(C) = C is a multiplier of 7.

From the theory of Hardy spaces it is well known that H? (D) is a functional Hilbert
space with reproducing kernel

1
1—zw

s:DxD—C, s(z,w) =

the so called Szegd kernel. This map can easily be seen to be a normalized CNP kernel
with zo = 0. The multipliers Mult (H? (D)) from H* (D) to H? (D) are exactly the bounded
analytic functions H* (D) on D. A theorem going back to Nevanlinna implies in particular
that, for f € H? (D), there exist functions g, € H* (D) with 0 ¢ 7 (D) such that f = £. In
the first part of this thesis we give the following generalization of this theorem for kernels
with a normalized complete Nevanlinna-Pick factor k = sg. Here we proceed exactly as
in the recent paper [2] by Aleman, Hartz, McCarthy and Richter. The proof is based on
an idea of Sarason [16],[17].
Theorem 0.0.1. (i) For F € &%, the following are equivalent:

(a) F € %(@”’) with ||F||%?(g) <I.

(b) There exist multipliers ¥: Q — C of 7 with ¥ (z9) =0 and ®: Q — & from

Hs to A (&) such that F = 2 and

%A1, + 1191306 < 1130,
forall h € 7.
(ii) If F € 7 (&) with HFHl%ﬂﬁ(éa) = 1 then the functions ® and ¥ are uniquely determ-
ined. In fact, s, € Mult (%pﬁ (& )) and if
Vr (2) = 2<F75zF>jfﬁ(5) -1 (zeQ),
then ReVr > 0 in Q and (b) holds with
VF—1 2

= —, = F
Vi +1 Vi +1




It is well known that the multiplier space of H? (D) is H* (D). However, in gen-
eral it is a difficult problem to characterize the multipliers of a given reproducing ker-
nel Hilbert space. In a first step, we will give a class of examples of multipliers in

Mult (%‘g, (& )> When proving Theorem [0.0.1{ we will show that ——F belongs

Vr+x—iy

to Mult (%’g,jfﬁ (é")) for all F € (&), x >0 and y € R. Using this, we will further
show that for every positive Borel measure with compact support on R, the weak integral

F

b = —d
supp() VF +x — 1y 1)

defines a multiplier from /5 to 7 (&).
An elementary application of Theorem shows that the elements of .77 (&') have the

same zero sets as the functions in Mult ,%”5,,%”12(5 )> We extend this idea and show

that the multiplier invariant space generated by an arbitrary function in %”12 (&) is also
generated by a multiplier function.
A function F' € 7] (&) is called extremal if

<(PF7F>,%72((§) = ¢ (20)

holds for all ¢ € Mult (%2) Extremal functions play an essential role in the theory
of wandering subspaces for shift-invariant subspaces. If F is an extremal function, then
|F | 46 = 1 and it is easy to see that its Sarason function Vf is given by Vg = 1. Thus

the factorization from Theorem (ii) reduces to the identity F' = ®. In particular,
every extremal function ' € 7 (&) is a multiplier from .5 to 7 (&) with multiplier
norm at most 1. In the case that

1

s: By x [Bd—)C,S(Z,W) = m

is the Drury-Arveson kernel on the open unit ball B; ¢ C¢ and A, C O (By) we show
that there is a close relation between extremal functions F' € 4%”12 (&) and k-inner functions
F: B; — L(C,&) recently studied in [7].

As a direct application of Theorem [0.0.1{ we can conclude that ' € Mult <<%’f;, ffﬁ (& )>
whenever ||F || 4(8) = 1 and Vg = 1. Indeed it is possible to show that for a large class

of reproducing kernels the weaker assumption that the real part of the Sarason function of
a function F' € 7 (&) is bounded is sufficient to conclude that F* € Mult (%ﬁg, A (& ))

This theorem covers a large family of reproducing kernel Hilbert spaces like the Drury
Arveson space, weighted Dirichlet and Bergman spaces. However, we can still not fully
characterize multipliers this way, since the converse direction of the theorem is false at
least in this generality. We proceed as in [2]] to construct multipliers of the standard
weighted Dirichlet spaces on the disc, whose Sarason functions have unbounded real part.






1 Preliminaries

1.1 Nevanlinna-Pick kernels

A positive map s: Q x Q — C* is called Nevanlinna-Pick kernel if

1
s(z,w)

QAxQ—C, (z,w)— 1—

is positive definite. A functional Hilbert space .75 with Nevanlinna-Pick kernel is called
Nevanlinna-Pick space. In the following, let H = .75 be a Nevanlinna-Pick space with
kernel s: Q x Q — C and Mult (H) the space of multipliers of H.

Proposition 1.1.1. We have that 1: Q — C, z — 1¢ is in H with |1]| < 1.

Proof. The function

QxQ—C, (z,w) = s(z,w) — 1 =s(z,w) (l_s(zlw))

is positive definite by the Lemma of Schur. It follows by [5, Satz 1.9 (b)] that 1 € H with
1] <1. O

By [5} Satz 1.13] there is a Hilbert space .# and a map d: Q — .# with

for all z,w € Q.
Lemma 1.1.2. For f € .Z, the function

d: Q—C, ds(z) =(f,d(2))

defines a multiplier dy € Mult (H) with HMdeL(H) < |If1l-

Proof. Without loss of generality let || f|| = 1. Let (fi),; be an orthonormal basis of .7,



1 Preliminaries

which contains f. Then we have

s@w) (1-dr(@)dr(w))
= s(z,w) (1= {f,d (2)) {(d (W), f))

= S(Z,W) (1 _Z<d (W> 7fl> <fl7d<z)>>

icl

+s(zw) Y (dw),fi) (fid(2))
i€l A f

=s(z,w) (1 —(dw),d@)+ Y, (fid(2)) <fz~,d(W)>)
i€l fitf

=1+s(zw) Y, (fd())(fi.d(w))
i€Lfi#f

for z,w € Q. The last expression defines a positive definite map by the Lemma of Schur,
because pointwise converging sums of positive definite maps are positive definite. By

[5. Satz 1.11 (a)] we have d; € Mult (H) with ‘Mdf HL(H) <1. O

Theorem 1.1.3. For w € Q, we have s, = s (-,w) € Mult(H).

Proof. Ford: Q — .% and z € Q as in the remarks before Lemma|[l.1.2] we have

1
d(z 21— <1
la@IF =1~
Hence we conclude
1
s(z,w) =

(d(w),d(2))
(d(w),d(2))"

[
s 7

~
Il
=

(w) (2))"

I
ok
Yo
&

~
Il
o

for all z,w € Q. Because of Lemma|l.1.2, we have dd(w) € Mult (H) with HMdd(w) HL(H) <

|d(w)|| < 1 forall we Q. Since Mult (H) with the multiplier norm

- lvtateary = Mult(H) = R0, |f vtarer) = Ml

is a Banach algebra with pointwise composition as multiplication, we get

| ()| < lla )l

k
) < Hdd(w) HMult(H

Mult(H



1.1 Nevanlinna-Pick kernels

Hence the sum

[e)

Y (dagu)”

k=0

converges absolutely in Mult (H). Since the inclusion map Mult (H) < H is well defined
by Proposition [I.1.1} continuous and linear, convergence in Mult(H) yields pointwise
convergence. Hence

(o)

s(ow) = kzo (dggy)© € Mult (H)

holds. ]






2 Factorization Theorem

In the following let & be a separable Hilbert space and s: Q x Q — C a normalized
complete Nevanlinna-Pick (CNP) kernel with

1
sy (2) = — weQ
& e @mm OV

where u,: Q — C (n € N) are functions such that || (1,(z)),,c || < 1 for all z € Q and
there is a zp € Q such that u,(z0) =0 for all n € N.

For amap k: Q x Q — C, we write k,, = k(-,w) for all w € Q.

2.1 The main theorem

In this chapter we want to show that every element of a reproducing kernel Hilbert space
with normalized complete Nevanlinna-Pick factor can be written as a quotient of two
multipliers. For more details see Theorem[0.0.1} The proof is based on an idea of Sarason
[16],[17]. In the case of the Szegd kernel one direction of the proof of our main theorem
is easy to see. We therefore give a sketch of Sarason’s proof in the special case Q = D,
& = C and k = s1 where

1
1—zw’

s:DxD—C, s(z,w) =

z0 =0 and ¢ = %”ﬁ — H? (D), as motivation for the general approach. Since s, €
Mult (H 2 ([D)) for every z € D, the following function, the so called Sarason function

Vie:D—=C, Vg (Z) = 2<F751F>H2(ID) - ||FH12-12(ID)

is well defined for every F € H* (D). Let H?>(D) — H?(T),f + f* be the canonical
isometric isomorphism between H? (D) and H? (T). We write dm for the normalized arc
length measure on the unit circle T. Then we have

Vi (z) = (F,(2s: = 1) F) )

= (F", (28I = 1) F") o

— 1P @R (g -1 )am(@

— 1P ©F FEan @),



2 Factorization Theorem

for all z € D. By a standard result about parameter-dependent integrals Vr is analytic.

Further, we see that Re Vg is the Poisson integral P [|F *]2] of |[F*|* since Re (éf) =

2
ﬁ forall z€ D and £ € T. As the Poisson transform is the inverse of the canonical
—Z
isomorphism between H? (D) and H? (T) we can use the Holder inequality to deduce that
* 2
IP[F*] (2)]
2
1— ’Z‘z *
| [ P @)ldm(@)
4
— | 1=z
< [ i (@) [ =S IF (E)Pdm (&)
I I
%12
=P |IFP] (2
and, thus
0<[F @) =IPIF] ()P <P|IFP| (2) = ReVr (2 .1

for all z € D. We now assume that ||F || ;2 p) = 1 and set

Vi —1 2
= F and ® =
Ve +1 Ve+1

F.

Then we have W (0) =0, F = ﬁcb and a calculation using inequality [(2.1)[ shows

Vr () = 2Re Vi (2) + 1 +4|F (2)

2 2
¥ ()" +|P(2)|" = Ve @+ 11

<1.

Therefore ®,%¥ € H* (D) = Mult (H? (D)) and the direction from (a) to (b) in The-
orem follows in our special case. Since we can not do these point wise estimations
in the general case, we have to proceed as in [2].

Let K be a Hilbert space and x € K. Then the adjoint of the operator (-,x): K — C
is easily seen to be the operator

C—>K,o— ox.

If f: Q — K is a function and .4, C C* is a functional Hilbert space given by a reprodu-
cing kernel k: Q x Q — C, then the induced mapping

F: Q=K F(z)=(,f(2)k

10



2.1 The main theorem
defines a multiplier F € Mult (% (K), #%) with |MF||; k) ) < c if and only the
mapping

QxQ—C, (gw) = k(zw) (&= (F (W), f (2))k)

is positive definite. This follows from [5, Satz 1.11 (b)] using the canonical identification
L(C)=C.

Lemma 2.1.1. With the notations from the beginning of Chapter 2, let
U0 (7)), 4() (o) = L n ()
n=0

Then we have

(i) 4 € Mult (% (%), %) with 1Ml e (2),520) < 1. In particular u, € Mult (#5)
for all n € N and we have

2

Z u,hy,
n=0

- 2
<Y Ml
% n=0

for all (hy),cp € 5 ().

(ii) the map 1d 5, —MyMy, is the orthogonal projection P4 onto 74 = span{s; } = C
and satisfies Pyph = h(zo) for all h € .

Proof. Since $4(z) = <-, (un (Z))nGIN>[2 and since the function

QxQ—C, (z,w) —s(z,w) (1 N <<W)nel]\l ’ <m)nen4>[2)
=s(z,w) (1— Z:Obln (Z)m>
=1

is positive definite, the remarks preceding Lemma [2.1.1| show that { is a multiplier with
”MMHL(%(Q),%%) < 1. Hence

2
Z Unhn = HMuhHifg
n=0 Hg
2
< 1Al 52 ()
- 2
=Y a5
n=0

11



2 Factorization Theorem

for all h = (hy),c) € # (1?) by Corollary To show that u, is in Mult (75), let
n € N and observe that

o)

un (2)h(2) = Y wi (2) h(2) S

k=0
= U(2) (h(z)en)

for all h € % and z € Q. Hence we conclude u,h = My (he,) € .

To prove (i) first note that Pyyh = (h,s;,)s;, = h(zo) for h € Hs. Using U(z)"w =

(un (z)w) N for all z € Q and w € C an easy calculation shows that
ne

Mgs, = U(2)" (Ic)s; = (M&)

neN

for all z € Q. Hence

((Id%ps _MﬂMfl) SW) (2) = (1 - Z tn (2) Un (W)> sw(z) =1=sy(20)
n=0
for all z,w € Q. Since My and Mi*1 are continuous and linear and since s = \/ {s;; z € Q}
it follows that (Id 5, —MyMy[) h = h(z) for all h € . Hence the claim holds. O

Corollary 2.1.2. Let i be the mapping from Lemma Then we have

Mis: = (1 )5
4S5z Un (2)s; N
forall z € Q.
We give a condition for kernels to have a complete Nevanlinna-Pick factor.

Lemma 2.1.3. Let
6 Q= (1), 42 (()pens) = X a (2) %0
n=0

be as before. Then a given reproducing kernel k: Q x Q — C can be written as a product
k= sg with g: Q x Q — C positive definite if and only if

£ € Mult (%(F),%) with || M| <1.

L(%’%([z),jﬁé)

In this case we have Mult (7 (&)) C Mult <¢%’i (co‘”)) and HM‘PHL( <

#41))
HM(pHL(%(éD))for all @ € Mult (.75 (&)) and any Hilbert space &.

12



2.1 The main theorem

Proof. Exactly as in the proof of Lemma [2.1.1]it follows that
o (@), 4@ = (@) )
040 = (@),

defines a multiplier { € Mult <,%’i (1) ,%”0 with multiplier norm || My(|| <1

Hre1)

if and only if the function

9: QxQ—=C, g(z,w) =k(z,w) (1 — i)un(z)un (w))

is positive definite. This yields the claimed equivalence. For the second part, let ¢ €
Mult (5 (&) be a multiplier with ¢ = |[Mo|| . o) # 0. By [5, Satz 111 (b)] the
function

a: Qx Q5 L), a(zw) = s(zw) (P1ds —9 (2) 9 (w)")
is positive definite. By the Schur-Product Lemma the function

a: QxQ—=L(&), a(z,w) =g(z,w)a(z,w)
=k(zw) (Plds —@ () 9 (w)")
is positive definite. Another application of [5, Satz 1.11 (b)] completes the proof. [
In the following let g: € x Q — C be a positive definite function and k= sg.

Remark 2.1.4. & is positive definite by the Schur-Product Lemma.

The following function plays an important role in our further estimations.

Definition 2.1.5. For F € 7 (&), we define the Sarason function Vr by
2
VP: Q—C, Vr(z) =2 (F,SzFbgz(g) - ||F||%7é(<§’)

Remark 2.1.6. Since the functions s; (z € Q) are multipliers of .7 (&), it easily follows

that (Vg, )< converges pointwise to Vr on Q, whenever (Fy), o), is a convergent sequence
in 7 (&) with limit F.

Lemma 2.1.7. Let 74 C &% (i = 1,2) be functional Hilbert spaces. Let

©: Q— L(&1,6,) be a map such that there are a continuous linear operator T : 7 —
4 and a total subset M C 54 with Tf = @f for all f € M. Then ¢ € Mult(s4,.76)
and T = M.

13



2 Factorization Theorem

Proof. Each function f € 7] is the limit

'n

BT (n) £(n)
f—r}g{}oi:ziai fi

of a sequence of linear combinations of functions fl.(n) € M. Since point evaluations are
continuous on the spaces .77, it follows that

I'n

(T) ()= lim ¥ o (1) ()

n—oo 4
i=1

=1im Y oo (1) " (A)
i=1

forall A € Q. O
The next lemma contains some important estimations and properties for vector valued
functional Hilbert spaces with complete Nevanlinna-Pick

factors.

Lemma 2.1.8. Let h = Z?:o ais;, with z; € Q and a; € C fori=1,--- k. Forn € N, let
hy = Zi'{:o aiity (2;)sy;. Setting

He: Q= L(E,P(8)), He(A) (V) = (hy (A) V) yep

[}

g Q —>L([2 (£),8), the (A) (Vi) pen) = Zbun (A) v,

we have $) ¢ € Mult <¢%’Z (&), (12 (é"))) and

<1.

) .
e € Mult (%ﬂﬁ (1°(£)) ,:%”ﬁ(é")> with HMLM"HL(%%(Q(g))?{%”ﬁ(éD))

In particular we have (h—h(zo)) F = My, Mg F and hence

2 (>}
I(h=h(z0)) Fll 56 < 1Mo F 152, s = X;)"h"F||=2’f%(5)

forall F € 7 (&).

14



2.1 The main theorem

Proof. The map )~ is well defined, since for A € Q and v € &, we have

1 () V)il Z|h )22

= [IvilZ Z

n=0

<|vliz i (Z lais;, (M) Z |ty (Zj)’2>
n=0 \i=0 j=0
2 P 2
= HVHg;)\aisz,- M"Y, (Zb\”n ()] )

J=0

— 2 Y e WP Y [ ),
- gi:O e j=0 Un \2j))nenlli -

Zaun e (

=

Without loss of generality we can now assume that i = s, and h, = u, (z)s, for z € Q and
n € N. Consider the continuous linear operator

Mg S
T: A (E) 2 A0E s AP (E) = A (P(E))
withS:@@%[2(6”),Sx:(un(z)x) N.Forfec%”ﬁamdxe(5"wehave
ne

T (fx) = (s:f) Sx = 9 (fx) .

Since the set of elementary tensors { fx, feA,xed } C (&) is total we conclude

with Lemma [2.1.7 that s € Mult (L%”ﬁ(éa) e ([2 (@@))) In the following we use a
similar argument to show that

<1

, .
e € Mult (%’i (I°(£)) ,%(é”)) with HMLL/’“L( ([z(,gz)),%ﬂﬁ(g))

holds. Let f € 7], (0) e € 2, x € & and 4 be the mapping from
Lemma [2.1.1] The continuous linear operator

T: 4 (2(8) = (P) 06 "™ 0= 4(6)
acts on the elementary tensor f (Q,x),,c) as

T (f(oznx nGN Z fotpux = e (f(anx)ne[N) )

Because the set

{(00X) peps () e € Pox€ &} C(8).

15



2 Factorization Theorem

is total, we can apply Lemma to conclude ¢ is in
Mult (% (12(&)) ,%(@@)) and

My, = |7

= ||[My®I1d
[ £||L(%([2)®g7%®g)

_ HML‘”L(%(Q)%)
<.

For the final part of the claim observe that

holds for all f € 4, x € & and A € Q. Since h— h(zp) and 59, are in Mult (%ﬂﬁ (5))

the equality h—h (z0) = s holds. Due to 7 (I? (&) = P @ 4 (&) as Hilbert spaces
(cf. Corollary [4.0.6) we conclude that

HMMFH%(Q(@) = H(h”F)nENHifﬁ(P(cf)) = ;)”}’"F”éfﬁ((?)'

Now, we can show that the real part of the Sarason function is always positive.
Corollary 2.1.9. Let F € 7 (&), then we have ReVp > 0.

Proof. Since

1 1

B =5, 0
=Xl @F  1=E ot (2)un () #(2) >

for all z € Q, we have

Y lun(2)* <1
n=0

16



2.1 The main theorem

for all z € Q. If we set h = s, and h, = u, (z)s, for z € Q and all n € N, we get by
Lemmal[2.1.8]

I(s: = 1)FH2<%”£((§’) [[(s: =52 (Zo))FH?;fﬁ(g)

= (1= (z0)) Fli5 )

<Y ||hnFH§z7é(£)
n=0

oo

-1

n=0

- 2
Up (Z>SZF ‘%(5)

(o)

=T (I @P IsF 1B

n=0

— <’§)|un (z)|2> ||SzF|’§zﬂ£(g)

< HSzFH,Z;fﬁ(g)

forall F € 7 (£). Hence we conclude

- <<51F752F>L%’£(£) - (%Eﬂ;@(g) - <F7$zF>;z7é(5) + <F7F>,f~qé(g))

= ||5zF||2yfﬁ(g) —I(s: — 1)F||¢2%ﬂ£(£)
>0

forallz€ Qand F € 7 (&). O
Our next aim is to prove a complete generalization of inequality [(2.T)]

Lemma 2.1.10. For F € (&) the map v: Q x Q — C,

(swF,sF >J££((£“‘)

v(z,w) = <$wF,F>%(g)+<F,sZF>%(£)—HFH_Z%?(@_ .

is positive definite.

17



2 Factorization Theorem

Proof. Forw e Q, letu,,: Q — C, u,,(2) =Y _otn (W)uy (z). Then #(Z) =1—u,(z) for
all z,w € Q and hence

<5WF7 SZF>%

(€)
v (z,w) = (sWF,F)%ﬂﬁ(éa)—k(F,st)%(g)—||F||§fﬁ(g)_ - k
=y (2) <5wF,5zF>;f£(éf>) —((sw = 1) F,(s: — 1)F>;fﬁ(£) :

Letke N, zg,---,zx € Q and ag, - - ,a; € C. We define h = ):f;o a;s;, and
hy =YX yau, (z,)szl for all n € N. Then we obtain

oo

o0 k
Zb”h”FHZ%ﬁ(ff) - Z aiaj <5szvSZiF>;fﬁ(g) Z tn (27) un (1)

i,j=0 n=0

From Lemma 2.1.8 we know that
2 . 2
(= 1(20)) Fll 7 ) < ) 1Ak |5 )
n=0
Finally the claim follows from

k

.ZO" (z1,27) ajai
L, ]=
_ Z aia, (uz (z:) (s, F, sZ1F>% —((s;; = 1) F, (s, — 1)F>%(5))
i,j=0
k
- Sty ( (Lot 0)r (ot} r)
n=0 j=0 i=0 jfé(éa)
— ¥ Il
n=0
k
<(Zal Sz; — Sz; ZO ) (Zal Sz T Sz ZO )> F>
i=0 j{”ﬁ(@ﬁ)

leh Fll;i &)~ IIth— h(ZO))FH%
> 0.
]

In the following we can use the positivity of the map from Lemma [2.1.10]to generalize
the inequality [(2.T)]
Lemma 2.1.11. Let F € (&) and let Vi be the Sarason function. Then

s:(2) IF (D)l <k (2)ReVr (2).
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2.1 The main theorem

Proof. By definition we have

Vr (2) 4+ Vr (W) 2
> = <SWF7F>%(6") + <F75zF>;zﬂﬁ(g) - HFH;Q(@

for all z,w € Q. Due to Lemma[2.1.10|the map

;7 7 N <SWF,SZF>% (éa)
171QXQ—)Cyﬁ(%W):VF(Z)ZVF(W)_ () :
Syl Z

is positive definite. Hence it follows that

s F ||%(g)
s, (z)

for all z € Q. Now let z € Q. Then we have

s (2)°IIF (2117 = 118 (s:F)|I%

< ||5z‘|?;g?é(g)’ ||SZF||2%1E((§)

ReVr (z) — =v(z,2) >0

= H513z*HL(a:) ||5ZF||§272(<?)

=6(3) 5P -

Hence

@) lsF )
<k, (z)ReVr(z).

2
<
¢= Sz (Z) n

s:(2) |F (2)

Now, we apply Lemma 2.1.10|to come closer to the multiplier estimates in
Theorem

Lemma 2.1.12. For i=1,---,N, let f; € span{k; z€ Q} C M. Let (e) be an or-

thonormal basis of &. Set F = ):,51\]:1 fuen. Then we have F € Mult (%,%ﬂﬁ (& )> and
Vi € Mult(s) where F is regarded as a function in 7 (&). For h € Hs, we have

11F 127, ) < Re (Vi) (2.2)

and if a € C with Rea > 0, then

(Ve —a)h|

2 2 — 2
v HARealhF |y ) < 1|V +@) ], (2.3)
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2 Factorization Theorem

Proof. Fori=1,--- ,N let f; :Z?:oai.,jﬁz, where a; ; € C and Zj€EQ
(j=0---,m). For z € Q, we have

n=1 n=1

N N
<F751F>,}fﬁ(£) = <Z fnen, Z szfnen>
4(8)

1=

—

<fk75zfl>jz2 <ek,€l>g

>~

Il
M=

<fkassz><%”£

m m
ar, j’éz,», Z a, jszéz,'
Jj=0 Jj=0 %ﬂﬁ

al@i% <£Zia szﬁz.,- >%7é

=~
I

I
M=

~
I
—

=~
I
(e]

|
M=
T

N
<£Zi7sZ1éZj>jf£ Z ak,iWJ

Il
:ME

i,j=0 k=1
m N
= Z s (2i) £Zj (zi) Z Ak, idk,j
i,j=0 k=1
m
= Y cijka(2)) s (2)
i,j=0
where we set ¢; j = ):5:':1 aay j fori, j=0,--- ,m. Therefore we have

Vr(z) = 2<F75ZF>%%(£) - ||F||2<;f£(g)

= 2ij220cz;ﬂ€zi (z) s (2) = |IF II%(@

for all z € Q and hence Vr € Mult (.#5). Because of Lemmal2.1.10{the map v: Qx Q — C,

(swF. 5zF>,%”ﬁ(£’)

2(2w) = (swF F) oy )+ (Fo5aF) gy ) HFH?%%(@ 0

Ve @)+ Vi) S sFlge)

2 sy (2)

is positive definite. Then a = sv is positive definite by the Schur-Product lemma. Next let
wo, - Wi € Q, ag,- - ,ar € C (k€ N) and set
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2.1 The main theorem
h= Zf:o a;sy,. Then we have

; ((th 1) s, + (Viho ) jfs> <Za,szF Y. aisF >

A (&)

[\

1
= _ ( Z a;aj <Vpswl,swj Z aja; <Vpswj,swl>%>

i,j=0 i,j=0

— Z a;aj <5W[F sWJF><%ﬂ

i,j=0
k . <VFSW,‘7SW">% + <VF5W“7SW,‘>%
e ijzoaiaj J S 5 J s _ <5wiF75WjF>%”ﬁ(£’)
F s, F
_ i . Vi (Wj)-‘r-VF (wi) B <SW’ Wy >3;,2((g’) . (W)
ij=0 o 2 sw; (W)) HOANE

>0.

Therefore inequality [(2.2)] holds for all / € span{s;; z € Q}. Now let h € . be ar-
bitrary. Since J% = \/{s;; z € Q} there exists a sequence (/,),) in span(s;; z € Q)
such that JZs-1lim,,_,.. h, = h. Since we have established inequality for elements of
span{s;; z € Q} we conclude

FnF = P ) = | o = o) F 5,
< Re (Vi (hn— ) sia — ) 1,
<\ VE (Bn—hm) s hn = hin) s,
< My ||y 1hn — hm||ézﬂs
for all n,m € N. Thus, (huF),c) is a Cauchy sequence in .7} (£') and hence
g= L%”ﬁ (&) -lim, . h, F exists. Since the point evaluations on % and

(&) are continuous we have g (z) = &-limy e (1 (2) F (2)) = h (2) F (z) forall z € Q
and thus hF" = g € 7 (&). We conclude that
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2 Factorization Theorem

F € Mult (%’f;,e%”ﬁ(é”)) and that

2 5 2
I ) = Jim P
< lim Re(Vrhp, hn)

n—oo

=Re <VFh’h>jfi§ .
For all h € 7 and a € C, an easy calculation shows
(Ve +a) k%, — || (Ve — a) hl|%, =4ReaRe (Vih,h) ., (2.4)

Therefore inequality easily follows from inequality since
2 2 2
[(VF —a) |, +4ReaHhFH%ﬂﬁ(éa) <||(VF —a)h|, +4ReaRe (Vrh,h) 5.

—\ 2
= |(VF +a) hl| %,
holds for all & € J# and a € C with Rea > 0. O

We can now show that each function F' € % (&) admits even a more general factoriz-
ation than claimed in Theorem [0.0.1l

Proposition 2.1.13. Let F € (&) and a € C with Rea > 0. As before we write VF for
the Sarason function of F. We define functions ¥,,®,: Q — C by
_ Vr(z)—a 2

~ Ve ia and @,(z)= ———F (7).

Ya (Z) N Vi (Z) +a

Then ¥, € Mult (2), ®, € Mult (%@%ﬂﬁ (5)) and
[R5 +Rea|‘q)ah”ifé(é") < ||hl%,

forall h € 7.

Proof. Since ReVr > 0 and Rea > 0, the maps ¥, and &, are well defined. As first
step we prove the assertions in the particular case that F € %? (&) is a function as in

Lemma Fori=1,---,N let f; € span{k; z€ Q} C ;. Then there are m € N
ai;jeCandz; €Q (i=1,---,N, j=0,---,m) with f; = ZT:oai,jﬁzj fori=1,---,N.
Let (e,) be an orthonormal basis of & and set F = ZQ’:O fnen. By Lemma F e
Mult (%’f;,%i(éﬁ) and Vr € Mult (). Now let u € 7 and set h = (Vr +a)u. By
inequality [(2.3)]it follows that

2 2
= IVr = a)ull5, +4RealjuF |5 )

2

+Rea
Hs

2
Vp—a

Vr+a

h Fh (2.5)

Fta

(&)

— 2
< (Ve +a)ul’,

2
= [Ihll5
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2.1 The main theorem

Thus we have proved the claimed inequality for each function
h e (Vp +a) Hz. For h € ((Vp +a) H#)*", we can use inequality |(2.2)|to obtain

0= [((Vi+a)h 1) 1,
> Re ((Vr +a) h,h) 4,
> ||h||§&Rea+\|hF|’%(g)
2
> ||h|%, Rea
> 0.

Since Rea > 0 it follows that ||h|]2%s = 0 and hence & = 0. This shows that
(Vg +a) )" = {0} and thus

(Vr +a) s = Hs.

We now want to show that, for functions F as above we have ¥, € Mult(.%%%) and @, €
Mult (%”5, A, (5)) Thus let i € % and let (h,),) be a sequence in (Vr +a) #s with

h = A&-limy,_, hy,. Then there are u,, € s with h, = (Vp 4 a) u, for all n € N and hence
we have W, h, = (VF — a)u, € % and @ hy, = 2u,F € %72 (&) all n € N. Further we get

inequality [(2.3)]
||\Pahn - ‘Pahm‘ <

1Fin = B

Hs — ¥a (hn_hmﬂbfs Hs

and

”q)ahn — (DahmH%’%(é") = HCI)H (hn - hm) ijﬁ((g’)

inequality[2.5)] 1 ||h N ||
< - _
o vRea noom s

for all n,m € N. Hence (W4hy),,c) and (Pahn), )y are Cauchy sequences in 7, respect-
ively ji”ﬁ (&). Then Hs-lim, e ¥4y, and z%”é (&) -limy, 00 P4y, exist and we can use the
continuity of the point evaluations on ./ and ] (&) to show that

W, h = %-1im, 0. Y, 1, € 7 and O h = %”ﬁ (&) -1limy 00 Pyhy

€ (&) hold. Therefore ¥, € Mult(.#5) and @, € Mult (%,,%”ﬁ (5)) Since ||| s

23



2 Factorization Theorem

-1l G My, and Mg, are continuous, we obtain that:

i

L 2 2
i (I8, + Real oy )

2

2
VF—LZ

Ve +a

2
h

| Fh
Hs

+Rea

Vi +a

A (&)

2

+Rea
Hs

Fhy,

Fta

A (&)

In the second step of we prove the assertions for an arbitrary function F € %ﬂﬁ (&). Since

jfé<£) = \/{fen; fe %”12, ne D\l} and ‘%’72 = span{féz; ZE€ Q} we can approximate F
by a sequence (Fy)ycy in

span{ fe,; f € span{k; z€ Q}, neN}.
We have already seen that the functions W, n: Q — C and ®, 5 : Q — & defined by

2

and D,y (2) = V(o) +a
N

Fy (z)

are in Mult (%), respectively Mult <%’f;,%(£)> with HM\{;‘LNHL(%) <1
and ||Ms,

< 1
‘L(jz{;,j@(@m)) S Trea By Remark [2.1.6/ the sequence (Vg )y converges

pointwise to V. Therefore (W, n)y ey and (Pan)yey converge pointwise to ¥, and @,
and hence limy_yeo (Ponh) (2) = (Poh) (2) and E-limy_yeo (Pynh) (2) = (Pgh) (z) for all
z€ Qand h € 5. By Corollary|4.0.2|we have ¥, € Mult (.#%), @, € Mult (%ﬂs, %”ﬁ ((5"))

and ((Wanh, Panh))yey converges weakly to (Woh, ®4h). Because of that we can use
Proposition to deduce

2 2

[¥ahl, +Rea[@ahlly s
. 2 L 2

< liminf o vkl +Realiminf [@qxh3y s
. 2 2

< l%n_:gf (HleNhH%g +Rea ||q)a7Nh||%7é(£))

< 1A%

for all h € . O
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2.1 The main theorem

We proof the following Lemma to show the direction (b) to (a) in Theorem|[0.0.1}i) and
the uniqueness of the factorization in Theorem ii).

Lemma 2.1.14. Let ¥ € C* and ® € & be maps with ¥ € Mult (#z),
® € Mult (%”s,ji”ﬁ (& )) and such that

2 2 2
||Th||%+||¢h||%(@@) < [[1ll5 (2.6)

holds for all h € .

(i) Then, for 0 <r <1, the function F, = % is well defined and
F, € Mult (ﬁ@,%ﬁ(éa)) with

1+r¥
HFth?%?z(g) < Re< — r\Ph h> (he ). 2.7)

In particular, F, = Fysy, € 7 (&)

3 o (&)
(ii) If |y (z0)| < Land 1 ¢ ¥ (Q) then F = 1= € (&), Tw

the map a: Q x Q — C with

-lim,_; F, = F and
0<r<1

e ew) =50 (2 <1 Y@, Ty (W)

l-y(z)  1- w(w)) ~2swFsF) 6

for all z,w € Q is positive definite.

Proof. (i) Fix 0 <r < 1. By inequality|(2.6)| we have |[Muw|[; ) < 1. Hence it holds that

o (My) C D = {z € C; |z| < 1}. Therefore the operator
M1y =r (+1d 4, —My) is invertible for 0 < r < 1. Since the constant function 1: Q —
Cis in J7, there exists g € % such that M- rw)g = 1. Hence (1—r¥)(z)g(z) =1 for

allz€ Qand — \P € Js. Because 1—ph = M( )h is in % for all h € 7, we indeed
have W € Mult (). Since @ is an element of Mult (jfs,jfﬁ (& )) it follows that

F, € Mult (%ﬂs, 7, (& )) Using inequality |(2.6)|and the fact that 0 < r < 1 we conclude
that

P 1A %, + H<I>h||§fﬁ(g) <kl (he ).

Applying this inequality to ;—h we get

2

2 ¥
1—r¥

1
1l e, < H h -
1= 1—rv ”
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2 Factorization Theorem

for all h € 5. Using the identities

14+r¥ 2rv dl+r‘I‘+ 2
— — n —_—
1—r¥Y — e T Ty 1—-r¥
we obtain inequality [(2.7)|because
H : 2 H =0
1 H 2 P H 2y |
4\ (| 1-r¥Y e 1-r¥ e
1 1 +r¥ 1+r¥
= — 1|h 1|h
4 1—r‘P+ > ’(1—r‘P+ ) e

1-|—r‘I’_1 h, 1-|—r‘P_1 L
1—r¥ 1—r¥ e
1

for all h € 4.

(ii) Suppose that 1 # ¥ (). Then we have &-lim,_,; F,(z) = F (z) for all z € Q, and
0<r<1
using the identity s,; = 1, we conclude that

IF 1) = szl e

<R 14+r¥Y
e({ —m—s S
= 1—1"\P 209 °20 %

1+7r¥(z0)

1 —r¥(z0)
L+ [P (zo)]

~1=[r¥(20)
1+[¥(20)|

~ 1= % (20)]

for all 0 < r < 1. Therefore Theorem yields F € 7 (&) and
H(8)
Tw

—Re

'llmr_>1 Fr :F.
0<r<1
We now want to show that the map a: Q x Q — C,

a(z,w) = sy (2) (1 t ;{8 + 1 tzgx» - 2<st,st>%(g) (2.8)
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2.1 The main theorem

is positive definite. Letay, -+ ,a, €C, 21, ,2, € Q and set h = YL a;s;;. Since M), €
L (%’z (5)) the map My,: (&) — (&) is weakly continuous. Setting r = (1 - 5)
for all k € N, we can use Proposition 4.0.3|and inequality |(2.7)[to get

n
Y, aid@j(s;F5,F) o, 0
ij=1 ¢
2
= 1 e
. 2
< llggf||hFrk||%(£)

1
—}—rk‘Ph,h
l—rklP %

i 1 v
= limsupRe Z a;a; < + 7 >
H

Szi15z;
k—oo ij=1 1 —nt¥

1l (1+n¥(z) T+nY(w)
2 i;jzzll e (1 —n¥(zj) 1-n¥(z) < ()

e 1+¥(5)  1+%(@)
— Ez:: a;a;sz; (Zj) (1—‘}‘(21') + ]—lP(Zi)>.

Therefore we have

<limsupRe
n—soo

n
Y. aidja(zi,z) > 0.
=1

]

Remark 2.1.15. For a domain Q C C" and a functional Hilbert space .7z C & (Q) we
can conclude with inequality |(2.6)| that |¥| < 1 on Q if ® # 0. This follows from the
maximum principle and the inequality [|'¥||q < |[Mwl|; -

We, finally show Theorem [0.0.1]

Theorem 2.1.16. (i) For F € &2, the following are equivalent:
(a) F € %ﬂﬁ(cg") with HF||<%7€(§) <1.

(b) There exist ¥ € C® with ¥ (z0) =0, 1 ¢ ¥(Q) and ® € &2 such that ¥ €
Mult (#2), ® € Mult (ffg;q (5)>,

2 2 2
WAl 5, + Hq’h\bﬁé(cf) < (1Al %

forallh € 5 and F = %5.
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2 Factorization Theorem

(ii) If F € A} (&) with HFH(%%(@ = 1 then the factorization from (b) is uniquely given
by
Vi —1 2
=" d

= and d = F.
Vr+1 Vr+1

Proof. (i) (a)=(b) If F € %’i (&) with ||F H%pﬁ (&) = 1, then (b) follows from (a) by Pro-

position[2.1.13|with a = 1, ¥ = | and @ = ®;. Observe that since V¢ (z9) = 1 we have
¥ (z0) =0. If HFH%?&(@@) < 1, we get (b) from (a) as follows: For w € Q, set

- HFH%&(&)

1av - Ia ————z;jz;;s————-ﬁw

Then F, € 7 (& & C) with

Il soc) = 1P e+ (1- 1P )

The Sarason function of F;, is
Vi, =Vr+ (1 - ||F||§zﬂ£(£)) (25— 1).

Let ¥,, € C2, @, € (& ® C)® be the functions corresponding to F,, from
Proposition 2.1.13| with @ = 1 and Py be the orthogonal projection from & & C onto &.
Then the claim follows with ¥ = W,, and & = P~®,, since F = %chbw.

(b)=-(a) If we assume (b), then the assumptions from Lemma @ (i1) hold. Using
Ay (&)
the notations from Lemma 2.1.14) we therefore get F € 7} (&) and 7, ¢

-lim,y Fp =
0<r<1

F. Setting r, = (1 - ﬁ) (k € N) and applying inequality |(2.7)| with h = 1 € s we
conclude

F < liminf || F;., || .
| ||;z72(5) < liminf | rk||jf£(éa)

|+ 1%
< liminfRe { — "%~ 1 1

= liminfRe < _—

k—>oo0

= liminfRe I—Frk—‘P(m)
k—s00 1 —r'¥ (z0)

=1
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2.1 The main theorem

due to Proposition #.0.3]

(i) Leta: Q x Q — C,

a(z,w) =s,(2) <1+W(Z) + 1+W(W)) —2<sWF,sZF>%pﬁ(g)

l-y(z) 1-wy(w)

be the positive definite map from Lemma[2.1.14] Since W(z9) =0 and ||F || H(6) = 1, we

have a (zp,z0) = 0 and thus

=

2
2 2
|a (2, 20) < lazll%e, lazllSg = @ (20,20)a(2,2) =0

<a27azo>%a
for all z € Q. We obtain a(z,z9) = 0 and hence

1+%¥(2)

1_—\P(Z):2<F,SZF>J«ZZ(5)—1 :VF(Z)

for all z € Q. Finally this yields

Ve~ 1 and ® = 2
VF+1 Vr+1

F.
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2 Factorization Theorem

2.2 Applications

In general it is difficult to characterize the multipliers of a complete Nevanlinna-Pick
space. We next indicate how to construct multipliers using a weak integral as explained
in [15, Thm 3.17] and the Sarason function.

For a subset M of a vector space X we denote by

co(M) = ﬂ C

MCC, C convex
the convex hull of M.

Proposition 2.2.1. Let H|,H, be Hilbert spaces and let C C L(Hy,H>») be a Twor-
compact subset. Then the twor-closed convex hull co (C)TwoT C L(Hy,Hy) is Twor-
compact again.

Proof. By [12, §20.6 (3)] it suffices to show that (L(H;,H;),Twor) is quasi-complete.
Let therefore (7),c4 be a bounded Cauchy net in (L (H;,H>),Twor). By the uniform
boundedness principle the net (7Ty) aea 18 also norm-bounded. Fix x € Hy and y € H;.
Since ((Tax,y)) 4ea is @ Cauchy net in C, limg (Tox,y) exists. Now set

(,): HH xHy — C, (x,y) = liOrCn<Tax,y)

Then (-, -) is sesquilinear and continuous, since (7)., is norm-bounded. Using the fact
that, for each continuous sesquilinear form

(n): HHxHy—C
there is a continuous linear operator T € L(H;,H,) with
(6,y) = (Tx,y) (x€Hi,y€H),
it follows that (L (Hy,H> ), Twor) is quasi-complete. O
Theorem 2.2.2. Let F € (&), x € (0,%0) and L a finite positive Borel-measure on R

with compact support. Then, setting

CI>:Q—>c5",<I>(z)=/ F) dp (y)

supp(u) VF (2) +x —1iy

we have ® € Mult (j‘/f;,%’ﬁ (5))

_F
Vr+x—iy*

@, € Mult (%,%7;(5)) with [[Me,|

Proof. Forally € R, set ¢, = By Proposition|2.1.13|we have

< forally € R. Set
L(Aerye)) ~ Y

£+ (supp () 7)) = (L (e 7(8) ) sowor ), £ () = M,
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2.2 Applications

Next, we show that f is continuous. Therefore, let y € supp (i) and (yq)geq @ net in
supp () with R-limgyq = y. Further, fix h € 5\ {0}. Forallz€ Qandv € &, we
conclude that

F(2)h(z) >
&

hén (Mg, h, fzv>%i(g) = hortn < V)t v Vv
< F(2)h(z) >
= - ,V
V() +x—iy /s
= <M¢yh,ﬁzv>jf£(g) :
Since (M%,a ) wed is norm-bounded, the set
{G € A (8); li&n<M(pmh,G>%(g) = <M(pyh,G>%(g)} C A (&)

is a closed linear subspace. Thus the continuity of f follows. By [[15, Thm 3.17] and
Proposition [2.2.1| the weak integral

| rdueco(flsupp ()™
supp(K)

exists. By Proposition 1.7.9 in [6] the set

{M(,,; ¢ € Mult (st%”ﬁ (@@)) } cL (%ﬂs%ﬂﬁ (5))

is a Twor-closed linear subspace. Hence there is a function ¢ € Mult <%, 7, (& )> such

that [,,,u) fdlt = Mg. Now, let z € Q and set

e (L(H(8)) twor) = (£,5,), T=T (1) (2).

Since weak integrals are compatible with continuous linear maps, it follows that

Z d = b4 d
. </supp(u)f 'u> /supp(u)g (du

F
= weak — (@)

supp(w) VF (2) +x—iy

du(y).

Here the last integral denotes the weak (&, 7,,)-valued integral from [15]. Since the &-
valued Lebesgue-integral

F(2)
—0d =P(z
/Supp(u) VF (z) +x—iy Ho) )
exists, we have
F(z)
z:s/ fd):/ ———du(y)=®(z
¢ Z( supp(Lt) H supp(u) VF (2) +x— iy W) )
for all z € Q. ]
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2 Factorization Theorem

With Theorem [2.1.16|it is easy to check that the elements of %’z (&) have the same

zero sets as functions in Mult (%ﬂs, %‘z (& )) We extend this idea to prove a result about
multiplier invariant subspaces.

Definition 2.2.3. A closed subspace ./ C ] (&) is called multiplier invariant if
My # C # for all ¢ € Mult (%’i (é“))

Remark 2.2.4. Let S C .7 (&) be an arbitrary subset. Then

5] =\/ ((pF; ¢ € Mult <%”12 (csa)) Fe S)

is the smallest multiplier invariant subspace in 7 (&) which contains S. If § = {F}
consists of a single function, we write [F] = [{F}].

Corollary 2.2.5. Let F € 7 (&) be a function with HF”%ﬁ(é”) = 1 and consider a fac-

torization F = 155 as in Theorem Then we have [F| = [®]. In particular, every
multiplier invariant subspace of 7 (&) is generated by elements of Mult (%”5, A (& ))

Proof. LetF = % be a factorization as in Theorem[2.1.16] As (1 —¥)Ids is an element
of Mult (%ﬂﬁ (5)) by Lemma(2.1.3} we conclude that ® = (1 —¥)F € [F]. For0 <r < 1,
we have by the proof of Lemma2.1.14|that F" = ﬁ@ € [®P] and

T,- lim F"=F.
r—1,0<r<1

Since [®] is convex as a subspace, it is also 7,-closed. Hence, we have F' € [®]. The
remaining assertion obviously follows from the first part of the corollary. U

In the last part of this chapter we want to consider so called extremal functions.

Definition 2.2.6. A function F' € 7] (&) is called extremal if
<(PF7F>%)£(£) = ¢ (20)

holds for all ¢ € Mult (%2)

With the aid of Theorem [2.1.16] we can show some interesting results for these func-
tions.

Remark 2.2.7. If F is extremal in .7} (&), then ||F||%(g) =1and
Ve (z) = 2(F,s,F)— 1 = 1.

Therefore with the notations of Theorem we obtain that ¥ =0 and ® = F.
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2.2 Applications

Corollary 2.2.8. Every extremal function F € %ﬂﬁ (&) is a contractive multiplier from s
into 7 (&) and

ﬁz (2)

2 (2

IF ()l <

tn

~—

holds for all z € Q.

Proof. The first assertion follows by Theorem [2.1.16] since @ = F. The second part
follows by Lemma 2.1.11 0

Corollary 2.2.9. For z € Q, we denote the set

u(z)u(z)*; u € Mult (% (%) ,%) ,u(z0) =0, || M, <1

L(J(%([%,Jf%)
by A; and set
oy (z) = supA.

IfF is extremal in 7 (&), then

IF @I < (1-9(2) k)
forall z € Q.

Proof. If Mult (jfz (1) ,jﬁ?) consists only of the constant zero function, there is nothing

to show. If there is a u € Mult (%”ﬁ (1) ,%’@ with u (z0) = 0 and ||M,|| <1
L)
which is not the zero function, then s: Q x Q — C,
1

RPN

defines a normalized complete Nevanlinna-Pick kernel. Then Lemma[2.1.3|shows that the

map g = é is positive definite. By Corollary |2.2.8| we obtain, for every extremal function

F € A (&) that

2 *
IF (2)]le < (1 —u(z)u(2)")k ()
holds for all z € Q. Thus, the assertion follows. O]

In the following let B; C C¢ be the open Euclidean unit ball.
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2 Factorization Theorem

Proposition 2.2.10. Let fﬁé C CB be a functional Hilbert space given by a reproducing
kernel k: By x By — C and let ¢ : By — L ((Dd, (D) be defined by

d
¢ (z) (o) = ;zzai.

Then @ € Mult (% (c9) 7%7;(@0 with HprHL(jf

< 1 or equivalently, the
. ﬁ(cd)’jff((ﬁ))

d
tuple M, = (M,,....M;,) €L (%2) consisting of the multiplication operators with the
coordinate functions is a well-defined row contraction on %”ﬁ if and only if the map

By x By — C, (z,w) = k(z,w) (1 — (z,w)ca)

is positive definite or if and only if there is a positive definite function g: By x By — C
with

1
k(z,w)=g(z,w) ———— weB,).
(z,w) =g(z W)1—<z,w>cd (z,w € Ba)
Proof. This follows from [5, Satz 1.11 (b)]. O
Let
By x By — C, s(z,w) :
s: ,s(zw) = ————
47 ¢ 1 —(z,w)¢a

be the reproducing kernel of the Drury-Arveson space, g: By x By — C a positive def-
inite map and k = sg, such that jfﬁ consists of analytic functions. By Proposition [2.2.10

d
) €L (%’i) consisting of the multiplication

operators with the coordinate functions is a well-defined row contraction on %’% By
[11, Satz 2.1.7] the row contraction M, is even pure.

it follows that the tuple M, = (M;,,...,M.

For ot = (0y,...,04) € N9\ {0}, we write z* for the function
By — C, zr> 20" z5e.

In [7] a function 8: B¢ — L(C,&) is called k-inner if O1¢ € HL(E), HGl(DH%%(@@) =1

and
<Za91(j,61([:>‘%0£(£)) =0

holds for all a@ € N¥\ {0}.
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2.2 Applications

Remark 2.2.11. By [6, Proposition 1.7.9] the subalgebra
M (%”ﬁ (@@)) - {M(,,; ¢ € Mult (in (5’))} cL (% (5))
is 74-closed. Identifying Mult <%ﬂﬁ (5)) with M (%@ (5’)) via the map
Mult (%ﬂﬁ (5)) oM (fq (@) @M,

we call the topology induced by 7, on Mult (%ﬂﬁ (& )) the weak™-topology on
Mult (%”ﬁ(éa )> An application of [8, Lemma 1.16] and [|6, Proposition 1.7.11] yields
that the map

Mult (%) — Mult (j‘/% (é")) , @ — @ldg

is weak™-continuous.

By the following Remark and [7] we see that extremal functions play an essential role
in the theory of wandering subspaces for shift-invariant subspaces.

Remark 2.2.12. For an extremal function F' € 7} (&), the map

FUEE) B! S L(C,&), FHC9 (2) (L) = AF (2)
is obviously k-inner. Indeed, by definition HFH;%(g) =1 and (zO‘F,Fb%(éa) =z%(0)=0
for all o € N7\ {0}

——weak

Set s (k) = C[Z] C Mult (%”0 With Theorem [2.1.16| we get the following

equivalence for k-inner functions:

Proposition 2.2.13. For F € ‘%72 (&), the following conditions are equivalent:
(i) FHCE) . B! 5 L(C,&), FUCE) () (A) = AF (2) is k-inner,

(ii) F € Mult (%,ffz(@@)) with [[Fl ) = 1M | —1,

L5y
(iii) V= 1 and ||F|

e =1
(iv) ((pF,F)%%(@@) =@ (0) for all ¢ € 7 (k).

Proof. (1)=-(ii) Let F/ L(C.%) be k-inner. By [7, Theorem 6.2], the function F is a contract-
ive multiplier from /5 to .7 (£). But then

1> HMFHL( = HMFl%H,%ﬂﬁ((f) = HFH%‘;E(@’) =1

5. Ay (6) )
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2 Factorization Theorem

e,

(ii)=-(iii) Since || F| (6 = 1 we can use the uniqueness of the decomposition F' = 1=

from Theorem [2.1.16| (ii) to see that & = F and ¥ = 0. Thus we deduce Vp = 1.

1—

(iii)=-(i) Let Vr = 1. Because of ||F|| 46) = 1 the equation

<F75zF>Jf£(g) =1=15.(0)

holds for all z € B,. Since the functions B; — C, z+— z; (i=1,...,d) are elements of

Mult (.#%) the map z% (o € N?) can be approximated by a sequence (<p,§"‘)> . with
ne

Ny
o\ = Y az((n)sz;(,n € span{s;; z € By}

k=0
in . By Theorem [2.1.16|(ii)

F=® e Mult| s, (&) ) with |M <1.
( s ( )> | F”L(%,%(ﬁ))
Thus, we conclude
(@) @) < lol® _ ol®
’ P E = O FH%%(@@) - ‘ Pn "

for all n,m € N. Hence ((p,(,a)F ) . is a Cauchy sequence and
ne
g = lim o\")F € /(&)
nseo 1" k
exists. Since the point evaluations on jfé (&) are continuous, we have

¢(2) = lim i”) () F (2) = 2%F (2)

n—soo

for all z € B, and hence

o . . (a)
(z Ffbf@(éﬂ) —<,}513°"’" F’F>%<£>

— lim <<p,§“)F,F>

e #(6)
Nn
= 1im (Y a"s, F,F
TN #4(8)
N
=1im ¥ a\"s,,, (0)
n%ook:O
_ lim 0@
= lim @, (0)
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2.2 Applications

(iv)=-(i) By (iv) we obtain that || F |

(8) = <1F7F>f(}z(£’) =l and <Z“F,F>;fz(g) =2%(0)
=0 for all o € N¥\ {0}, since 1 and z* are in 7 (k). Hence the map FL(C4): B4 —
L(C,&) is k-inner.

()=(iv) Let @ € = (k) and (;),; be a net in C [z] with ¢; = Yal<n; ag)z“ (iel)and
weak™ -lim;e; @; = @ in Mult (%) Hence weak™ -lim;c; ¢; = ¢ also in Mult (’%ﬂﬁ (& ))
by Remark [2.2.11| above. Since FX(®4) is k-inner we have (z“F,F>%pﬁ((g) = 0 for all

a € N\ {0} and thus

_ llj€r51<M¢i1%,ﬁo>%
= 1l.ief§1<(l’iyﬁo>jf{é
= 1im ¢;(0)

€ alz, k

=lim <M<piF=F>%J£(5)
= <§DF=F>,%”£(£)

]

Remark 2.2.14. In [6, Example 3.2.3] it is shown that under the additional assumption
k(e"z,e"w) =k(z,w)

for all z,w € B, and ¢ € R the identity
7 (§) = Mult ()

holds. In this case condition (iv) is equivalent to the assertion that F' is extremal.
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3 Multiplier Theorem

3.1 A multiplier criterion

Let F be an element of in (&). In the following we want to describe a sufficient condi-
tion for F' to be a multiplier from /5 to 7 (&’). Under suitable additional hypotheses

we show that F € Mult (,%”5, ,%”ﬁ (& )), whenever the real part of its Sarason function is
bounded.

In the following, where not otherwise stated, all function will spaces be C-valued. For
a measure space (X,0, ) and a given Banach space E we denote by £y (u,E) the u-
measurable functions. Here a function f: X — E is said to be p-measurable if there is a
sequence ( f j) of simple functions such that f; — f u-almost everywhere as j — oo (for
more details see [[3, X.1 Measurable functions]). Let € be an open subset of R4, Ui, Uk
finite positive measures on the Borel-c-Algebra B (). Suppose that 7 = 7 nch (Q) c

A}, (N € N) is dense and Mult (7#5) C CN (Q). Let (ag)>| . (I=1,...,K) be families
04

of 1;-measurable functions on Q and let ¢y, ¢ > 0. Further suppose

mw%_z/ Y douf (2

|| <N

duz () <c ||f||?;fi2 3.1)

holds for all f € 2. Then the operators

V9w, V=Y a¥a% (1=1,.. K

|a|<N

are well defined and linear with

K
e 713 < Yo || <l (3.2)
=1

()

forall f € 2. Foragiven Hilbert space &andl=1,...,K, letLg): D Raig & — L2 (1, 8)

be the linear map with L ( f@x) =LY (f)x for f € 2 and x € &. One can show that
each element f € (2 ®a1g &)\ {0} can be written as f = Yo fi®x;with fi,....f, €2
and a suitable orthonormal system (x j);':O' For any f of this form, we use the identity
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3 Multiplier Theorem

£ L0,

_Zz 1H fH - to obtain

ci Hfu%((f’) = Z Hf/H% (3.3)
K
<L [e's

<a i,
j=1

L2(w,6)

= callfl3g e

Remark 3.1.1. From the above assumptions that & = %] NCN(Q) and Mult (%) C

CN (Q) it follows that Mult (%) 2 C 9 (see Lemma[2.1.3)) and
span{s;; z € Q} (2 ®Rug &) C D Qug &.

Remark 3.1.2. For F € 7 (&), x > 0and 1 € R, Proposition 2.1.13|shows that

1 1 (1 Vi —(x+it)

2x Vi + (x —ir)

[ — N
Vetx—it  2x ) Mult(As) € C7(€).

Since 2 @aig & = {Y[_ fixis fi € 2,x; € &} and inequality [(3.3)| holds for all F in the

dense subspace Z ®,1g & C f%”ﬁ ®RE = Jﬁ (&), the operators Léa) LD Rag & — £2(uy, &)
(I=1,...,K) extend uniquely to bounded linear operators

L A4 (8) — L (. 6)

o (g)- [ ()

such that the estimates

with

Froonfr €Dt xe € 6)

K 2
< 2 .
I1F e < L2874, o, = 1P Bree (34)
hold for all F € 7 (&).

In [[10] Kaluza studied weighted Bergman spaces AL, (ot € R, p € [1,%0)). The spaces
A2 = 0 (By)NL?(By,vq) (a > —1) are equipped with the norm

ocz(/{Bd|f<z)|2dva<z>>é (f €43)
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3.1 A multiplier criterion

o
where Vo = cq (1 — ]z|2> v, v is the normalized Lebesgue measure on B, and ¢y is a

normalization constant turning Vv, into a probability measure. Let

d
R: 0 (Bg) = O (Ba), (Rf)(2) = ) 25 (9o f) (),
H=1

be the operator associating with each function in & (By) its radial derivative. One can
show ([|10, Lemma 3.10]) that, for N € N*, there are coefficients cy o € N (0 < || < N)
such that

R @)= Y naz®(0%)(2) (f€O(Bs),z€By).

0<|at| <N

Let o € R and let N € N be the smallest natural number such that o« +2N > —1. The
linear subspace

AL =1{f€ 0 (By); R f € L*(By,Vaion)} C O (By)

equipped with the norm

e =17 @1+ ([ 1P avaian(2)

becomes a continuously embedded Banach space A% C & (By) [10, Satz 5.11]. Let us fix
areal number & > — (d +1). One can show that

Td+1+oa) —
A2 x A2 - C, amz", by7" ) = " amb
o <m§N " mEZN " mGZWF(d+1+|m|+oc> -

is a well-defined scalar product which turns A2, into a functional Hilbert space with re-
producing kernel |10, p. 127]

1

Ko (z,w) = (1— (z,w))d+a+l

(Z,W S [Bd) .

By a standard application of the closed graph theorem the norm ||-||, ,, is equivalent to the
norm of A2 as a functional Hilbert space with reproducing kernel K. In the following
we consider A2 as a reproducing kernel Hilbert space. For —(d+1) < a < —d, the
spaces A2, are known to be complete Nevanlinna-Pick spaces normalized at zo = 0. For

o > —d, the tuple M; € L (A%C)d is a well-defined row contraction and hence K, = K_dg
with the normalized complete Nevanlinna-Pick kernel K_; and a suitable positive definite
kernel g. The space A% 4 18 the Drury-Arveson space, the space A%l = H?(B,) is the
Hardy space on B, and A3 = L2 (By) is the unweighted Bergman space. It is elementary
to check that the functional Hilbert spaces A2 with & > — (d + 1) satisfy condition
with K =2, uy = 8, ty = Vaion. 2 = AZ and LW : AZ — [2(&), f— f, LD =
RNI A(zx — L2 ([Bd, Voc+2N)-
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3 Multiplier Theorem

Proposition 3.1.3. Let a,b € C with Rea,Reb > 0, then
* 1 1
dy=2mx.
/oo (a—iy * b+iy> Y

L1 a+b
a—iy b+iy (y+ia)(y—ib)

Proof. We have

for all y € R. Since Rea,Reb > 0 the function

1
(z+ia) (z—ib)

fi{zeCiImz>0} —=C, f(z) =

has only the simple pole ¢ = ib. Thus, by a standard result from function theory we
conclude

1 1
res(f,¢) =lim(z—c) f(c) = lim —— i(a+Db)

Hence, by a corollary of the residue theorem we have

*° 1 1 « 1
/. (a—iy " b+iy) dy=(o+0) [ _ O+ia) = ib) "
= (a+b)(2mires(f,c))
=27.

In the following we denote by H = {z € C; Rez > 0} the right half plane in C and by

Rez
7 ((Re2)” + (Imz—1)?)

P:HxR—R, P(zt) =

the Poisson kernel on the right half plane. Let v: H — R be continuous, bounded and
subharmonic on H. Since the map C — C, z+— —iz is holomorphic, the function

7:{z€C; Imz >0} = R, ¥(z) =v(—iz)

is continuous, bounded and subharmonic on {z € C; Imz > 0} by Proposition[4.0.7]
Therefore

Imz)”+(Rez—1)°)

Joa L v(t)dt forze {zeC;Imz>0},
uy (z) = ((
V(2) forz€ d{z€C; Imz>0}.

is continuous, bounded with |||, and harmonic on {z € C; Imz > 0} by [4, 7.3].
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3.1 A multiplier criterion

Theorem 3.1.4. If v: H — R is continuous, bounded and subharmonic on H, then we
have

v(z) S/ P(z,t)v(it)dt < o
forallz€ H.

Proof. Setu: H — R,

u(z) = JZuP(z,t)v(it)dt  forz e H,
o v(z) for z € dH.

Then an easy calculation shows that u is continuous, bounded by ||v||., and harmonic on
H, since u(z) = uy (—_lz) for all z € H. For k € N>, we define

— 1
e H = R, hi(2) = v(2) —u(z) = loglz+1].
Since log|z+ 1| and u are harmonic on H and v is subharmonic on H we deduce that 7
is subharmonic on H as sum of subharmonic functions. Next let zo € H be arbitrary. Set
Ak = eZHV”ook and

G ={z€C; 0 <Rez < max(2Rezp,Ax),|Imz| < max (2|Imzo|,Az)} .

Then zo € G C H and G is simply connected. Since v(z) —u(z) < 2|v|., forall z € H
and

1 1
Floglz+ 1] = - logAr = 2],
for all z € dG with Rez > 0, we have 7 (z) < 0 for all z € dG. Since Ay is continuous on

G and subharmonic on G, we have / (z) < 0 for all z € G by [4, 11.3] and in particular
hy (zo) < 0. Thus, we conclude

v(20) —u(z0) = lim hy (z0) < 0.

Since zg € H was chosen arbitrary, the claim holds. O]

Proposition 3.1.5. Let U C C be open, & a Hilbert space, f: U — & holomorphic and
p € [1,00). Then, the function

U—=R z= @)

is continuous, bounded and subharmonic on U.

43



3 Multiplier Theorem

Proof. Letw € & and D, (z9) C U. Then we have by Cauchy’s integral formula:

(f (20) W) = 7 i . Yews) .

2T Z—20
17 it
:%/RO‘(ZO—H@ ),w>£dt.

Thus, we conclude

|(f (z0) / f(zo+re"),w) |dt
/ Hf z0+re HgdtHWHg

and in particular

L /7 ;
If Go)llz < 57 | IF Gotre) el o)l

Therefore

1 /= .
1f Gzo)lls < 5~ %Hf(ZoJrre”)Hgdt
and

U—R 2= 7@l

is subharmonic. One can easily show that ¢: R — R,

(x) xP forx >0,
XxX) =
¢ 0 forx <0

is monotonically increasing and convex for 1 < p < . Hence
U—=R z=If @l =If @Il (1<p<eo)
is subharmonic. 0

Proposition 3.1.6. Let g € CV (Q) be a function with 0 ¢ g (Q). Then for B € N with
Bl =j€{1,...,N} the partial derivative 3P (é) is a linear combination of functions of
the form

i—1(d%g)
P

where k€ {1,...,j}, re{l,....j}and ay,..., & € N?\ {0} are multindices with

lo |+ 4oy = .
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3.1 A multiplier criterion

Proof. This assertion follows by a finite inductionon j =1,...,N. [

Remark 3.1.7. For F € (&) and w € C with Rew > 0 we have Vp_:uw € Mult () C
CN (Q) by Remark and thus for B € N? with |[B| = j € {1,...,N}, it follows that

J
B
J <VF—|—W> kgl k+l B.k

with suitable functions bg ; = bg x (F) € C () not depending on w.

Remark 3.1.8. For F € 73, (&), w € CwithRew>0and f=Y7_| fiQx; € Z ®@q, &, We
find that

I
-
il
A~
=
+ =
<
-
R

Il
_

Il
™-
Q
R=
¥
e

T
=
IA
=

[
D1~
+ 7~ N\ N
=™ K
N———
Q
RS
Qv
=
VR
=
+ it
=
N———
/N
QO
7
=
=
N——
=

i=1|o|<NO<B<ax
=) y (“)aé?aﬁ (—1 )(a“—ﬁf)
Ve+w =N 0B <a B Ve +w
1 N 1 a\
aB( ) ( ) () (Ho—B
Ve +w éa ; Z: Vi+w |a|§§’ﬁ§a B ) ( f)
1 \- L8
:VF+W 5 ; k+1 g (f)7

with linear maps L(éi’k) 1 D Rag & — Lo (W, &) acting as

HOO-F T ¥ (p)ad (0)

J=k|Bl=j lot|<N.B<c

Note that the operators Lg’k): D @aig & — Lo (l,&) are partial differential operators
acting as

L9 (=Y M)

|a|<N—1
o k) (k) :
with suitably defined functions ¢y’ = cg" (F) € £0 (). Defining

L(él?()) () @®alg(ga_>£ (auhég)a
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3 Multiplier Theorem

the above result can be written as

N
m(_f 1 )
L =) — il I=1... K.feP0.E).
Y () Ll ) (=1 K € T8 6)

Lemma 3.1.9. Let Q,ul,Lg) forl=1,... K, %72 and 9 be as above. Let by, -+ ,b,, € C,
20, " ,Zm € &, and h = Z;'n:obiszr Let F = Z;:Oﬁ R x; € @®a1g(gg with fo,....fr € D
and an orthonormal system (x;);_,. By Vg we denote the Sarason function of F. Then we
have

HLU) (hF) (2) H2
hrer o

duy (z) < Cw |13
RCVF (Z)+3)2N+1 Hs
for some Cy >0andalll =1,... K.

Proof. Fix [ € {I=1,...,K}. Since ReVr > 0 and Vf is in Mult(2#%) C CY (Q), the

measurable function m is bounded. By Remark 3.1.1} AF is in & ®y, & and
F

0, el
HLg hFHg
ReVp+3)2N !

ﬁh € Js by Remark[3.1.2| By Proposition|2.1.13|and an easy calculation we conclude
for a € C with Rea > 0

thus since Lg)hF is square integrable the function is integrable. Note that

2

4Rea hF

Ve +a

A (&)
2

d
Hs

1
:4ReaRe< _h,h> —4(Rea)*
V %

Vi —
Ve+a

2
< i, -|

1 2

Vi +a

Fta

1
§4ReaRe< _h,h> .
VF+a %

Hence, inequality [(3.3)] yields

og/
Q

<y

Hs

2

du (z)
&

1) 1
Ly (Vp+ahF> (z)

2

hF

Vrta g

1
§62R6< _h,h> .
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3.1 A multiplier criterion

Next let a = x+ iy with x > 0 be arbitrary. By Proposition we have

o0 1 1
/ —t+ = dy =2rm.
—o \ VF(2) +x =iy Vp(w)+x+iy

for all z,w € Q. We now want to show that R x Q — R,

0 G
Ls <VF +x—it> @)

is (A x u;)-measurable where G =Y} | g ®y; € Z ®q, & is a fixed element with

2
(t,2) —

&

g1,---,8s € Z and an orthonormal system (y;);_; in &. Then ﬁ =Y, %yi €
9 Ra1g € and
2 2
(1) G _y 0 8i
L —_— = L —_—
’ 4 (Vp—l—x—it) @), ; Vrta—i)

To show that R x Q — R,

2
(t,2) —

0) G
Le (vp +x—it> @)

is (A x u;)-measurable, it hence suffices to show that, for g € &, the function R x Q — C,

R =G L alor ()@

Ve+x—it Ve+x—it

&

is (A x p;)-measurable. Because of
o 8 _ o\ B 1 oa—
o (Vp+x—it)(z)_0§§'§a <ﬁ>8 (VF—l—x—it) 2) (a g> (2)

it suffices to show the (A x y;)-measurability of R x Q — C,

(t,2) > 9P (;) (2).

Vr+x—it

But since

N
Ve x € Mult(7%) C C™ (Q)

by Remark [3.1.2]the function R x Q@ — C,

1
Ve+x—it

(2).

(t,2) —
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3 Multiplier Theorem

even belongs to CV (R x Q). Using that, h = Yo bis;; and by Fubini’s theorem we have

(VF +x— lth> (2)
2
duy (Z)> dA (y)

2

(y)dAdy (z)
&

(1) 1
= L —hF ) (z
/ﬂ%(/g ¢ <VF+X—Z)’ >() &
o 1
Scz/ Re<—_h,h> dy
—oo Ve +x—1iy e

1 1
b bis,. (zi / + = dy
,]Z’o K (VF(ZI) +tx—iy v (ZJ') +x+iy>

=TT Z bjESZj (Zi)
i,j=0

2
= ca|[h])%, -

Note that by Remark

L0 < hF ) B N 1
& . - Z . k41
Vi +x—iy =0 (VF +x—1iy)

" (nFy.

Further we have for z € Q, that the map

U:{wecC;Rew>0} —&,
Al 1

U= e

1k
LM (nF) (2)
is continuous. Due to ReVr (z) ,Re (W) > 0 and x > 0 it is also bounded by

£ Lt o,

The map
{weC;Rew >0} =&, w— U, (W)
is analytic. Hence
{weC; Rew >0} — Rxo, we ||U, (W)[|7

subharmonic on {w € C; Rew > 0} by Proposition Therefore

IU|% : {w € C; Rew >0} = Rao, U2z (w) = U (W)l
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3.1 A multiplier criterion

is continuous, bounded and subharmonic on {w € C; Rew > 0} by Proposition m
Note that

Rew
i <(Rew)2 + (Imw — y)2)

Rew

P: {weC;Rew >0} xR—R, P(w,y) =

o lw—iy|?
is the Poisson kernel for the right-half plane. Thus we have by Theorem [3.1.4]
2
vl < [ =
—oo TT |[W — iy

for all w € C with Rew > 0. For ¢,x € R with 2|¢t| < x, z € Q, we can use ReVr (z) > 0 to
show that

o0 Rew . 2
1U: (iy)[ls dy

2|Vr (2) + x4 it —iy]* — |Vr (2) +x— iy|?

—ReVp (2)2 +2ReVp (2)x+ (x2 - 2t2) + (ImVE (z) — y+21)?
> ReVr (z)2 +4ReVr (2) [t + 2 |t]* + Im Vi (z) —y +21)?

> 0.

and hence

ReVr (z) +x <» ReVr (z) +x
T|Ve (@) +x+it—iy]* ~ x|Ve (@) +x—iy]
1

Thus, we conclude for x € [1,2], ¢ € [—%, Z] and u;-almost every z € Q:
2
dA (y)

(1) 1
L) | o———hF
/[R ¢ <VF+x—iy >(Z) P
T *  ReVr(z)+x N
— U ; d
ReVF(Z)+X/_°°”|VF(Z)+x—iy|2 I z()’)Hé" y
> i /Oo ReVr (z) +x
~ 2(ReVr (z) +x) oo |V (2) +x+ it — Y|

T .
> TR i U () +x+it)| %

31U (iy) |1 d

N 2

Y (2ReVi (2) +2x— i) “ LI (hF) (2)
k=0

T
2(ReVr (2) +)

&
2
7 H Yo (2ReVr () +2x— itV LEY (hF) (2) Hg

2Re Vi (z) +2x — it|*N 2 (Re Vi (2) + x)
2
7 [ £ 0 (2ReVr (2) + 20— i)V F LIV (F) (2 Hg
22N+ (Re Vi (z) +3)V ! '
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3 Multiplier Theorem

Set dv() = (Re\/p(d)% Since Y3, (2Re Vp +2x — i)V~ kL(é{ ) (hF) is p;-measur-

able, we conclude that Y'Y (2ReVr + 2x — it)kaL(@é’k) (hF) is in £2 <v(l),c5") and the
estimate from above yields

N 2

Y (2ReVr +2x— i)V ¥ LY (nF)
kf

2(0.6)

H):k o (2Re Vi () +2x— i)V L0 (hF) (2 )H2
/ INT1 Ldp (2)
(ReVFr (z) +3)

(VF+X th) ) 2

&

22N-H

dA (y)duw (z)

S (,‘222N+1 ||h|’%

2
= An ||hll 5,

for (x,7) € [1,2] x [—4, 3] with Ay = ¢222V*!. For u € £2 (v(l),é"> we define

11
Pu: QX {w € C;Rew € [2,4],Imw € {—5,5} } — C,

pulz,w) = <§: (2ReVF (2) —I—W)N*kL((gla,k) (hF) (2) ,M(Z)>

3

This is a polynomial in w of degree < N with <Li@l) (hF)(z),u (z)>g as coefficient of w".
For all z € Q, we have by the Cauchy-Schwarz and the Holder inequality

[ 1puzwlav?
Q

= L i (2ReVF (2) +w)N—kL(é£7k) (hF) (2) ,u (Z)> av® (2)
k=0 .
<), Y. (2ReVi (24w LN () 0| (o) v (2
k=0 .
N
<||Y 2ReVg L)V kL(l,k) (hF) ||u||L2(v<,>7éa)
=0 12(v £)

< ARl 2 5y g

for all w € C with Rew € [2,4] and Imw € [—1,1]. Since |p,] is V; x A-measurable we
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3.1 A multiplier criterion

can apply Fubini’s theorem and the Cauchy integral formula to conclude that:

[t 0m) @ @), v @)

)
| (&3) 0
= /Q N1 dv'\ (z)

:/g2m/a1)1 (€ — 3N+1d§dv @)

2N1

— / / Pu (z,3+%ei’) e N arav®h ()

2N 1 1.
// Du (z,3+§e”) drdv\ (z)
2N ! 1
(z,3+ ~e ) dv (z)dt
2N 1
<—/ NuuuLz< 5) Il dt

1
= VA [l 2y Vol

= By [|ull 2 (v £) 12l s
1
with By = 2¥A},. From Lg) (hF) € £2 (v(l),<§’> and
(0
(L5 BF) ) oy B Wz, 1o
for all u € £2 (v(’),<§> it follows that

HL,;’) (hF)H < By ||l s,

£2(vh.£)

and therefore

(1)
&g < B ||h|?
/Q(RGVF(Z)—I—3)2N+1 () < By [1All Sz,
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3 Multiplier Theorem

Theorem 3.1.10. Ler Q, ,ul,Zg) , %”ﬁ and 9 be as above and assume that

K
c1 ||G||,;fﬁ ; ”

< |Gl e -
(“7@@)_02” ||;Q(£)

holds for all G € 7 (). If F € 7 (&) and ReV is bounded on Q, then

F € Mult (%ﬂs,%ﬂé (& )), and there exists a constant cy > 0 depending only on N such
that

1] ) < ey (|ReVrll, +3)"*2

Mult (%,%ﬁ((g@)

Proof. Let F € 7 (&) be a function such that Re Vy is bounded on Q. Let i € 5. Since

{Zf,-x,-; ﬁe@,xieéa} =D Rag CHLREZHY(E)
i=1

and span {s.; z € Q} C S are dense there are sequences (F},),) in
{Xii fixis fi € Z,x; € &} and (hy),¢y in span{s;; z € Q} with 7 (&) -limy o Fyy = F
and JZs-1lim, ,..h, = h. In this case ReVg, converges pointwise to ReVr. For n € N

nd/=1,....K fin O — ___dm___ Gince the functions — L ar
and / ,..., K we define dv, Revy, 1371 Since the functions Revr 137 are

bounded p;-measurable functions the inclusion mappings
in: L2 (,u(l),@@) — 12 (v,(,l),@@> , [f] — [f] are continuous linear with [|i,|| <

< 1. Now let € span {s; z € Q}. Then h € Mult (‘%ﬂfé (df‘)) Since
ool
the operators Mj,: 7 (&) — (&) and I:g,) L A — L? (u;,&) are continuous we have:

1
(ReVFn +3)2N+1

el .- 055,
P "z (vt )
<ot 0 ) (B9 i W )

L hE L |22, W ~ )
< |\|L'YhF — L. hF, LY hF + ||Ly hiE,

¢ ¢ L2(w,& ( 2(w,&) ¢ L2(w,&)
n—soo
—0
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3.1 A multiplier criterion

Using the Lemma of Fatou we conclude:

(0 I iO G I
S L 0
1msu -
e/ (ReVr+3)2" 1 (ReVg, 43)2V !

diy

|20 ) |

ghmsup/ —
noe [JO | (ReVr+3)2M T (ReVg, +3)*V !

L0 (s

iO I
|2 )|
+limsup/ - c_ _

noe |Jo | (ReVi, +3)"M T (Revg, 43)"V !

duy

1 1

2
S/QHZ? (F) ‘gligﬁp (ReVF+3)2N+‘  (ReVp, +3)2VH] ath
+limsup |LnF Lz(y}“ —HL IF, L2<v,(,l),Q>
=0
Using Lemma [3.1.9] we see in particular that
|z )
/(ReV Jr3)2N+1dl~l
) HL (5| i
e Jq a (ReVy, +3)2N+1d“
<cllilly,.

Since i € span {s;; z € Q} was arbitrary we have

| —no )|
A e 3y i < =l

for all k,/ € N and therefore by the inequality from the assumption

- 1 PO — ?
1 =1 |5, <CI,ZI/ |22 (=) ) [ am

CnK IN+1 2
<c_1(||ReVF||oo+3) * 171 — Pl S,

for all k,/ € N. Hence (hF);¢), is a Cauchy sequence in 7] (&) and
g = (&)-lim hyF
[—o0
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3 Multiplier Theorem

exists. Since the point evaluations on .75 and ,%”é (&) are continuous we have

g(2) = &-lim (b (2) F (2)) = h(2) F (2)

[—>o0

for all z € Q and hence hF = g = % (&)-lim;_,.. iy F. We conclude
F € Mult (%5,%2 (5)) and

2 T 2
. 2N+1 2
< Jim ey ([|Re Vil +3)™ {17 5,
2, 1 2
= e ([Re Vel +3) ! 112,

CyK

with ¢y = o
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3.2 Counterexample

3.2 Counterexample

We now want to give a counterexample for the reverse implication in Theorem[3.1.10] We
show that there exist functions in certain weighted Dirichlet spaces, which are multipliers
such that the real part of their Sarason function is unbounded.

In the following, we write D = {z € C; |z| < 1} for the unitdiskand T={z € C; |z| =1}
for the unit circle in C. Further,

0 (D) ={f: D— C; f holomorphic}

should be the set of all holomorphic functions on D and dm the normalized arc length
measure on the unit circle T. Furthermore we denote by f(n) (n € Z) the Fourier coeffi-
cients of a function f € L? (T), by

H*(T)={feL*(); f(n)=0forn<0}
the Hardy space on the unit circle, by
#©)={re o) s [I7(PanG) <)
0<r<1JT

the Hardy space on the unit disc and by H* (D) the space of all bounded holomorphic
functions on D. Finally, we write dA for the normalized area measure on the unit disk D.

Definition 3.2.1. Let O < o < 1. The vector spaces

Du={1 € B2 O): I = IR+ [ I O (1- 1) da @) <=}

equipped with the norm ||-||, are called weighted Dirichlet spaces.

o
Let duy (z) = — (1 - |z|2) A (1 - |z|2> dA (z) where A denotes the Laplace operator.
Then an easy calculation shows that

it =40 (1-1:P) “ +aleP o (1 - o) (1- ) aa (o

is a finite positive Borel-measure on D. Let H> (D) — H?(T), f — [f*] be the canonical
isometric isomorphism between H? (D) and H> (T). For f € H?> (D) and { € D, we define
the local Dirichlet integral by

" 2

OO am(z)  ifge,
SOy iy |2 . '
L%jgﬁ‘dm@) if{eT

Jr
Jr

Proposition 3.2.2. For every f € Dy, we have

D¢ (f) =

1902 = 1o+ [, Dg (b (£).
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3 Multiplier Theorem

Proof. For a proof see [18, Introduction] and note that Dy, = D (L) in [18, Introduction].
O

Proposition 3.2.3. For 0 < o < 1 the weighted Dirichlet space D, is a functional Hilbert
space ;e given by a reproducing kernel of the form

s*: DxD—C, s*(z,w) =1+ Y ¢ (zw)"
n=0

o

with coefficients c§ = 1, cff € [0,00) for n > 1 such that the limit lim,,_;c (HC]# € (0,0)

exists. The induced norm coincides with ||| .
Notation 3.2.4. We denote by s¢ the analytic function
D—C,z— l-l-ic,‘fz”.
n=1
Note that lim,,_,1 5% (z) = lim,,—,1 5§ (Wz) = s¥ (z) holds for all z € D.
Proposition 3.2.5. The map s* is a normalized complete Nevanlinna-Pick kernel.

Proof. For a proof note that Dy, = D () as it is shown in 18, Introduction] and see
[19]. O

Proposition 3.2.6. For every f € D¢y, we have
2 2
(1-1=P) 17 (0)]

‘2 dm

Rer(Z):/F ’1 Z
— 07

+ [ (2Res? ()= 1) D () dpa (§)
>2 [ Re(s2) () D¢ () dua (§) = 1112
Proof. For a proof see [|18, Proposition 4 and Corollary 3]. [
Proposition 3.2.7. For all z,w € D we have Res% (z) > %
Proof. For a proof see [|18, Theorem 2]. [

Lemma 3.2.8. (i) We have ‘1 —%’ <1 forall z€ D and (l - é) € Mult(Dy)

<L

-2
s

ith (|M
wit < ) o

(ii) The maps s{ and (s‘f‘)/ are non-negative on [0,1) and
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3.2 Counterexample

()" (")

s () .
lim = const, lim —, T = const,

r=1(1—r)" % r=1(1=r)
where the constants involved are positive real numbers and only depend on .
(iii) There exist €y € (0,1) and 8¢ > 0 such that
Res (2) = 8o (1—2])
whenever z belongs to the set S = {z € D; |z— |z|| < €a (1 —|2])}.

Proof. (i) Since s%* is a normalized complete Nevanlinna-Pick kernel, there are functions
up: D— C (n € N) with

1

=Yoo tn (2) un (W)

s%(z,w) = (z,we D).

1

and (Z;":O |lun (z) |2> ? < 1forall z € D. By Cauchy-Schwarz we have

iwmmﬁ

n=0

AN
TR
i aok

=

)

S

T
~

N —
VRS

for all z,w € D. Hence

1 1
- = lim |1 - ———
’ S| wh szA
= lim un (z) un (W)
w—1 —0
1
=) 2
2
S(ZM&N)
n=0
< 1.

for all z € D. Now, let h € Dy. Using the notations from Lemma we then have for
all z,w € D:

Q_%L)m@:iw@mew

(Z) n=0
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3 Multiplier Theorem

Hence

(1 L)), <o

w

. 1 .
that is (1 - §> € Mult(Dy) for all w € D. Since ”MMHL(%OC(F)J&@ < 1 we further

conclude

5 -
< ‘ (un (W>h> neN H;@.a(lz)

- 2 2
NGRS
n=0

2
< Il

for all w € D and h € J#se = Dy. Hence we have <1 for all w € D.

L(Dq)

M)

m (1) 0= (1)

holds for all z € D and Hl — sia

w

Because

< 1 holds for all w € D, we can use Corollary 4.0.2

L(Dq)

<1
. =

e
S

to find that (1 - %) € Mult (Dg) with M( )
1
L(Da)
(ii) The maps s¥ and (s‘l")/ are positive on [0,1) by definition. By L 'Hopital’s rule,
lim, | =" — Jim, ,; L holds. For s < 1 we have by [20, Eq. (9.3)] that

1-r

lim =17 iy (D)
r—1 (1 — r)s_ r—1 (1 — r)s_

Liy (€20)) (~ log (1))
S (Slog () (1)

Li, (elog(r))
Tl (—log(r)
=T(1—ys)

where I" denotes the Gamma function and Lis(r) = Y~ ; n~*r" the polylogarithm. For
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3.2 Counterexample

Y € (0,2) we conclude fors =1—y < 1

+re (1) ,m1+):;°:1(n+1)—5r"

T A R T
o —S,.n
— Jim 2=
r=lr(l—r)
=T(1—ys)

with ¢y = I'(y). We have

s¥(r) = Z %" and (s%)(r) = Z % (1)
n=0 n=0

o
—1-— € R-o, we have

. 1 Cc
forall r € [0,1). Setting ¢ = lim,,_sco Y

li =
ngl}o (n+1)a n—soo (n_|_2)05_1

(Ve LGty (2 ‘H:C
n+1 '

Define ¢! = (n+1)c* ' for n > 0. We finish the proof by establishing that

oo Y

> aCchr” 1
—Z"*O T = clyc.
(1—r)7

For this, let € > 0 be arbitrary. Then for y € {a, ot + 1}, there exists an index Ng > 0 such
that
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3 Multiplier Theorem

holds for all n > N¢ + 1. Hence we have

oo Y. n
limsup M—cwc
r—1 (1—7”) 4
oo C,},/ }/—1
e | T (e e) e )
< limsup — | + limsup —
r—1 (l_r) 14 r—1 (1—}") ¥
. c<1+2::1(n+1)7‘1r">
imsu —C1yC
1 -7 i
Ne Z —1
<Ii Z"ZI‘(HCI)V"_C‘("JFDY a
imsu
= ety (-7
oo ' —1
i Zn:Ng+1 # —C‘ (n+ 1)'}’ r
+ limsu
r%lp (1—}’)77
oo —1 . n
_ (14 1))
< limsup —
r—1 (l_r) 4
=€&.

Since € > 0 was chosen arbitrary, the claim follows.
(ii1) By (i1) the function

(s7) ()

0,1) 5 R, s 1
[ ) (l_r)ftxfl

has a continuous extension to the compact intervall [0, 1]. Hence there exists a constant
Mgy > 0 such that

/
(s7)" (Jzl)
(1—zh~ "'~
holds for all z € D. Therefore we have
—a—1
(1) (2)] < (s9) (I2]) < Mg (1—12])*
forallze D.If0 < e < 1 and |z— |z|]| < €(1 — |z|), it follows that

[Rest (z) —Rest ([z])] < |7 (2) — 57 (I2])]

_ \ [ (s‘f‘)’(é)dé‘
<Je—|dl] sup |(s2Y (112 +(1-1)2)]
t€[0,1]

< Moe(1—|z) .
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3.2 Counterexample

Here we used the obvious estimate
1—|z| <1—|t|z| +(1—1)z] (z€D,t€]0,1]).

As above we conclude with (ii) that the function

[0,1) > R, r—
(1

s‘lx r)
)

has a continuous extension to the compact intervall [0, 1]. Hence there exists a constant
Cy > 0 such that

(D) ..
(1—|z) @~

for all z € D. Using Res{ (|z|) = s (Jz|) > 1 and setting

ea:min< Ca 1

m, ) we have

_ 1
eaMo (1—1z]) % < ERGS?‘ (Iz])-
for all z € D. Therefore we conclude

2eqMg (1—z])"* —Res{ (z) < [Resf (z) —Res{ (|z])]
<Mgeq (1—2))77,

and consequently
Resf (z) > Maga (1—12)"%,
for all z € D with |z — |z]| < & (1 — |2]). O
The following inequality is essential for the proof that certain multipliers of the

weighted Dirichlet spaces Dy with 0 < o < 1 have a Sarason function with unbounded
real part.

Lemma 3.2.9. Let S be the set from Lemma(3.2.8|(iii). There exists a real number cq > 0,
such that for all f € Dy,

2
1%+ supReV () > ca [ |£()f dA (£,
z€D S
Proof. Let f € Dqy. By Proposition [3.2.6| we have

|71 +ReVy (2) = [ 2Res (£)D; () dpa (£).
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3 Multiplier Theorem

for all z € D. Since Res¥ > % for all z € D by Proposition we can use Fatou’s lemma
to conclude

|!f\|é+sgﬂgRer<z>2hminf 2Res® (§) Dy (f)da (§)

z—1 D

2/@2Res‘f‘(§)D§ (f) dua ().
Let § € D and set

~ i f@)—f(C

gc:D\{C}—=C, ()= %C()

By Riemann’s theorem on removable singularities the function g¢, has a holomorphic

extension g¢ on D. Since g, is continuous we have g (§) = f' () and since D¢ (f) < oo
1-|g*

we get g¢ € H? (D). Note that = S 2 forall z€ D and { € dD. Thus, by the Cauchy
integral formula, we have

T ] — |72 , .
/ < g(re”)zie”dt

. eiI_Z
<L/7r 1_|Z|2 ‘g(reit)lzdt
T Arm )z |et —7]

2
< llgllz2(p)

(1P lsr2)P =

T 4rm

| =

forall g € H*(D),r€[0,1) andz € D. Forr — 1 and g = g¢ from above we obtain that

S (1-12R) 17 P =5 (1-1¢2) s ()

< HgCHiﬂ([D)
= D¢ (f)

for all £ € D. Hence we conclude
2
1715+ supReVy (2) > [ Rest (§) (1-16P) |f' (©) diaa (£).
zeD D
Since

dita(2) =40 (1) “ +4 1P o (1 - ) (1- ) a2
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3.2 Counterexample

we conclude, using Lemma (iii) and Res{ > 0:
[ Rest () (1=1£P) | (©) dua(0)
= [Rest©) (1-12P) 7 (©F
4 (1-16F) “aleP e -a) (1-167) aac)
> [Rest (O] (D)
{4a(1—rcrz)a“+4\5|2a<1—a>(1—|:\2)“]dA<c>
> 8 [ |11 (=15
o (1-16) " +4l¢Pai-a) (1 1¢F) | aa )
~s. [|r @
'4a(1—|C|2)(1+|¢|>“+4|z:|2a<1—a><1+|z;|>°‘]dA<c>
> 8 [ 11O 41— (1-1217) +412 o (1= )] dA ()

2
—da(l-a) Sa/S\f 0)|2dA(2)
With cq = 4a (1 — o) 8 the claim follows. O

Remark 3.2.10. Let 0 < o < 1 and h € Mult (D) with M} S9% 0. Then we can show as

in |14, Lemma 2.26] that there exists a w*-continuous algebra homomorphism
®: H” (D) — L(Dy)
with |®[| =1, ®(1) =1, and @ (f) = Moy, for all f € H* (D).
Lemma 3.2.11. Let B be an infinite interpolating Blaschke product (cf. [9, Chapter 7])
with zero set {z,; n € N} C [0, 1), that is, B is a function D — C with

B(2)=[]—% (z€D)

neN 11— <nZ

and for the functions
l— Zn

neN,n£k 1 —2zu2

By [D—>G:, Bk(Z):

(ke N)

there exists 6 > 0 such that infycy | By (zx)| > 0. Then we have
o
B >
B (@] > 2(1—z)
forall k € N.
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3 Multiplier Theorem

Proof. Setby: D — C, by (z) = 7= for k € N. Then we conclude that

B'(z) = b (2) Bi (2) + bk (2) B (2) -
forall z € D. Let k € N. Since by (zx) =0, |Bx (zx)| > 6 and z; € [0,1) we have

|B' (z)| = |} (zx) | 1B (2x)|
26|b;<(2k)‘
0
-T2
I
T 2(l-z)

]

Proposition 3.2.12. For 0 < o < 1, there exists u € Mult(Dg ) such that ReV,, is unboun-
ded in D.

Proof. Let f = (1= ). Then Lemma3.2.8/() yields f € Mult (Dg) with [[My] . | <
1 o
1 and |f (z)| < 1 for all z € D. Hence we conclude

4

. . n
Dg-lim (M})" s = Dy- lim [ (2) s =0.

< 1 for all n € N and the fact that

n
Therefore the inequality H (M}) LD

Do =V (s%; z € D) yield Tsor-1im, . (M}) = 0. Using the map
®: H” (D) — L(H5) induced by f from Remark [3.2.10 we have M,y = ®(g) € L(Dq)
and hence go f € Mult(Dg) with HMgofHL(Da) <||®[ligll.. = llg|l.. forall g € H= (D) ().

We claim that for an infinite interpolating Blaschke product B with zero set {z,; n € N} C
[0,1) the function Re Vg, is unbounded in D. From the Blaschke condition
Yo o (1—]za]) < oo we get limy_,w0z, = 1. By Lemma (i) we have

i () =t () =

Since f(0) =0 and (f(r))g.,; is increasing, it follows that f([0,1)) = [0,1) by the
intermediate value theorem. Thus, we can choose a sequence (wy),cy in [0,1) with
lim, yew, = 1 and f(wy,) = z, for all n € N. With the notations from Lemma
(iii) we choose a subsequence (wy, ), .y, Of (Wn),cp With

ke

2eq
3

for all k € N. Then we can conclude that the disks

2€
+Wnk(1 - Ta)

W"k+1 >

&,
A= {zE€D; 2= wy | < ?a(l—wnk)} (ke N)
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3.2 Counterexample

are disjoint since wy, | —wy, > 2 (%"‘ (1— wnk)). For z € Ag, we have

€
L=fel = 1= =i = b | > (1= ) (1= )

and thus

2€
2=zl < 2]z —wy,| < Ta(l—wnk) <&y (1—1z]).

Hence we conclude A, C S for all k € N. Since ||B||,, = 1, Lemma in combinition
with (x) yields

z€D

L4+ supReVioy () > ca [ 1oy (©)Fdac)
k=0" =%

. 2. ..
and since ‘(B of )/‘ is subharmonic in D we get that

neéCa > 2 / 2
1+ supReVpor (z) > Z (1 —wy,) ‘(BOf) (Wnk)‘ :

zeD 9 k=0

Hence it suffices to show that ((1—wy,)|(Bo f) (wy,)]|)
Lemma|3.2.11]|there exists a § > 0 such, that

ren 18 MOt a zero sequence. By

o)
(1—2z)

for all k € N. We have z, = f (w;) and thus 1 —z, = W for all n € N. Hence
1 n

|B' (z1)| >

/ / (Sclx)/(wﬂk)
(1_Wnk) (Bof) (Wnk) = (l_wnk) B ( nk) N
| | B (2 )| (5% (o)

oy 6F) O

—5 (S‘lx)/ (Wﬂk) (1 _Wnk)_a

(1- Wnk)_a_] Sclx (W)

for all k € N and the result follows by Lemma [3.2.8{ii). O
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4 Appendix

In the following let & be a complex Hilbert space and Q an arbitrary set.

Theorem 4.0.1. Let %”12 C &2 be a functional Hilbert space with reproducing kernel
k: QxQ— L(&). Let (hg) 4y be anet in A} and ¢ > 0 with HhO,H%pﬁ <cforall o € A.
If h € &% with &-limg hy (z) = h(z) for all 7 € Q, then h € A, with ||h||jf£ < c and

I
TW -lima h(x - h.

Proof. By Alaoglu-Bourbaki the net (hq),c4 has a weakly convergent subnet (hq,) AN
he ,%’i Then Hh“ 7 < ¢ and since weak convergence in %i implies pointwise conver-

gence, we find that i = h. The last assertion follows from the fact that the net () 4 is
normbounded and ((«,ha> Ju,% ) 25 (k) %}2 pointwise on the total subset
{(-k);zeQ} cog. O

Corollary 4.0.2. Let 7 C &2 (i = 1,2) be functional Hilbert spaces and let (Q) ), be
a sequence in Mult (S, 763) such that (@), converges pointwise on Q to a function
¢©: Q— L(&1,%) and such that ||M(pk||L(t%pld%) < cforallk € N. Then

4,
¢ € Mult (21, 76) with HprHL( <cand of =1, ﬁ-limkq)kfforallf € 4.

I,
Proof. Let f € 4. Then we have limy_,.. ¢, (z) f (z) = ¢ (2) f (z) for all z € Q and

101 < Ml ) 1 < €111

for all k € N. By Theorem it follows that @ f € J% with [|@f|| ,,, < c||fl| ,; and

‘L';f%—limk ¢rf = @f holds. Hence we conclude ¢ is in
Mult (4, 73) with [|Mo|| 1 ) <c. O

Proposition 4.0.3. Let H be a Hilbert space and (xy),cy a sequence in H, which con-
verges weakly to a x € H. Then we have ||x||; <liminf,_se || X ||

Proof. Otherwise, one could choose a real number r with
Il > 7 > Timin ],

But then there would be a subsequence (X, ),y Of (Xn),cy With [|x, ||, < 7 for all k € N.
Since x = T,,-limy_,.. X, and since {x € H; ||x||; < r} C H is 7,-closed, we would obtain
the contradiction that ||x||; < r < ||x||4- O
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4 Appendix
Proposition 4.0.4. Let (X,0, L) be a measure space. Then there exists a unique unitary
operatorV: L (1) ®& — L2 (1, &) with V ([f] @v) = [fv] forall [f] € L? (1) and v € &.

Proof. The map
B: L2 () x & — L?(u,&),B([f],v) = [fV]

is well defined due to
[ Ir@vidne = ([ 1rePa) v,

forall [f] € L? (1) and v € &. Furthermore B is bilinear. Because of the universal property
of the algebraic tensor product ®, there exists a unique linear map V,: L? (i) ®, & —
L?(u,&) with V ([f] ®4v) = [fv] for all [f] € L?(u) and v € &. By a standard result
from functional analysis we have that V, has a unique extension V to the Hilbert space
L? (1) ® &. To check that the map V is an isometry let k € N and [f(i)] el (u),ve&

fori=1--- k. Then we deduce

=0 L2(1,6)
k 2
=y [ £,
=0 L2(p.6)

L2(n)e&

and due to

L2 (1) ® & = span {[f]@v: [f] € L2 (u),v € &)

V is an isometry. We next want to show that V is surjective. Thus let [f] € L? (u,&) be
arbitrary. Then by [3, Prop. 4.8] there is a sequence of simple functions (f,,),c) With

Tim [1f = fall g2y ) = O-
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For n € N write

where a,(cn) € & and A,(Cn) €0 (n=0,...,N), such that u <A( )> < oo and A, ) — g,
Set

N
gn = Z {%ﬂ")} ®a,(<") cL’(u)®& (meN)
k=0

Then we deduce Vg, = [f,] for all n € N and we conclude that (g,),, is a Cauchy
sequence in L? (1) ® & since V is an isometry. Therefore

g=lim g,

n—soo

exists in L? (1) ® & and we have

Ve = 2y = im [IVgn = [/l 2 )
= 1im 1]~ s
— tim = fulleague
=0.
Hence Vg = [f] and V is indeed surjective. O

Set X =N, 0=Z(N)and u =Y,y 6, where 8, (n € N) denote the Dirac measures.
Then we have L? (1) = I? and L? (u, &) = [2(&) and we obtain the following corollary.

Corollary 4.0.5. There exists a unique unitary operator V: > ® & — 2 (&) with
V ((X0) pen @) = (xnV) e for all (x,) ,ep, € * and v € &.

Corollary 4.0.6. Let jfﬁ be a functional Hilbert space with reproducing kernel k: Q x
Q — C .Then there exist unitary operators

P RE = H(E) D P with h& (%) ey @V —> v (Xn) e
A ® Po&— A, () ® & with h® (Xn) yep @V — (Xuh)1cp @V,
AR Po&— A, ([2 (&) with h® (xn) ,ep @V — (Xahv) pen »

HoPRE P <%72 (5)) With h @ (Xa),yep @V — (inhv), ey,

forall h € 7, (Xn),en € > andv € &.

Proof. Use that the tensor product is associative and commutative up to an unitary oper-
ator and apply [5| Satz 1.15] as well as Corollary O
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4 Appendix

Proposition 4.0.7. If u: Q — [—o0, ) is a subharmonic function on an open set Q C C
then also the function ii: Q = {Z; z € Q} — [—e0,0) ,ii (z) = u(Z) is subharmonic.

Proof. Let B, (z0) C Q, h: B, (z9) — R be continuous and harmonic on B, (zg) such that,
h(z) > ii(z) holds for every z € B, (z0). Seth: B, (Z9) — R,k (z) = h(Z). We next want to
show that 7 is harmonic on B, (Zo). Thus, let z; € B, (Zp). Since h is harmonic on B, (z9),
there exists a s € (0,) with B, (z7) C B, (z9) and a holomorphic function f: By (z1) — C,
such that Re f (z) = h(z) for every z € Bs(Z7). Now, set f: Bs(z1) = C,f(2) = f(2).
Then f is holomorphic and we have

h(z) =h(z) =Ref(z2) =Ref(z) =Re [ (2)
for all z € By (z1). Hence, & is harmonic on B, (Zj). Further, we have
h(z) =h(z) > id(z) =u(z)

for all S dB,(Zp). Since h is harmonic on B, (Zo) and u is subharmonic on Q we deduce
u(z) < h(z) forall z € B, (zp) and hence

i(z)=u@) <hE@) =h(z)

for all z € B, (zo). O
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