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Introduction

For a complex Hilbert space E and a set Ω, a Hilbert space H ⊂ E Ω is called a functional
Hilbert space if all point evaluations

δz : H → E , δz ( f ) = f (z) (z ∈Ω)

are continuous. The map

k : Ω×Ω→ L(E ) ,k (z,w) = δzδ
∗
w

is called the reproducing kernel of H , since it has the property that

〈 f (w) ,v〉E = 〈 f ,k (·,w)v〉H

holds for all w ∈ Ω and v ∈ E . Such a reproducing kernel is positive definite, that is, we
have

n

∑
i, j=0

〈
k
(
z j,zi

)
vi,v j

〉
E
≥ 0

for all finite sequences (zi)
n
i=0 in Ω and (vi)

n
i=0 in E . Conversely one can show that, for

every positive definite map k : Ω×Ω→ L(E ), there exists a unique functional Hilbert
space H ⊂ E Ω with reproducing kernel k. Identifying C ∼= L(C), one also calls the
function k : Ω×Ω→ C induced by a positive definite map k : Ω×Ω→ L(C) positive
definite. Whenever k : Ω×Ω→C is positive definite, we denote by Hk (E ) the functional
Hilbert space with reproducing kernel k IdE . If E = C we write Hk = Hk (C). In the
following we consider kernels of the form

s : Ω×Ω→ C, s(z,w) =
1

1−∑
∞
n=0 un (z)un (w)

,

where un : Ω→ C (n ∈ N) are functions such that there exists a z0 ∈ Ω with un (z0) = 0
for all n∈N. Kernels of this type are called normalized complete Nevanlinna-Pick (CNP)
kernels, and solve the Nevanlinna-Pick Problem (see [1]). A central role in the present
thesis is taken by functional Hilbert spaces Hk (E ), whose kernels k have a complete
Nevanlinna-Pick factor, i.e., we have k = sg, where s is a normalized CNP kernel and
g : Ω×Ω→ C is positive definite. Now let E1 and E2 be two complex Hilbert spaces
and Hi ⊂ E Ω

i (i = 1,2) functional Hilbert spaces with reproducing kernels ki : Ω×Ω→
L(Ei). The elements of

Mult(H1,H2) = {ϕ : Ω→ L(E1,E2) ; ϕH1 ⊂H2}
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are called multipliers from H1 to H2. Here, if f : Ω→ E1 is a function, the map ϕ f : Ω→
E2 is defined by

(ϕ f )(z) = ϕ (z) f (z) (z ∈Ω) .

For ϕ ∈Mult(H1,H2), we denote by

Mϕ : H1→H2, Mϕ f = ϕ f

the multiplication operator with symbol ϕ . Let H ⊂ CΩ be a scalar-valued functional
Hilbert space and E an arbitrary Hilbert space. We call a function ϕ : Ω→ E a multiplier
from H to H (E ) and simply write ϕ ∈Mult(H ,H (E )) if the function

ϕ
L(C,E ) : Ω→ L(C,E ) ,ϕL(C,E ) (z)(w) = wϕ (z)

belongs to Mult(H ,H (E )). Similarly, we call a scalar-valued function ϕ : Ω→ C a
multiplier of H if ϕ regarded as a function ϕ : Ω→ L(C)∼= C is a multiplier of H .

From the theory of Hardy spaces it is well known that H2 (D) is a functional Hilbert
space with reproducing kernel

s : D×D→ C, s(z,w) =
1

1− zw
the so called Szegö kernel. This map can easily be seen to be a normalized CNP kernel
with z0 = 0. The multipliers Mult

(
H2 (D)

)
from H2 (D) to H2 (D) are exactly the bounded

analytic functions H∞ (D) on D. A theorem going back to Nevanlinna implies in particular
that, for f ∈H2 (D), there exist functions g,h ∈H∞ (D) with 0 /∈ h(D) such that f = g

h . In
the first part of this thesis we give the following generalization of this theorem for kernels
with a normalized complete Nevanlinna-Pick factor k = sg. Here we proceed exactly as
in the recent paper [2] by Aleman, Hartz, McCarthy and Richter. The proof is based on
an idea of Sarason [16],[17].

Theorem 0.0.1. (i) For F ∈ E Ω, the following are equivalent:

(a) F ∈Hk (E ) with ‖F‖Hk(E ) ≤ 1 .

(b) There exist multipliers Ψ : Ω→ C of Hs with Ψ(z0) = 0 and Φ : Ω→ E from
Hs to Hk (E ) such that F = Φ

1−Ψ
and

‖Ψh‖2
Hs+‖Φh‖2

Hk(E ) ≤ ‖h‖
2
Hs

for all h ∈Hs.

(ii) If F ∈Hk (E ) with ‖F‖Hk(E ) = 1 then the functions Φ and Ψ are uniquely determ-

ined. In fact, sz ∈Mult
(
Hk (E )

)
, and if

VF (z) = 2〈F,szF〉Hk(E )−1 (z ∈Ω) ,

then ReVF ≥ 0 in Ω and (b) holds with

Ψ =
VF −1
VF +1

, Φ =
2

VF +1
F.
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It is well known that the multiplier space of H2 (D) is H∞ (D). However, in gen-
eral it is a difficult problem to characterize the multipliers of a given reproducing ker-
nel Hilbert space. In a first step, we will give a class of examples of multipliers in
Mult

(
Hs,Hk (E )

)
. When proving Theorem 0.0.1 we will show that 1

VF+x−iyF belongs

to Mult
(
Hs,Hk (E )

)
for all F ∈Hk (E ), x > 0 and y ∈ R. Using this, we will further

show that for every positive Borel measure with compact support on R, the weak integral

Φ =
∫

supp(µ)

F
VF + x− iy

dµ (y)

defines a multiplier from Hs to Hk (E ).
An elementary application of Theorem 0.0.1 shows that the elements of Hk (E ) have the

same zero sets as the functions in Mult
(
Hs,Hk (E )

)
. We extend this idea and show

that the multiplier invariant space generated by an arbitrary function in Hk (E ) is also
generated by a multiplier function.
A function F ∈Hk (E ) is called extremal if

〈ϕF,F〉Hk(E ) = ϕ (z0)

holds for all ϕ ∈ Mult
(
Hk

)
. Extremal functions play an essential role in the theory

of wandering subspaces for shift-invariant subspaces. If F is an extremal function, then
‖F‖Hk(E ) = 1 and it is easy to see that its Sarason function VF is given by VF = 1. Thus

the factorization from Theorem 0.0.1 (ii) reduces to the identity F = Φ. In particular,
every extremal function F ∈Hk (E ) is a multiplier from Hs to Hk (E ) with multiplier
norm at most 1. In the case that

s : Bd×Bd → C,s(z,w) =
1

1−〈z,w〉

is the Drury-Arveson kernel on the open unit ball Bd ⊂ Cd and Hk ⊂ O (Bd) we show
that there is a close relation between extremal functions F ∈Hk (E ) and k-inner functions
F : Bd → L(C,E ) recently studied in [7].
As a direct application of Theorem 0.0.1 we can conclude that F ∈Mult

(
Hs,Hk (E )

)
whenever ‖F‖Hk(E ) = 1 and VF = 1. Indeed it is possible to show that for a large class

of reproducing kernels the weaker assumption that the real part of the Sarason function of
a function F ∈Hk (E ) is bounded is sufficient to conclude that F ∈Mult

(
Hs,Hk (E )

)
.

This theorem covers a large family of reproducing kernel Hilbert spaces like the Drury
Arveson space, weighted Dirichlet and Bergman spaces. However, we can still not fully
characterize multipliers this way, since the converse direction of the theorem is false at
least in this generality. We proceed as in [2] to construct multipliers of the standard
weighted Dirichlet spaces on the disc, whose Sarason functions have unbounded real part.

3





1 Preliminaries

1.1 Nevanlinna-Pick kernels

A positive map s : Ω×Ω→ C
∗ is called Nevanlinna-Pick kernel if

Ω×Ω→ C, (z,w) 7→ 1− 1
s(z,w)

is positive definite. A functional Hilbert space Hs with Nevanlinna-Pick kernel is called
Nevanlinna-Pick space. In the following, let H = Hs be a Nevanlinna-Pick space with
kernel s : Ω×Ω→ C and Mult(H) the space of multipliers of H.

Proposition 1.1.1. We have that 1: Ω→ C, z 7→ 1C is in H with ‖1‖ ≤ 1.

Proof. The function

Ω×Ω→ C, (z,w) 7→ s(z,w)−1 = s(z,w)
(

1− 1
s(z,w)

)
is positive definite by the Lemma of Schur. It follows by [5, Satz 1.9 (b)] that 1 ∈ H with
‖1‖ ≤ 1.

By [5, Satz 1.13] there is a Hilbert space F and a map d : Ω→F with

1− 1
s(z,w)

= 〈d (w) ,d (z)〉F

for all z,w ∈Ω.

Lemma 1.1.2. For f ∈F , the function

d f : Ω→ C, d f (z) = 〈 f ,d (z)〉

defines a multiplier d f ∈Mult(H) with
∥∥∥Md f

∥∥∥
L(H)
≤ ‖ f‖.

Proof. Without loss of generality let ‖ f‖= 1. Let ( fi)i∈I be an orthonormal basis of F ,
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1 Preliminaries

which contains f . Then we have

s(z,w)
(

1−d f (z)d f (w)
)

= s(z,w)(1−〈 f ,d (z)〉〈d (w) , f 〉)

= s(z,w)

(
1−∑

i∈I
〈d (w) , fi〉〈 fi,d (z)〉

)
+ s(z,w) ∑

i∈I, fi 6= f
〈d (w) , fi〉〈 fi,d (z)〉

= s(z,w)

(
1−〈d (w) ,d (z)〉+ ∑

i∈I, fi 6= f
〈 fi,d (z)〉〈 fi,d (w)〉

)
= 1+ s(z,w) ∑

i∈I, fi 6= f
〈 fi,d (z)〉〈 fi,d (w)〉

for z,w ∈ Ω. The last expression defines a positive definite map by the Lemma of Schur,
because pointwise converging sums of positive definite maps are positive definite. By
[5, Satz 1.11 (a)] we have d f ∈Mult(H) with

∥∥∥Md f

∥∥∥
L(H)
≤ 1.

Theorem 1.1.3. For w ∈Ω, we have sw = s(·,w) ∈Mult(H).

Proof. For d : Ω→F and z ∈Ω as in the remarks before Lemma 1.1.2, we have

‖d (z)‖2 = 1− 1
s(z,z)

< 1.

Hence we conclude

s(z,w) =
1

1−〈d (w) ,d (z)〉

=
∞

∑
k=0
〈d (w) ,d (z)〉k

=
∞

∑
k=0

(
dd(w) (z)

)k

for all z,w ∈Ω. Because of Lemma 1.1.2, we have dd(w) ∈Mult(H) with
∥∥∥Mdd(w)

∥∥∥
L(H)
≤

‖d (w)‖< 1 for all w ∈Ω. Since Mult(H) with the multiplier norm

‖·‖Mult(H) : Mult(H)→ R≥0, ‖ f‖Mult(H) =
∥∥M f

∥∥
L(H)

is a Banach algebra with pointwise composition as multiplication, we get∥∥∥(dd(w)
)k
∥∥∥

Mult(H)
≤
∥∥dd(w)

∥∥k
Mult(H)

≤ ‖d (w)‖k
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1.1 Nevanlinna-Pick kernels

Hence the sum
∞

∑
k=0

(
dd(w)

)k

converges absolutely in Mult(H). Since the inclusion map Mult(H) ↪→H is well defined
by Proposition 1.1.1, continuous and linear, convergence in Mult(H) yields pointwise
convergence. Hence

s(·,w) =
∞

∑
k=0

(
dd(w)

)k ∈Mult(H)

holds.

7





2 Factorization Theorem

In the following let E be a separable Hilbert space and s : Ω×Ω → C a normalized
complete Nevanlinna-Pick (CNP) kernel with

sw (z) =
1

1−∑
∞
n=0 un (z)un (w)

(z,w ∈Ω)

where un : Ω→ C (n ∈ N) are functions such that
∥∥(un(z))n∈N

∥∥
l2
< 1 for all z ∈ Ω and

there is a z0 ∈Ω such that un(z0) = 0 for all n ∈ N.

For a map k : Ω×Ω→ C, we write kw = k (·,w) for all w ∈Ω.

2.1 The main theorem

In this chapter we want to show that every element of a reproducing kernel Hilbert space
with normalized complete Nevanlinna-Pick factor can be written as a quotient of two
multipliers. For more details see Theorem 0.0.1. The proof is based on an idea of Sarason
[16],[17]. In the case of the Szegö kernel one direction of the proof of our main theorem
is easy to see. We therefore give a sketch of Sarason’s proof in the special case Ω = D,
E = C and k= s1 where

s : D×D→ C, s(z,w) =
1

1− zw
,

z0 = 0 and Hs = Hk = H2 (D), as motivation for the general approach. Since sz ∈
Mult

(
H2 (D)

)
for every z ∈ D, the following function, the so called Sarason function

VF : D→ C, VF (z) = 2〈F,szF〉H2(D)−‖F‖
2
H2(D)

is well defined for every F ∈ H2 (D). Let H2 (D)→ H2 (T) , f 7→ f ∗ be the canonical
isometric isomorphism between H2 (D) and H2 (T). We write dm for the normalized arc
length measure on the unit circle T. Then we have

VF (z) = 〈F,(2sz−1)F〉H2(D)

=
〈
F∗,
(
2s∗z −1

)
F∗
〉

H2(T)

=
∫
T

|F∗ (ξ )|2
(

2
1−ξ z

−1
)

dm(ξ )

=
∫
T

|F∗ (ξ )|2 ξ + z
ξ − z

dm(ξ ) ,

9



2 Factorization Theorem

for all z ∈ D. By a standard result about parameter-dependent integrals VF is analytic.
Further, we see that ReVF is the Poisson integral P

[
|F∗|2

]
of |F∗|2 since Re

(
ξ+z
ξ−z

)
=

1−|z|2

|1−zξ |2
for all z ∈ D and ξ ∈ T. As the Poisson transform is the inverse of the canonical

isomorphism between H2 (D) and H2 (T) we can use the Hölder inequality to deduce that

|P [F∗] (z)|2

=

∫
T

1−|z|2∣∣∣1− zξ

∣∣∣2 |F∗ (ξ )|dm(ξ )


2

≤
∫
T

1−|z|2∣∣∣1− zξ

∣∣∣2 dm(ξ )
∫
T

1−|z|2∣∣∣1− zξ

∣∣∣2 |F∗ (ξ )|2 dm(ξ )

= P
[
|F∗|2

]
(z)

and, thus

0≤ |F (z)|2 = |P [F∗] (z)|2 ≤ P
[
|F∗|2

]
(z) = ReVF (z) (2.1)

for all z ∈ D. We now assume that ‖F‖H2(D) = 1 and set

Ψ =
VF −1
VF +1

and Φ =
2

VF +1
F.

Then we have Ψ(0) = 0, F = 1
1−Ψ

Φ and a calculation using inequality (2.1) shows

|Ψ(z)|2 + |Φ(z)|2 = |VF (z)|2−2ReVF (z)+1+4 |F (z)|2

|VF (z)+1|2
≤ 1.

Therefore Φ,Ψ ∈ H∞ (D) = Mult
(
H2 (D)

)
and the direction from (a) to (b) in The-

orem 0.0.1 follows in our special case. Since we can not do these point wise estimations
in the general case, we have to proceed as in [2].

Let K be a Hilbert space and x ∈ K. Then the adjoint of the operator 〈·,x〉K : K → C

is easily seen to be the operator

C→ K,α → αx.

If f : Ω→ K is a function and Hk ⊂ CΩ is a functional Hilbert space given by a reprodu-
cing kernel k : Ω×Ω→ C, then the induced mapping

F : Ω→ K′, F (z) = 〈·, f (z)〉K

10



2.1 The main theorem

defines a multiplier F ∈ Mult(Hk (K) ,Hk) with ‖MF‖L(Hk(K),Hk)
≤ c if and only the

mapping

Ω×Ω→ C, (z,w) 7→ k (z,w)
(
c2−〈 f (w) , f (z)〉K

)
is positive definite. This follows from [5, Satz 1.11 (b)] using the canonical identification
L(C)∼= C.

Lemma 2.1.1. With the notations from the beginning of Chapter 2, let

U : Ω→
(
l2
)′
, U(z)

(
(xn)n∈N

)
=

∞

∑
n=0

un (z)xn.

Then we have

(i) U ∈Mult
(
Hs
(
l2
)
,Hs

)
with ‖MU‖L(Hs(l2),Hs) ≤ 1. In particular un ∈Mult(Hs)

for all n ∈ N and we have ∥∥∥∥∥ ∞

∑
n=0

unhn

∥∥∥∥∥
2

Hs

≤
∞

∑
n=0
‖hn‖2

Hs

for all (hn)n∈N ∈Hs
(
l2
)
.

(ii) the map IdHs−MUM∗U is the orthogonal projection PH0 onto H0 = span{sz0} ∼= C

and satisfies PH0h≡ h(z0) for all h ∈Hs.

Proof. Since U(z) =
〈
·,
(

un (z)
)

n∈N

〉
l2

and since the function

Ω×Ω→ C, (z,w) 7→s(z,w)
(

1−
〈(

un (w)
)

n∈N
,
(

un (z)
)

n∈N

〉
l2

)
= s(z,w)

(
1−

∞

∑
n=0

un (z)un (w)

)
= 1

is positive definite, the remarks preceding Lemma 2.1.1 show that U is a multiplier with
‖MU‖L(Hs(l2),Hs) ≤ 1. Hence ∥∥∥∥∥ ∞

∑
n=0

unhn

∥∥∥∥∥
2

Hs

= ‖MUh‖2
Hs

≤ ‖h‖2
Hs(l2)

=
∞

∑
n=0
‖hn‖2

Hs

11



2 Factorization Theorem

for all h = (hn)n∈N ∈Hs
(
l2
)

by Corollary 4.0.6. To show that un is in Mult(Hs), let
n ∈ N and observe that

un (z)h(z) =
∞

∑
k=0

uk (z)h(z)δkn

= U(z)(h(z)en)

= (MU (hen))(z)

for all h ∈Hs and z ∈Ω. Hence we conclude unh = MU (hen) ∈Hs.

To prove (ii) first note that PH0h = 〈h,sz0〉sz0 ≡ h(z0) for h ∈ Hs. Using U(z)∗w =(
un (z)w

)
n∈N

for all z ∈Ω and w ∈ C an easy calculation shows that

M∗Usz = U(z)∗ (1C)sz =
(

un (z)sz

)
n∈N

for all z ∈Ω. Hence

((
IdHs−MUM∗U

)
sw
)
(z) =

(
1−

∞

∑
n=0

un (z)un (w)

)
sw (z) = 1 = sw (z0)

for all z,w∈Ω. Since MU and M∗U are continuous and linear and since Hs=
∨
{sz; z ∈Ω}

it follows that
(
IdHs−MUM∗U

)
h≡ h(z0) for all h ∈Hs. Hence the claim holds.

Corollary 2.1.2. Let U be the mapping from Lemma 2.1.1. Then we have

M∗Usz =
(

un (z)sz

)
n∈N

for all z ∈Ω.

We give a condition for kernels to have a complete Nevanlinna-Pick factor.

Lemma 2.1.3. Let

U : Ω→
(
l2
)′
, U(z)

(
(xn)n∈N

)
=

∞

∑
n=0

un (z)xn.

be as before. Then a given reproducing kernel k : Ω×Ω→ C can be written as a product
k= sg with g : Ω×Ω→ C positive definite if and only if

U ∈Mult
(
Hk
(
l2
)
,Hk

)
with ‖MU‖

L
(

Hk(l
2),Hk

) ≤ 1.

In this case we have Mult(Hs (E ))⊂Mult
(
Hk (E )

)
and

∥∥Mϕ

∥∥
L
(

Hk(E )

) ≤∥∥Mϕ

∥∥
L(Hs(E ))

for all ϕ ∈Mult(Hs (E )) and any Hilbert space E .

12



2.1 The main theorem

Proof. Exactly as in the proof of Lemma 2.1.1 it follows that

U : Ω→
(
l2
)′
, U(z) =

〈
·,
(

un (z)
)

n∈N

〉
l2

defines a multiplier U∈Mult
(
Hk
(
l2
)
,Hk

)
with multiplier norm ‖MU‖

L
(

Hk(l
2),Hk

)≤ 1

if and only if the function

g : Ω×Ω→ C, g(z,w) = k(z,w)

(
1−

∞

∑
n=0

un (z)un (w)

)

=
kw (z)
sw (z)

is positive definite. This yields the claimed equivalence. For the second part, let ϕ ∈
Mult(Hs (E )) be a multiplier with c =

∥∥Mϕ

∥∥
L(Hs(E ))

6= 0. By [5, Satz 1.11 (b)] the
function

a : Ω×Ω→ L(E ) , a(z,w) = s(z,w)
(
c2 IdE −ϕ (z)ϕ (w)∗

)
is positive definite. By the Schur-Product Lemma the function

ã : Ω×Ω→ L(E ) , ã(z,w) = g(z,w)a(z,w)

= k(z,w)
(
c2 IdE −ϕ (z)ϕ (w)∗

)
is positive definite. Another application of [5, Satz 1.11 (b)] completes the proof.

In the following let g : Ω×Ω→ C be a positive definite function and k= sg.

Remark 2.1.4. k is positive definite by the Schur-Product Lemma.

The following function plays an important role in our further estimations.

Definition 2.1.5. For F ∈Hk (E ), we define the Sarason function VF by

VF : Ω→ C, VF (z) = 2〈F,szF〉Hk(E )−‖F‖
2
Hk(E )

Remark 2.1.6. Since the functions sz (z ∈Ω) are multipliers of Hk (E ), it easily follows
that (VFn)n∈N converges pointwise to VF on Ω, whenever (Fn)n∈N is a convergent sequence
in Hk (E ) with limit F .

Lemma 2.1.7. Let Hi ⊂ E Ω
i (i = 1,2) be functional Hilbert spaces. Let

ϕ : Ω→ L(E1,E2) be a map such that there are a continuous linear operator T : H1→
H2 and a total subset M ⊂H1 with T f = ϕ f for all f ∈ M. Then ϕ ∈Mult(H1,H2)
and T = Mϕ .

13



2 Factorization Theorem

Proof. Each function f ∈H1 is the limit

f = lim
n→∞

rn

∑
i=1

α
(n)
i f (n)i

of a sequence of linear combinations of functions f (n)i ∈M. Since point evaluations are
continuous on the spaces Hi, it follows that

(T f )(λ ) = lim
n→∞

rn

∑
i=1

α
(n)
i

(
T f (n)i

)
(λ )

= lim
n→∞

rn

∑
i=1

α
(n)
i ϕ (λ ) f (n)i (λ )

= lim
n→∞

ϕ (λ )
rn

∑
i=1

α
(n)
i f (n)i (λ )

= ϕ (λ ) f (λ )

for all λ ∈Ω.

The next lemma contains some important estimations and properties for vector valued
functional Hilbert spaces with complete Nevanlinna-Pick
factors.

Lemma 2.1.8. Let h = ∑
k
i=0 aiszi with zi ∈ Ω and ai ∈ C for i = 1, · · · ,k. For n ∈ N, let

hn = ∑
k
i=0 aiun (zi)szi . Setting

HE : Ω→ L
(
E , l2 (E )

)
, HE (λ )(v) = (hn (λ )v)n∈N ,

UE : Ω→ L
(
l2 (E ) ,E

)
, UE (λ )

(
(vn)n∈N

)
=

∞

∑
n=0

un (λ )vn,

we have HE ∈Mult
(
Hk (E ) ,Hk

(
l2 (E )

))
and

UE ∈Mult
(
Hk
(
l2 (E )

)
,Hk(E )

)
with

∥∥MUE

∥∥
L
(

Hk(l
2(E )),Hk(E )

) ≤ 1.

In particular we have (h−h(z0))F = MUE
MHE

F and hence

‖(h−h(z0))F‖2
Hk(E ) ≤

∥∥MHE
F
∥∥2

Hk(l
2(E ))

=
∞

∑
n=0
‖hnF‖2

Hk(E )

for all F ∈Hk (E ).
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2.1 The main theorem

Proof. The map HE is well defined, since for λ ∈Ω and v ∈ E , we have∥∥(hn (λ )v)n∈N
∥∥2
l2(E )

=
∞

∑
n=0
|hn (λ )|2 ‖v‖2

E

= ‖v‖2
E

∞

∑
n=0

∣∣∣∣∣ k

∑
i=0

aiun (zi)szi (λ )

∣∣∣∣∣
2

≤ ‖v‖2
E

∞

∑
n=0

(
k

∑
i=0
|aiszi (λ )|

2
k

∑
j=0

∣∣un
(
z j
)∣∣2)

= ‖v‖2
E

k

∑
i=0
|aiszi (λ )|

2
k

∑
j=0

(
∞

∑
n=0

∣∣un
(
z j
)∣∣2)

= ‖v‖2
E

k

∑
i=0
|aiszi (λ )|

2
k

∑
j=0

∥∥(un
(
z j
))

n∈N
∥∥2
l2
.

Without loss of generality we can now assume that h = sz and hn = un (z)sz for z ∈Ω and
n ∈ N. Consider the continuous linear operator

T : Hk (E )∼= Hk⊗E
Msz⊗S
−→ Hk⊗ l2 (E )∼= Hk

(
l2 (E )

)
with S : E → l2 (E ) , Sx =

(
un (z)x

)
n∈N

. For f ∈Hk and x ∈ E we have

T ( f x) = (sz f )Sx = HE ( f x) .

Since the set of elementary tensors
{

f x; f ∈Hk,x ∈ E
}
⊂Hk (E ) is total we conclude

with Lemma 2.1.7 that HE ∈ Mult
(
Hk (E ) ,Hk

(
l2 (E )

))
. In the following we use a

similar argument to show that

UE ∈Mult
(
Hk
(
l2 (E )

)
,Hk(E )

)
with

∥∥MUE

∥∥
L
(

Hk(l
2(E )),Hk(E )

) ≤ 1

holds. Let f ∈Hk, (αn)n∈N ∈ l2, x ∈ E and U be the mapping from
Lemma 2.1.1. The continuous linear operator

T̃ : Hk
(
l2 (E )

)∼= Hk
(
l2
)
⊗E

MU⊗IdE−→ Hk⊗E ∼= Hk (E )

acts on the elementary tensor f (αnx)n∈N as

T̃
(

f (αnx)n∈N
)
=

∞

∑
n=0

f αnunx = UE

(
f (αnx)n∈N

)
.

Because the set {
(αnx)n∈N ; (αn)n∈N ∈ l2,x ∈ E

}
⊂ l2 (E ) .

15



2 Factorization Theorem

is total, we can apply Lemma 2.1.7 to conclude UE is in
Mult

(
Hk
(
l2 (E )

)
,Hk(E )

)
and

∥∥MUE

∥∥
L
(

Hk(l
2(E )),Hk(E )

) =
∥∥T̃
∥∥

L
(

Hk(l
2(E )),Hk(E )

)
= ‖MU⊗ IdE ‖

L
(

Hk(l
2)⊗E ,Hk⊗E

)
= ‖MU‖

L
(

Hk(l
2),Hk

)
≤ 1.

For the final part of the claim observe that

(h−h(z0) f x)(λ ) =
(
sz

(
1− 1

sz

)
f x
)
(λ )

=

(
∞

∑
n=0

sz (λ )un (z)un (λ )

)
f (λ )x

= (UEHE f x)(λ ) .

holds for all f ∈Hk, x ∈ E and λ ∈Ω. Since h−h(z0) and UEHE are in Mult
(
Hk (E )

)
the equality h−h(z0) =UEHE holds. Due to Hk

(
l2 (E )

)∼= l2⊗Hk (E ) as Hilbert spaces
(cf. Corollary 4.0.6) we conclude that

∥∥MHE
F
∥∥2

Hk(l
2(E ))

=
∥∥(hnF)n∈N

∥∥2
Hk(l

2(E ))
=

∞

∑
n=0
‖hnF‖2

Hk(E ) .

Now, we can show that the real part of the Sarason function is always positive.

Corollary 2.1.9. Let F ∈Hk (E ), then we have ReVF ≥ 0.

Proof. Since

1

1−∑
∞
n=0 |un (z)|2

=
1

1−∑
∞
n=0 un (z)un (z)

= s(z,z)> 0

for all z ∈Ω, we have

∞

∑
n=0
|un (z)|2 < 1

16



2.1 The main theorem

for all z ∈ Ω. If we set h = sz and hn = un (z)sz for z ∈ Ω and all n ∈ N, we get by
Lemma 2.1.8

‖(sz−1)F‖2
Hk(E ) = ‖(sz− sz (z0))F‖2

Hk(E )

= ‖(h−h(z0))F‖2
Hk(E )

≤
∞

∑
n=0
‖hnF‖2

Hk(E )

=
∞

∑
n=0

∥∥∥un (z)szF
∥∥∥2

Hk(E )

=
∞

∑
n=0

(
|un (z)|2 ‖szF‖2

Hk(E )

)
=

(
∞

∑
n=0
|un (z)|2

)
‖szF‖2

Hk(E )

≤ ‖szF‖2
Hk(E )

for all F ∈Hk (E ). Hence we conclude

ReVF (z)

=
VF (z)+VF (z)

2
= 〈szF,F〉Hk(E )+ 〈F,szF〉Hk(E )−〈F,F〉Hk(E )

= 〈szF,szF〉Hk(E )

−
(
〈szF,szF〉Hk(E )−〈szF,F〉Hk(E )−〈F,szF〉Hk(E )+ 〈F,F〉Hk(E )

)
= ‖szF‖2

Hk(E )−‖(sz−1)F‖2
Hk(E )

≥ 0

for all z ∈Ω and F ∈Hk (E ).

Our next aim is to prove a complete generalization of inequality (2.1).

Lemma 2.1.10. For F ∈Hk (E ) the map v : Ω×Ω→ C,

v(z,w) = 〈swF,F〉Hk(E )+ 〈F,szF〉Hk(E )−‖F‖
2
Hk(E )−

〈swF,szF〉Hk(E )

sw (z)

is positive definite.

17



2 Factorization Theorem

Proof. For w ∈Ω, let uw : Ω→ C, uw (z) = ∑
∞
n=0 un (w)un (z). Then 1

sw(z)
= 1−uw (z) for

all z,w ∈Ω and hence

v(z,w) = 〈swF,F〉Hk(E )+ 〈F,szF〉Hk(E )−‖F‖
2
Hk(E )−

〈swF,szF〉Hk(E )

sw (z)
= uw (z)〈swF,szF〉Hk(E )−〈(sw−1)F,(sz−1)F〉Hk(E ) .

Let k ∈ N, z0, · · · ,zk ∈Ω and a0, · · · ,ak ∈ C. We define h = ∑
k
i=0 aiszi and

hn = ∑
k
i=0 aiun (zi)szi for all n ∈ N. Then we obtain

∞

∑
n=0
‖hnF‖2

Hk(E ) =
k

∑
i, j=0

aia j
〈
sz jF,sziF

〉
Hk(E )

∞

∑
n=0

un
(
z j
)
un (zi)

From Lemma 2.1.8 we know that

‖(h−h(z0))F‖2
Hk(E ) ≤

∞

∑
n=0
‖hnF‖2

Hk(E ) .

Finally the claim follows from

k

∑
i, j=0

v
(
zi,z j

)
a jai

=
k

∑
i, j=0

aia j

(
uz j (zi)

〈
sz jF,sziF

〉
Hk(E )

−
〈(
sz j −1

)
F,(szi−1)F

〉
Hk(E )

)

=
∞

∑
n=0
‖hnF‖2

Hk(E )−

〈(
k

∑
j=0

a j
(
sz j −1

))
F,

(
k

∑
i=0

ai (szi−1)

)
F

〉
Hk(E )

=
∞

∑
n=0
‖hnF‖2

Hk(E )

−

〈(
k

∑
i=0

a j
(
sz j − sz j (z0)

))
F,

(
k

∑
i=0

ai (szi− szi (z0))

)
F

〉
Hk(E )

=
∞

∑
n=0
‖hnF‖2

Hk(E )−‖(h−h(z0))F‖2
Hk(E )

≥ 0.

In the following we can use the positivity of the map from Lemma 2.1.10 to generalize
the inequality (2.1).

Lemma 2.1.11. Let F ∈Hk (E ) and let VF be the Sarason function. Then

sz (z)‖F (z)‖2
E ≤ kz (z)ReVF (z) .
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2.1 The main theorem

Proof. By definition we have

VF (z)+VF (w)
2

= 〈swF,F〉Hk(E )+ 〈F,szF〉Hk(E )−‖F‖
2
Hk(E )

for all z,w ∈Ω. Due to Lemma 2.1.10 the map

v : Ω×Ω→ C, v(z,w) =
VF (z)+VF (w)

2
−
〈swF,szF〉Hk(E )

sw (z)

is positive definite. Hence it follows that

ReVF (z)−
‖szF‖2

Hk(E )

sz (z)
= v(z,z)≥ 0

for all z ∈Ω. Now let z ∈Ω. Then we have

sz (z)
2 ‖F (z)‖2

E = ‖δz (szF)‖2
E

≤ ‖δz‖2
Hk(E )′ ‖szF‖

2
Hk(E )

=
∥∥δzδ

∗
z
∥∥

L(C) ‖szF‖
2
Hk(E )

= kz (z)‖szF‖2
Hk(E ) .

Hence

sz (z)‖F (z)‖2
E ≤

kz (z)‖szF‖2
Hk(E )

sz (z)
≤ kz (z)ReVF (z) .

Now, we apply Lemma 2.1.10 to come closer to the multiplier estimates in
Theorem 0.0.1.

Lemma 2.1.12. For i = 1, · · · ,N, let fi ∈ span
{
kz; z ∈Ω

}
⊂ Hk. Let (en) be an or-

thonormal basis of E . Set F = ∑
N
n=1 fnen. Then we have F ∈Mult

(
Hs,Hk (E )

)
and

VF ∈Mult(Hs) where F is regarded as a function in Hk (E ). For h ∈Hs, we have

‖hF‖2
Hk(E ) ≤ Re〈VFh,h〉Hs (2.2)

and if a ∈ C with Rea≥ 0, then

‖(VF −a)h‖2
Hs+4Rea‖hF‖2

Hk(E ) ≤ ‖(VF +a)h‖2
Hs . (2.3)
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2 Factorization Theorem

Proof. For i = 1, · · · ,N let fi = ∑
m
j=0 ai, jkz j where ai, j ∈ C and z j ∈Ω

( j = 0 · · · ,m). For z ∈Ω, we have

〈F,szF〉Hk(E ) =

〈
N

∑
n=1

fnen,
N

∑
n=1

sz fnen

〉
Hk(E )

=
N

∑
k,l=1
〈 fk,sz fl〉Hk

〈ek,el〉E

=
N

∑
k=1
〈 fk,sz fk〉Hk

=
N

∑
k=1

〈
m

∑
j=0

ak, jkz j ,
m

∑
j=0

ak, jszkz j

〉
Hk

=
N

∑
k=1

m

∑
i, j=0

ak,iak, j
〈
kzi,szkz j

〉
Hk

=
m

∑
i, j=0

〈
kzi,szkz j

〉
Hk

N

∑
k=1

ak,iak, j

=
m

∑
i, j=0

sz (zi) kz j (zi)
N

∑
k=1

ak,iak, j

=
m

∑
i, j=0

ci, jkzi

(
z j
)
szi (z)

where we set ci, j = ∑
N
k=1 ak,iak, j for i, j = 0, · · · ,m. Therefore we have

VF (z) = 2〈F,szF〉Hk(E )−‖F‖
2
Hk(E )

= 2
m

∑
i, j=0

ci, jkzi

(
z j
)
szi (z)−‖F‖

2
Hk(E )

for all z∈Ω and hence VF ∈Mult(Hs). Because of Lemma 2.1.10 the map v : Ω×Ω→C,

v(z,w) = 〈swF,F〉Hk(E )+ 〈F,szF〉Hk(E )−‖F‖
2
Hk(E )−

〈swF,szF〉Hk(E )

sw (z)

=
VF (z)+VF (w)

2
−
〈swF,szF〉Hk(E )

sw (z)

is positive definite. Then a= sv is positive definite by the Schur-Product lemma. Next let
w0, · · · ,wk ∈Ω, a0, · · · ,ak ∈ C (k ∈ N) and set
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2.1 The main theorem

h = ∑
k
i=0 aiswi . Then we have

Re〈VFh,h〉Hs−〈hF,hF〉Hk(E )

=
1
2

(
〈VFh,h〉Hs+ 〈VFh,h〉Hs

)
−

〈
k

∑
i=0

aiswiF,
k

∑
i=0

aiswiF

〉
Hk(E )

=
1
2

(
k

∑
i, j=0

aia j
〈
VFswi,sw j

〉
Hs

+
k

∑
i, j=0

a jai
〈
VFsw j ,swi

〉
Hs

)

−
k

∑
i, j=0

aia j
〈
swiF,sw jF

〉
Hk(E )

=
k

∑
i, j=0

aia j

〈VFswi,sw j

〉
Hs

+
〈
VFsw j ,swi

〉
Hs

2
−
〈
swiF,sw jF

〉
Hk(E )


=

k

∑
i, j=0

aia j

VF
(
w j
)
+VF (wi)

2
−

〈
swiF,sw jF

〉
Hk(E )

swi

(
w j
)

swi

(
w j
)

=
k

∑
i, j=0

aia jv
(
w j,wi

)
swi

(
w j
)

=
k

∑
i, j=0

aia ja
(
w j,wi

)
≥ 0.

Therefore inequality (2.2) holds for all h ∈ span{sz; z ∈Ω}. Now let h ∈ Hs be ar-
bitrary. Since Hs =

∨
{sz; z ∈Ω} there exists a sequence (hn)n∈N in span(sz; z ∈Ω)

such that Hs- limn→∞ hn = h. Since we have established inequality (2.2) for elements of
span{sz; z ∈Ω} we conclude

‖hnF−hmF‖2
Hk(E ) = ‖(hn−hm)F‖2

Hk(E )

≤ Re〈VF (hn−hm) ,hn−hm〉Hs
≤
∣∣∣〈VF (hn−hm) ,hn−hm〉Hs

∣∣∣
≤ ‖MVF‖L(Hs) ‖hn−hm‖2

Hs

for all n,m ∈ N. Thus, (hnF)n∈N is a Cauchy sequence in Hk (E ) and hence
g = Hk (E ) - limn→∞ hnF exists. Since the point evaluations on Hs and
Hk (E ) are continuous we have g(z) = E - limn→∞ (hn (z)F (z)) = h(z)F (z) for all z ∈Ω

and thus hF = g ∈Hk (E ). We conclude that
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2 Factorization Theorem

F ∈Mult
(
Hs,Hk (E )

)
and that

‖hF‖2
Hk(E ) = lim

n→∞
‖hnF‖2

Hk(E )

≤ lim
n→∞

Re〈VFhn,hn〉Hs
= Re〈VFh,h〉Hs .

For all h ∈Hs and a ∈ C, an easy calculation shows

‖(VF +a)h‖2
Hs−‖(VF −a)h‖2

Hs = 4ReaRe〈VFh,h〉Hs (2.4)

Therefore inequality (2.3) easily follows from inequality (2.2), since

‖(VF −a)h‖2
Hs+4Rea‖hF‖2

Hk(E ) ≤ ‖(VF −a)h‖2
Hs+4ReaRe〈VFh,h〉Hs

= ‖(VF +a)h‖2
Hs

holds for all h ∈Hs and a ∈ C with Rea≥ 0.

We can now show that each function F ∈Hk (E ) admits even a more general factoriz-
ation than claimed in Theorem 0.0.1.

Proposition 2.1.13. Let F ∈Hk (E ) and a ∈ C with Rea > 0. As before we write VF for
the Sarason function of F. We define functions Ψa,Φa : Ω→ C by

Ψa (z) =
VF (z)−a
VF (z)+a

and Φa (z) =
2

VF (z)+a
F (z) .

Then Ψa ∈Mult(Hs), Φa ∈Mult
(
Hs,Hk (E )

)
and

‖Ψah‖2
Hs+Rea‖Φah‖2

Hk(E ) ≤ ‖h‖
2
Hs

for all h ∈Hs.

Proof. Since ReVF ≥ 0 and Rea > 0, the maps Ψa and Φa are well defined. As first
step we prove the assertions in the particular case that F ∈Hk (E ) is a function as in
Lemma 2.1.12. For i = 1, · · · ,N let fi ∈ span

{
kz; z ∈Ω

}
⊂Hk. Then there are m ∈ N

ai, j ∈ C and z j ∈ Ω (i = 1, · · · ,N, j = 0, · · · ,m) with fi = ∑
m
j=0 ai, jkz j for i = 1, · · · ,N.

Let (en) be an orthonormal basis of E and set F = ∑
N
n=0 fnen. By Lemma 2.1.12 F ∈

Mult
(
Hs,Hk (E )

)
and VF ∈ Mult(Hs). Now let u ∈Hs and set h = (VF +a)u. By

inequality (2.3) it follows that∥∥∥∥VF −a
VF +a

h
∥∥∥∥2

Hs
+Rea

∥∥∥∥ 2
VF +a

Fh
∥∥∥∥2

Hk(E )

(2.5)

= ‖(VF −a)u‖2
Hs+4Rea‖uF‖2

Hk(E )

≤ ‖(VF +a)u‖2
Hs

= ‖h‖2
Hs
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2.1 The main theorem

Thus we have proved the claimed inequality for each function
h ∈ (VF +a)Hs. For h ∈ ((VF +a)Hs)

⊥, we can use inequality (2.2) to obtain

0 =
∣∣∣〈(VF +a)h,h〉Hs

∣∣∣
≥ Re〈(VF +a)h,h〉Hs
≥ ‖h‖2

HsRea+‖hF‖2
Hk(E )

≥ ‖h‖2
HsRea

≥ 0.

Since Rea > 0 it follows that ‖h‖2
Hs = 0 and hence h = 0. This shows that

((VF +a)Hs)
⊥ = {0} and thus

(VF +a)Hs = Hs.

We now want to show that, for functions F as above we have Ψa ∈Mult(Hs) and Φa ∈
Mult

(
Hs,Hk (E )

)
. Thus let h ∈Hs and let (hn)n∈N be a sequence in (VF +a)Hs with

h =Hs- limn→∞ hn. Then there are un ∈Hs with hn = (VF +a)un for all n∈N and hence
we have Ψahn = (VF −a)un ∈Hs and Φahn = 2unF ∈Hk (E ) all n ∈ N. Further we get

‖Ψahn−Ψahm‖Hs = ‖Ψa (hn−hm)‖Hs
inequality (2.5)
≤ ‖hn−hm‖Hs

and

‖Φahn−Φahm‖Hk(E ) = ‖Φa (hn−hm)‖Hk(E )

inequality (2.5)
≤ 1√

Rea
‖hn−hm‖Hs

for all n,m ∈ N. Hence (Ψahn)n∈N and (Φahn)n∈N are Cauchy sequences in Hs, respect-
ively Hk (E ). Then Hs- limn→∞ Ψahn and Hk (E ) - limn→∞ Φahn exist and we can use the
continuity of the point evaluations on Hs and Hk (E ) to show that
Ψah = Hs- limn→∞ Ψahn ∈Hs and Φah = Hk (E ) - limn→∞ Φahn

∈Hk (E ) hold. Therefore Ψa ∈Mult(Hs) and Φa ∈Mult
(
Hs,Hk (E )

)
. Since ‖·‖Hs ,
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2 Factorization Theorem

‖·‖Hk(E ), MΨa and MΦa are continuous, we obtain that:

∥∥∥∥VF −a
VF +a

h
∥∥∥∥2

Hs
+Rea

∥∥∥∥ 2
VF +a

Fh
∥∥∥∥2

Hk(E )

= lim
n→∞

(
‖MΨahn‖2

Hs+Rea‖MΦahn‖2
Hk(E )

)

= lim
n→∞

∥∥∥∥VF −a
VF +a

hn

∥∥∥∥2

Hs
+Rea

∥∥∥∥ 2
VF +a

Fhn

∥∥∥∥2

Hk(E )


≤ lim

n→∞
‖hn‖2

Hs

= ‖h‖2
Hs .

In the second step of we prove the assertions for an arbitrary function F ∈Hk (E ). Since

Hk (E ) =
∨{

f en; f ∈Hk, n ∈ N
}

and Hk = span
{
kz; z ∈Ω

}
we can approximate F

by a sequence (FN)N∈N in

span
{

f en; f ∈ span
{
kz; z ∈Ω

}
, n ∈ N

}
.

We have already seen that the functions Ψa,N : Ω→ C and Φa,N : Ω→ E defined by

Ψa,N (z) =
VFN (z)−a
VFN (z)+a

and Φa,N (z) =
2

VFN (z)+a
FN (z)

are in Mult(Hs), respectively Mult
(
Hs,Hk (E )

)
with

∥∥MΨa,N

∥∥
L(Hs)

≤ 1

and
∥∥MΦa,N

∥∥
L
(

Hs,Hk(E )

) ≤ 1√
Rea

. By Remark 2.1.6 the sequence (VFN )N∈N converges

pointwise to VF . Therefore (Ψa,N)N∈N and (Φa,N)N∈N converge pointwise to Ψa and Φa
and hence limN→∞ (Ψa,Nh)(z) = (Ψah)(z) and E - limN→∞ (Φa.Nh)(z) = (Φah)(z) for all

z∈Ω and h∈Hs. By Corollary 4.0.2 we have Ψa ∈Mult(Hs), Φa ∈Mult
(
Hs,Hk (E )

)
and ((Ψa,Nh,Φa,Nh))N∈N converges weakly to (Ψah,Φah). Because of that we can use
Proposition 4.0.3 to deduce

‖Ψah‖2
Hs+Rea‖Φah‖2

Hk(E )

≤ liminf
N→∞

‖Ψa,Nh‖2
Hs+Rea liminf

N→∞
‖Φa,Nh‖2

Hk(E )

≤ liminf
N→∞

(
‖Ψa,Nh‖2

Hs+Rea‖Φa,Nh‖2
Hk(E )

)
≤ ‖h‖2

Hs

for all h ∈Hs.
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2.1 The main theorem

We proof the following Lemma to show the direction (b) to (a) in Theorem 0.0.1(i) and
the uniqueness of the factorization in Theorem 0.0.1(ii).

Lemma 2.1.14. Let Ψ ∈ CΩ and Φ ∈ E Ω be maps with Ψ ∈Mult(Hs),
Φ ∈Mult

(
Hs,Hk (E )

)
and such that

‖Ψh‖2
Hs+‖Φh‖2

Hk(E ) ≤ ‖h‖
2
Hs (2.6)

holds for all h ∈Hs.

(i) Then, for 0 < r < 1, the function Fr =
Φ

1−rΨ
is well defined and

Fr ∈Mult
(
Hs,Hk (E )

)
with

‖Frh‖2
Hk(E ) ≤ Re

〈
1+ rΨ

1− rΨ
h,h
〉

Hs
(h ∈Hs) . (2.7)

In particular, Fr = Frsz0 ∈Hk (E )

(ii) If |ψ (z0)|< 1 and 1 /∈Ψ(Ω) then F = Φ

1−Ψ
∈Hk (E ), τ

Hk(E )

w - lim r→1
0<r<1

Fr = F and

the map a : Ω×Ω→ C with

a(z,w) = sw (z)

(
1+ψ (z)
1−ψ (z)

+
1+ψ (w)
1−ψ (w)

)
−2〈swF,szF〉Hk(E )

for all z,w ∈Ω is positive definite.

Proof. (i) Fix 0 < r < 1. By inequality (2.6) we have ‖MΨ‖L(Hs) ≤ 1. Hence it holds that
σ (MΨ)⊂ D= {z ∈ C; |z| ≤ 1}. Therefore the operator
M(1−rψ)= r

(1
r IdHs−MΨ

)
is invertible for 0< r < 1. Since the constant function 1: Ω→

C is in Hs, there exists g ∈Hs such that M(1−rψ)g = 1. Hence (1− rΨ)(z)g(z) = 1 for
all z ∈Ω and 1

1−rΨ
∈Hs. Because 1

1−rΨ
h = M−1

(1−rψ)
h is in Hs for all h ∈Hs, we indeed

have 1
1−rΨ

∈ Mult(Hs). Since Φ is an element of Mult
(
Hs,Hk (E )

)
, it follows that

Fr ∈Mult
(
Hs,Hk (E )

)
. Using inequality (2.6) and the fact that 0 < r < 1 we conclude

that

r2 ‖Ψh‖2
Hs+‖Φh‖2

Hk(E ) ≤ ‖h‖
2
Hs (h ∈Hs) .

Applying this inequality to 1
1−rΨ

h we get

‖Frh‖2
Hk(E ) ≤

∥∥∥∥ 1
1− rΨ

h
∥∥∥∥2

Hs
−
∥∥∥∥ rΨ

1− rΨ
h
∥∥∥∥2

Hs
.

25



2 Factorization Theorem

for all h ∈Hs. Using the identities

1+ rΨ

1− rΨ
−1 =

2rΨ

1− rΨ
and

1+ rΨ

1− rΨ
+1 =

2
1− rΨ

we obtain inequality (2.7) because∥∥∥∥ 1
1− rΨ

h
∥∥∥∥2

Hs
−
∥∥∥∥ rΨ

1− rΨ
h
∥∥∥∥2

Hs

=
1
4

(∥∥∥∥ 2
1− rΨ

h
∥∥∥∥2

Hs
−
∥∥∥∥ 2rΨ

1− rΨ
h
∥∥∥∥2

Hs

)

=
1
4

〈(
1+ rΨ

1− rΨ
+1
)

h,
(

1+ rΨ

1− rΨ
+1
)

h
〉

Hs

− 1
4

〈(
1+ rΨ

1− rΨ
−1
)

h,
(

1+ rΨ

1− rΨ
−1
)

h
〉

Hs

=
1
2

(〈
1+ rΨ

1− rΨ
h,h
〉

Hs
+

〈
h,

1+ rΨ

1− rΨ
h
〉

Hs

)

= Re
〈

1+ rΨ

1− rΨ
h,h
〉

Hs

for all h ∈Hs.

(ii) Suppose that 1 6= Ψ(Ω). Then we have E - lim r→1
0<r<1

Fr (z) = F (z) for all z ∈ Ω, and

using the identity sz0 ≡ 1, we conclude that

‖Fr‖2
Hk(E ) = ‖Frsz0‖

2
Hk(E )

≤ Re
〈

1+ rΨ

1− rΨ
sz0 ,sz0

〉
Hs

= Re
1+ rΨ(z0)

1− rΨ(z0)

≤ 1+ |rΨ(z0)|
1−|rΨ(z0)|

≤ 1+ |Ψ(z0)|
1−|Ψ(z0)|

for all 0 < r < 1. Therefore Theorem 4.0.1 yields F ∈Hk (E ) and

τ
Hk(E )

w - lim r→1
0<r<1

Fr = F .

We now want to show that the map a : Ω×Ω→ C,

a(z,w) = sw (z)

(
1+ψ (z)
1−ψ (z)

+
1+ψ (w)
1−ψ (w)

)
−2〈swF,szF〉Hk(E ) (2.8)
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2.1 The main theorem

is positive definite. Let a1, · · · ,an ∈ C, z1, · · · ,zn ∈ Ω and set h = ∑
n
i=1 aiszi . Since Mh ∈

L
(
Hk (E )

)
the map Mh : Hk (E )→Hk (E ) is weakly continuous. Setting rk =

(
1− 1

k+2

)
for all k ∈ N, we can use Proposition 4.0.3 and inequality (2.7) to get

n

∑
i, j=1

aia j
〈
sziF,sz jF

〉
Hk(E )

= ‖hF‖2
Hk(E )

≤ liminf
k→∞

‖hFrk‖
2
Hk(E )

≤ limsup
n→∞

Re
〈

1+ rkΨ

1− rkΨ
h,h
〉

Hs

= limsup
k→∞

Re
n

∑
i, j=1

aia j

〈
1+ rkΨ

1− rkΨ
szi,sz j

〉
Hs

= lim
k→∞

1
2

n

∑
i, j=1

aia j

(
1+ rkΨ

(
z j
)

1− rkΨ
(
z j
) + 1+ rkΨ(zi)

1− rkΨ(zi)

)
szi

(
z j
)

=
1
2

n

∑
i, j=1

aia jszi

(
z j
)(1+Ψ

(
z j
)

1−Ψ
(
z j
) + 1+Ψ(zi)

1−Ψ(zi)

)
.

Therefore we have

n

∑
i, j=1

aia ja
(
zi,z j

)
≥ 0.

Remark 2.1.15. For a domain Ω ⊂ C
n and a functional Hilbert space Hs ⊂ O (Ω) we

can conclude with inequality (2.6) that |Ψ| < 1 on Ω if Φ 6= 0. This follows from the
maximum principle and the inequality ‖Ψ‖

Ω
≤ ‖MΨ‖L(Hs).

We, finally show Theorem 0.0.1.

Theorem 2.1.16. (i) For F ∈ E Ω, the following are equivalent:

(a) F ∈Hk (E ) with ‖F‖Hk(E ) ≤ 1 .

(b) There exist Ψ ∈ CΩ with Ψ(z0) = 0, 1 /∈ Ψ(Ω) and Φ ∈ E Ω such that Ψ ∈
Mult(Hs), Φ ∈Mult

(
Hs,Hk (E )

)
,

‖Ψh‖2
Hs+‖Φh‖2

Hk(E ) ≤ ‖h‖
2
Hs

for all h ∈Hs and F = Φ

1−Ψ
.
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2 Factorization Theorem

(ii) If F ∈Hk (E ) with ‖F‖Hk(E ) = 1 then the factorization from (b) is uniquely given

by

Ψ =
VF −1
VF +1

and Φ =
2

VF +1
F.

Proof. (i) (a)⇒(b) If F ∈Hk (E ) with ‖F‖Hk(E ) = 1, then (b) follows from (a) by Pro-

position 2.1.13 with a = 1, Ψ = Ψ1 and Φ = Φ1. Observe that since VF (z0) = 1 we have
Ψ(z0) = 0. If ‖F‖Hk(E ) < 1, we get (b) from (a) as follows: For w ∈Ω, set

Fw =

F,

√√√√1−‖F‖2
Hk(E )

kw (w)
kw

 .

Then Fw ∈Hk (E ⊕C) with

‖Fw‖2
Hk(E⊕C)

= ‖F‖2
Hk(E )+

(
1−‖F‖2

Hk(E )

) ∥∥kw∥∥2
Hk∣∣kw (w)∣∣ = 1.

The Sarason function of Fw is

VFw =VF +

(
1−‖F‖2

Hk(E )

)
(2sw−1) .

Let Ψw ∈ CΩ, Φw ∈ (E ⊕C)Ω be the functions corresponding to Fw from
Proposition 2.1.13 with a = 1 and PE be the orthogonal projection from E ⊕C onto E .
Then the claim follows with Ψ = Ψw and Φ = PE Φw since F = 1

1−ψw
PE Φw.

(b)⇒(a) If we assume (b), then the assumptions from Lemma 2.1.14 (ii) hold. Using

the notations from Lemma 2.1.14 we therefore get F ∈Hk (E ) and τ
Hk(E )

w - lim r→1
0<r<1

Fr =

F . Setting rk =
(
1− 1

k+2

)
(k ∈ N) and applying inequality (2.7) with h ≡ 1 ∈Hs we

conclude

‖F‖Hk(E ) ≤ liminf
k→∞

‖Frk‖Hk(E )

≤ liminf
k→∞

Re
〈

1+ rkΨ

1− rkΨ
1,1
〉

Hs

= liminf
k→∞

Re
〈

1+ rkΨ

1− rkΨ
1,sz0

〉
Hs

= liminf
k→∞

Re
1+ rkΨ(z0)

1− rkΨ(z0)

= 1
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2.1 The main theorem

due to Proposition 4.0.3.

(ii) Let a : Ω×Ω→ C,

a(z,w) = sw (z)

(
1+ψ (z)
1−ψ (z)

+
1+ψ (w)
1−ψ (w)

)
−2〈swF,szF〉Hk(E )

be the positive definite map from Lemma 2.1.14. Since Ψ(z0) = 0 and ‖F‖Hk(E ) = 1, we

have a(z0,z0) = 0 and thus

|a(z,z0)|2 =
∣∣∣〈az,az0〉Ha

∣∣∣2 ≤ ‖az‖2
Ha ‖az0‖

2
Ha = a(z0,z0)a(z,z) = 0

for all z ∈Ω. We obtain a(z,z0) = 0 and hence

1+Ψ(z)
1−Ψ(z)

= 2〈F,szF〉Hk(E )−1 =VF (z)

for all z ∈Ω. Finally this yields

Ψ =
VF −1
VF +1

and Φ =
2

VF +1
F.
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2 Factorization Theorem

2.2 Applications

In general it is difficult to characterize the multipliers of a complete Nevanlinna-Pick
space. We next indicate how to construct multipliers using a weak integral as explained
in [15, Thm 3.17] and the Sarason function.

For a subset M of a vector space X we denote by

co(M) =
⋂

M⊂C,C convex

C

the convex hull of M.

Proposition 2.2.1. Let H1,H2 be Hilbert spaces and let C ⊂ L(H1,H2) be a τWOT-
compact subset. Then the τWOT-closed convex hull co(C)

τWOT ⊂ L(H1,H2) is τWOT-
compact again.

Proof. By [12, §20.6 (3)] it suffices to show that (L(H1,H2) ,τWOT) is quasi-complete.
Let therefore (Tα)α∈A be a bounded Cauchy net in (L(H1,H2) ,τWOT). By the uniform
boundedness principle the net (Tα)α∈A is also norm-bounded. Fix x ∈ H1 and y ∈ H2.
Since (〈Tαx,y〉)

α∈A is a Cauchy net in C, limα 〈Tαx,y〉 exists. Now set

(·, ·) : H1×H2→ C, (x,y) = lim
α
〈Tαx,y〉

Then (·, ·) is sesquilinear and continuous, since (Tα)α∈A is norm-bounded. Using the fact
that, for each continuous sesquilinear form

(·, ·) : H1×H2→ C

there is a continuous linear operator T ∈ L(H1,H2) with

(x,y) = 〈T x,y〉 (x ∈ H1,y ∈ H2) ,

it follows that (L(H1,H2) ,τWOT) is quasi-complete.

Theorem 2.2.2. Let F ∈Hk (E ), x ∈ (0,∞) and µ a finite positive Borel-measure on R
with compact support. Then, setting

Φ : Ω→ E , Φ(z) =
∫

supp(µ)

F (z)
VF (z)+ x− iy

dµ (y)

we have Φ ∈Mult
(
Hs,Hk (E )

)
.

Proof. For all y ∈ R, set ϕy =
F

VF+x−iy . By Proposition 2.1.13 we have

ϕy ∈Mult
(
Hs,Hk (E )

)
with

∥∥Mϕy

∥∥
L
(

Hs,Hk(E )

) ≤ 1√
x for all y ∈ R. Set

f :
(
supp(µ) ,τ|·|

)
→
(

L
(
Hs,Hk (E )

)
,τWOT

)
, f (y) = Mϕy
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2.2 Applications

Next, we show that f is continuous. Therefore, let y ∈ supp(µ) and (yα)α∈A a net in
supp(µ) with R- limα yα = y. Further, fix h ∈Hs \ {0}. For all z ∈ Ω and v ∈ E , we
conclude that

lim
α

〈
Mϕyα

h, kzv
〉
Hk(E )

= lim
α

〈
F (z)h(z)

VF (z)+ x− iyα

,v
〉

E

=

〈
F (z)h(z)

VF (z)+ x− iy
,v
〉

E

=
〈
Mϕyh, kzv

〉
Hk(E )

.

Since
(
Mϕyα

)
α∈A is norm-bounded, the set{

G ∈Hk (E ) ; lim
α

〈
Mϕyα

h,G
〉
Hk(E )

=
〈
Mϕyh,G

〉
Hk(E )

}
⊂Hk (E )

is a closed linear subspace. Thus the continuity of f follows. By [15, Thm 3.17] and
Proposition 2.2.1 the weak integral∫

supp(µ)
f dµ ∈ co( f (supp(µ)))

τWOT

exists. By Proposition 1.7.9 in [6] the set{
Mϕ ; ϕ ∈Mult

(
Hs,Hk (E )

)}
⊂ L

(
Hs,Hk (E )

)
is a τWOT-closed linear subspace. Hence there is a function ϕ ∈Mult

(
Hs,Hk (E )

)
such

that
∫

supp(µ) f dµ = Mϕ . Now, let z ∈Ω and set

εz :
(

L
(
Hs,Hk (E )

)
,τWOT

)
→ (E ,τw) , T 7→ T (1)(z) .

Since weak integrals are compatible with continuous linear maps, it follows that

εz

(∫
supp(µ)

f dµ

)
=
∫

supp(µ)
εz ( f )dµ

= weak−
∫

supp(µ)

F (z)
VF (z)+ x− iy

dµ (y) .

Here the last integral denotes the weak (E ,τw)-valued integral from [15]. Since the E -
valued Lebesgue-integral ∫

supp(µ)

F (z)
VF (z)+ x− iy

dµ (y) = Φ(z)

exists, we have

ϕ (z) = εz

(∫
supp(µ)

f dµ

)
=
∫

supp(µ)

F (z)
VF (z)+ x− iy

dµ (y) = Φ(z)

for all z ∈Ω.
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With Theorem 2.1.16 it is easy to check that the elements of Hk (E ) have the same

zero sets as functions in Mult
(
Hs,Hk (E )

)
. We extend this idea to prove a result about

multiplier invariant subspaces.

Definition 2.2.3. A closed subspace M ⊂Hk (E ) is called multiplier invariant if

MϕM ⊂M for all ϕ ∈Mult
(
Hk (E )

)
.

Remark 2.2.4. Let S⊂Hk (E ) be an arbitrary subset. Then

[S] =
∨(

ϕF ; ϕ ∈Mult
(
Hk (E )

)
,F ∈ S

)
is the smallest multiplier invariant subspace in Hk (E ) which contains S. If S = {F}
consists of a single function, we write [F ] = [{F}].

Corollary 2.2.5. Let F ∈Hk (E ) be a function with ‖F‖Hk(E ) = 1 and consider a fac-

torization F = Φ

1−Ψ
as in Theorem 2.1.16. Then we have [F ] = [Φ]. In particular, every

multiplier invariant subspace of Hk (E ) is generated by elements of Mult
(
Hs,Hk (E )

)
.

Proof. Let F = Φ

1−Ψ
be a factorization as in Theorem 2.1.16. As (1−Ψ) IdE is an element

of Mult
(
Hk (E )

)
by Lemma 2.1.3, we conclude that Φ= (1−Ψ)F ∈ [F ]. For 0< r < 1,

we have by the proof of Lemma 2.1.14 that Fr = 1
1−rΨ

Φ ∈ [Φ] and

τw- lim
r→1,0<r<1

Fr = F.

Since [Φ] is convex as a subspace, it is also τw-closed. Hence, we have F ∈ [Φ]. The
remaining assertion obviously follows from the first part of the corollary.

In the last part of this chapter we want to consider so called extremal functions.

Definition 2.2.6. A function F ∈Hk (E ) is called extremal if

〈ϕF,F〉Hk(E ) = ϕ (z0)

holds for all ϕ ∈Mult
(
Hk

)
.

With the aid of Theorem 2.1.16 we can show some interesting results for these func-
tions.

Remark 2.2.7. If F is extremal in Hk (E ), then ‖F‖Hk(E ) = 1 and

VF (z) = 2〈F,szF〉−1 = 1.

Therefore with the notations of Theorem 2.1.16 we obtain that Ψ = 0 and Φ = F .
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2.2 Applications

Corollary 2.2.8. Every extremal function F ∈Hk (E ) is a contractive multiplier from Hs
into Hk (E ) and

‖F (z)‖2
E ≤

kz (z)
sz (z)

holds for all z ∈Ω.

Proof. The first assertion follows by Theorem 2.1.16, since Φ = F . The second part
follows by Lemma 2.1.11.

Corollary 2.2.9. For z ∈Ω, we denote the setu(z)u(z)∗ ; u ∈Mult
(
Hk
(
l2
)
,Hk

)
,u(z0) = 0,‖Mu‖

L
(

Hk(l
2),Hk

) < 1


by Az and set

αk (z) = supAz.

If F is extremal in Hk (E ), then

‖F (z)‖2
E ≤

(
1−αk (z)

)
kz (z)

for all z ∈Ω.

Proof. If Mult
(
Hk
(
l2
)
,Hk

)
consists only of the constant zero function, there is nothing

to show. If there is a u ∈Mult
(
Hk
(
l2
)
,Hk

)
with u(z0) = 0 and ‖Mu‖

L
(

Hk(l
2),Hk

) < 1

which is not the zero function, then s : Ω×Ω→ C,

s(z,w) =
1

1−u(z)u(w)∗

defines a normalized complete Nevanlinna-Pick kernel. Then Lemma 2.1.3 shows that the

map g= k
s is positive definite. By Corollary 2.2.8 we obtain, for every extremal function

F ∈Hk (E ) that

‖F (z)‖2
E ≤

(
1−u(z)u(z)∗

)
kz (z)

holds for all z ∈Ω. Thus, the assertion follows.

In the following let Bd ⊂ Cd be the open Euclidean unit ball.
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2 Factorization Theorem

Proposition 2.2.10. Let Hk ⊂ C
Bd be a functional Hilbert space given by a reproducing

kernel k : Bd×Bd → C and let ϕ : Bd → L
(
C

d,C
)

be defined by

ϕ (z)(α) =
d

∑
i=1

ziαi.

Then ϕ ∈Mult
(
Hk
(
C

d) ,Hk (C)
)

with
∥∥Mϕ

∥∥
L
(

Hk(C
d),Hk(C)

) ≤ 1 or equivalently, the

tuple Mz = (Mz1 , . . . ,Mzd) ∈ L
(
Hk

)d
consisting of the multiplication operators with the

coordinate functions is a well-defined row contraction on Hk, if and only if the map

Bd×Bd → C,(z,w)→ k(z,w)(1−〈z,w〉
Cd)

is positive definite or if and only if there is a positive definite function g : Bd ×Bd → C

with

k(z,w) = g(z,w)
1

1−〈z,w〉
Cd

(z,w ∈ Bd) .

Proof. This follows from [5, Satz 1.11 (b)].

Let

s : Bd×Bd → C, s(z,w) =
1

1−〈z,w〉
Cd

be the reproducing kernel of the Drury-Arveson space, g : Bd ×Bd → C a positive def-
inite map and k = sg, such that Hk consists of analytic functions. By Proposition 2.2.10

it follows that the tuple Mz = (Mz1 , . . . ,Mzd) ∈ L
(
Hk

)d
consisting of the multiplication

operators with the coordinate functions is a well-defined row contraction on Hk. By
[11, Satz 2.1.7] the row contraction Mz is even pure.

For α = (α1, . . . ,αd) ∈ Nd \{0}, we write zα for the function

Bd → C, z 7→ zα1
1 · · ·z

αd
d .

In [7] a function θ : Bd → L(C,E ) is called k-inner if θ1C ∈Hk (E ), ‖θ1C‖Hk(E ) = 1

and

〈zα
θ1C,θ1C〉Hk(E ) = 0

holds for all α ∈ Nd \{0}.
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2.2 Applications

Remark 2.2.11. By [6, Proposition 1.7.9] the subalgebra

M
(
Hk (E )

)
=
{

Mϕ ; ϕ ∈Mult
(
Hk (E )

)}
⊂ L

(
Hk (E )

)
is τ∗w-closed. Identifying Mult

(
Hk (E )

)
with M

(
Hk (E )

)
via the map

Mult
(
Hk (E )

)
→M

(
Hk (E )

)
, ϕ 7→Mϕ

we call the topology induced by τ∗w on Mult
(
Hk (E )

)
the weak∗-topology on

Mult
(
Hk (E )

)
. An application of [8, Lemma 1.16] and [6, Proposition 1.7.11] yields

that the map

Mult
(
Hk

)
→Mult

(
Hk (E )

)
, ϕ 7→ ϕ IdE

is weak∗-continuous.

By the following Remark and [7] we see that extremal functions play an essential role
in the theory of wandering subspaces for shift-invariant subspaces.

Remark 2.2.12. For an extremal function F ∈Hk (E ), the map

FL(C,E ) : Bd → L(C,E ) , FL(C,E ) (z)(λ ) = λF (z)

is obviously k-inner. Indeed, by definition ‖F‖Hk(E ) = 1 and 〈zαF,F〉Hk(E ) = zα (0) = 0

for all α ∈ Nd \{0}

Set H ∞
(
k
)
= C [z]

weak∗ ⊂ Mult
(
Hk

)
. With Theorem 2.1.16 we get the following

equivalence for k-inner functions:

Proposition 2.2.13. For F ∈Hk (E ), the following conditions are equivalent:

(i) FL(C,E ) : Bd → L(C,E ) , FL(C,E ) (z)(λ ) = λF (z) is k-inner,

(ii) F ∈Mult
(
Hs,Hk (E )

)
with ‖F‖Hk(E ) = ‖MF‖

L
(

Hs,Hk(E )

) = 1,

(iii) VF = 1 and ‖F‖Hk(E ) = 1.

(iv) 〈ϕF,F〉Hk(E ) = ϕ (0) for all ϕ ∈H ∞
(
k
)
.

Proof. (i)⇒(ii) Let FL(C,E ) be k-inner. By [7, Theorem 6.2], the function F is a contract-
ive multiplier from Hs to Hk (E ). But then

1≥ ‖MF‖
L
(

Hs,Hk(E )

) ≥ ∥∥MF1Hs
∥∥

Hk(E )
= ‖F‖Hk(E ) = 1.
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2 Factorization Theorem

(ii)⇒(iii) Since ‖F‖Hk(E ) = 1 we can use the uniqueness of the decomposition F = Φ

1−Ψ

from Theorem 2.1.16 (ii) to see that Φ = F and Ψ = 0. Thus we deduce VF = 1.

(iii)⇒(i) Let VF = 1. Because of ‖F‖Hk(E ) = 1 the equation

〈F,szF〉Hk(E ) = 1 = sz (0)

holds for all z ∈ Bd . Since the functions Bd → C, z 7→ zi (i = 1, . . . ,d) are elements of
Mult(Hs) the map zα

(
α ∈ Nd) can be approximated by a sequence

(
ϕ
(α)
n

)
n∈N

with

ϕ
(α)
n =

Nn

∑
k=0

a(n)k szk,n ∈ span{sz; z ∈ Bd}

in Hs. By Theorem 2.1.16 (ii)

F = Φ ∈Mult
(
Hs,Hk (E )

)
with ‖MF‖

L
(

Hs,Hk(E )

) ≤ 1.

Thus, we conclude ∥∥∥ϕ
(α)
n F−ϕ

(α)
m F

∥∥∥
Hk(E )

≤
∥∥∥ϕ

(α)
n −ϕ

(α)
m

∥∥∥
Hs

for all n,m ∈ N. Hence
(

ϕ
(α)
n F

)
n∈N

is a Cauchy sequence and

g = lim
n→∞

ϕ
(α)
n F ∈Hk (E )

exists. Since the point evaluations on Hk (E ) are continuous, we have

g(z) = lim
n→∞

ϕ
(α)
n (z)F (z) = zαF (z)

for all z ∈ Bd and hence

〈zαF,F〉Hk(E ) =
〈

lim
n→∞

ϕ
(α)
n F,F

〉
Hk(E )

= lim
n→∞

〈
ϕ
(α)
n F,F

〉
Hk(E )

= lim
n→∞

〈
Nn

∑
k=0

a(n)k szk,nF,F

〉
Hk(E )

= lim
n→∞

Nn

∑
k=0

a(n)k szn,k (0)

= lim
n→∞

ϕ
(α)
n (0)

= 0.
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2.2 Applications

(iv)⇒(i) By (iv) we obtain that ‖F‖Hk(E ) = 〈1F,F〉Hk(E ) = 1 and 〈zαF,F〉Hk(E ) = zα (0)

= 0 for all α ∈ Nd \ {0}, since 1 and zα are in H ∞
(
k
)
. Hence the map FL(C,E ) : Bd →

L(C,E ) is k-inner.

(i)⇒(iv) Let ϕ ∈H ∞
(
k
)

and (ϕi)i∈I be a net in C [z] with ϕi = ∑|α|≤Ni a(i)α zα (i ∈ I) and

weak∗ - limi∈I ϕi = ϕ in Mult
(
Hk

)
. Hence weak∗ - limi∈I ϕi = ϕ also in Mult

(
Hk (E )

)
by Remark 2.2.11 above. Since FL(C,E ) is k-inner we have 〈zαF,F〉Hk(E ) = 0 for all

α ∈ Nd \{0} and thus

ϕ (0) =
〈
ϕ, k0

〉
Hk

= lim
i∈I

〈
Mϕi1Hk

, k0
〉

Hk
= lim

i∈I

〈
ϕi, k0

〉
Hk

= lim
i∈I

ϕi(0)

= lim
i∈I ∑
|α|≤Ni

a(i)α 〈zαF,F〉Hk(E )

= lim
i∈I

〈
MϕiF,F

〉
Hk(E )

= 〈ϕF,F〉Hk(E )

Remark 2.2.14. In [6, Example 3.2.3] it is shown that under the additional assumption

k
(
eitz,eitw

)
= k(z,w)

for all z,w ∈ Bd and t ∈ R the identity

H ∞
(
k
)
= Mult

(
Hk

)
holds. In this case condition (iv) is equivalent to the assertion that F is extremal.
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3 Multiplier Theorem

3.1 A multiplier criterion

Let F be an element of Hk (E ). In the following we want to describe a sufficient condi-
tion for F to be a multiplier from Hs to Hk (E ). Under suitable additional hypotheses

we show that F ∈Mult
(
Hs,Hk (E )

)
, whenever the real part of its Sarason function is

bounded.

In the following, where not otherwise stated, all function will spaces be C-valued. For
a measure space (X ,σ ,µ) and a given Banach space E we denote by L0 (µ,E) the µ-
measurable functions. Here a function f : X → E is said to be µ-measurable if there is a
sequence

(
f j
)

of simple functions such that f j → f µ-almost everywhere as j→ ∞ (for
more details see [3, X.1 Measurable functions]). Let Ω be an open subset of Rd , µ1, . . . ,µK
finite positive measures on the Borel-σ -Algebra B(Ω). Suppose that D =Hk∩CN (Ω)⊂

Hk (N ∈ N) is dense and Mult(Hs)⊂CN (Ω). Let
(

a(l)α

)
|α|≤N

(l = 1, . . . ,K) be families

of µl-measurable functions on Ω and let c1,c2 > 0. Further suppose

c1 ‖ f‖2
Hk
≤

K

∑
l=1

∫
Ω

∣∣∣∣∣ ∑
|α|≤N

a(l)α ∂
α f (z)

∣∣∣∣∣
2

dµl (z)≤ c2 ‖ f‖2
Hk

(3.1)

holds for all f ∈D . Then the operators

L(l) : D → L2 (µl) , L(l) f = ∑
|α|≤N

a(l)α ∂
α f (l = 1, . . . ,K)

are well defined and linear with

c1 ‖ f‖2
Hk
≤

K

∑
l=1

∥∥∥L(l) f
∥∥∥2

L2(µl)
≤ c2 ‖ f‖2

Hk
. (3.2)

for all f ∈D . For a given Hilbert space E and l = 1, . . . ,K, let L(l)
E : D⊗alg E →L2 (µl,E )

be the linear map with L(l)
E ( f ⊗ x) = L(l) ( f )x for f ∈ D and x ∈ E . One can show that

each element f ∈
(
D⊗alg E

)
\{0} can be written as f = ∑

r
j=1 f j⊗x j with f1, . . . , fr ∈D

and a suitable orthonormal system
(
x j
)r

j=0. For any f of this form, we use the identity
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3 Multiplier Theorem

∑
K
l=1 ∑

r
j=1

∥∥∥L(l) f j

∥∥∥2

L2(µl)
= ∑

K
l=1

∥∥∥L(l)
E f
∥∥∥

L2(µl ,E )
to obtain

c1 ‖ f‖2
Hk(E ) = c1

r

∑
j=1

∥∥ f j
∥∥2

Hk
(3.3)

≤
K

∑
l=1

∥∥∥L(l)
E f
∥∥∥

L2(µl ,E )

≤ c2

r

∑
j=1

∥∥ f j
∥∥2

Hk

= c2 ‖ f‖2
Hk(E ) .

Remark 3.1.1. From the above assumptions that D = Hk ∩CN (Ω) and Mult(Hs) ⊂
CN (Ω) it follows that Mult(Hs)D ⊂D (see Lemma 2.1.3) and
span{sz; z ∈Ω}

(
D⊗alg E

)
⊂D⊗alg E .

Remark 3.1.2. For F ∈Hk (E ), x > 0 and t ∈ R, Proposition 2.1.13 shows that

1
VF + x− it

=
1
2x

(
1− VF − (x+ it)

VF +(x− it)

)
∈Mult(Hs)⊂CN (Ω) .

Since D⊗alg E ∼= {∑r
i=1 fixi; fi ∈D ,xi ∈ E } and inequality (3.3) holds for all F in the

dense subspace D⊗alg E ⊂Hk⊗E ∼= Hk (E ), the operators L(l)
E : D⊗alg E → L2 (µl,E )

(l = 1, . . . ,K) extend uniquely to bounded linear operators

L̃(l)
E : Hk (E )→ L2 (µl,E )

with

L̃(l)
E

(
r

∑
i=1

fixi

)
=

[
L(l)

E

(
r

∑
i=1

fi⊗ xi

)]
( f1, . . . , fr ∈D ,x1 . . .xr ∈ E )

such that the estimates

c1 ‖F‖2
Hk(E ) ≤

K

∑
l=1

∥∥∥L̃(l)
E F
∥∥∥2

L2(µl ,E )
≤ c2 ‖F‖2

Hk(E ) (3.4)

hold for all F ∈Hk (E ).
In [10] Kaluza studied weighted Bergman spaces Ap

α (α ∈ R, p ∈ [1,∞)). The spaces
A2

α = O (Bd)∩L2 (Bd,να) (α >−1) are equipped with the norm

‖ f‖2,α =

(∫
Bd

| f (z)|2 dνα (z)
) 1

2 (
f ∈ A2

α

)
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3.1 A multiplier criterion

where να = cα

(
1−|z|2

)α

ν , ν is the normalized Lebesgue measure on Bd and cα is a
normalization constant turning να into a probability measure. Let

R : O (Bd)→ O (Bd) , (R f )(z) =
d

∑
ϑ=1

zϑ (∂ϑ f )(z) ,

be the operator associating with each function in O (Bd) its radial derivative. One can
show ([10, Lemma 3.10]) that, for N ∈ N∗, there are coefficients cN,α ∈ N (0 < |α| ≤ N)
such that (

RN f
)
(z) = ∑

0<|α|≤N
cN,αzα (∂ α f )(z) ( f ∈ O (Bd) ,z ∈ Bd) .

Let α ∈ R and let N ∈ N be the smallest natural number such that α + 2N > −1. The
linear subspace

A2
α =

{
f ∈ O (Bd) ; RN f ∈ L2 (Bd,να+2N)

}
⊂ O (Bd)

equipped with the norm

‖ f‖2,α = | f (0)|+
(∫

Bd

∣∣RN f (z)
∣∣2 dνα+2N (z)

) 1
2

becomes a continuously embedded Banach space A2
α ⊂O (Bd) [10, Satz 5.11]. Let us fix

a real number α >−(d +1). One can show that

A2
α ×A2

α → C,

〈
∑

m∈Nd

amzm, ∑
m∈Nd

bmzm

〉
= ∑

m∈Nd

m!Γ(d +1+α)

Γ(d +1+ |m|+α)
ambm

is a well-defined scalar product which turns A2
α into a functional Hilbert space with re-

producing kernel [10, p. 127]

Kα (z,w) =
1

(1−〈z,w〉)d+α+1 (z,w ∈ Bd) .

By a standard application of the closed graph theorem the norm ‖·‖2,α is equivalent to the
norm of A2

α as a functional Hilbert space with reproducing kernel Kα . In the following
we consider A2

α as a reproducing kernel Hilbert space. For −(d +1) < α ≤ −d, the
spaces A2

α are known to be complete Nevanlinna-Pick spaces normalized at z0 = 0. For
α ≥−d, the tuple Mz ∈ L

(
A2

α

)d is a well-defined row contraction and hence Kα = K−dg
with the normalized complete Nevanlinna-Pick kernel K−d and a suitable positive definite
kernel g. The space A2

−d is the Drury-Arveson space, the space A2
−1 = H2 (Bd) is the

Hardy space on Bd and A2
0 = L2

a (Bd) is the unweighted Bergman space. It is elementary
to check that the functional Hilbert spaces A2

α with α >−(d +1) satisfy condition (3.1)
with K = 2, µ1 = δ0, µ2 = να+2N , D = A2

α and L(1) : A2
α ↪→ L2 (δ0) , f 7→ f , L(2) =

RN : A2
α → L2 (Bd,να+2N).
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3 Multiplier Theorem

Proposition 3.1.3. Let a,b ∈ C with Rea,Reb > 0, then∫
∞

−∞

(
1

a− iy
+

1
b+ iy

)
dy = 2π.

Proof. We have

1
a− iy

+
1

b+ iy
=

a+b
(y+ ia)(y− ib)

.

for all y ∈ R. Since Rea,Reb > 0 the function

f : {z ∈ C; Imz > 0}→ C, f (z) =
1

(z+ ia)(z− ib)

has only the simple pole c = ib. Thus, by a standard result from function theory we
conclude

res( f ,c) = lim
z→c

(z− c) f (z) = lim
z→ib

1
z+ ia

=
1

i(a+b)

Hence, by a corollary of the residue theorem we have∫
∞

−∞

(
1

a− iy
+

1
b+ iy

)
dy = (a+b)

∫
∞

−∞

1
(y+ ia)(y− ib)

dy

= (a+b)(2πi res( f ,c))
= 2π.

In the following we denote by H = {z ∈ C; Rez > 0} the right half plane in C and by

P : H×R→ R, P(z, t) =
Rez

π

(
(Rez)2 +(Imz− t)2

)
the Poisson kernel on the right half plane. Let v : H → R be continuous, bounded and
subharmonic on H. Since the map C→ C, z 7→ −iz is holomorphic, the function

ṽ : {z ∈ C; Imz > 0}→ R, ṽ(z) = v
(
−iz
)

is continuous, bounded and subharmonic on {z ∈ C; Imz > 0} by Proposition 4.0.7.
Therefore

uṽ (z) =

{∫
∞

−∞
Imz

π((Imz)2+(Rez−t)2)
ṽ(t)dt for z ∈ {z ∈ C; Imz > 0} ,

ṽ(z) for z ∈ ∂ {z ∈ C; Imz > 0} .

is continuous, bounded with ‖ṽ‖
∞

and harmonic on {z ∈ C; Imz > 0} by [4, 7.3].
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3.1 A multiplier criterion

Theorem 3.1.4. If v : H → R is continuous, bounded and subharmonic on H, then we
have

v(z)≤
∫

∞

−∞

P(z, t)v(it)dt < ∞

for all z ∈ H.

Proof. Set u : H→ R,

u(z) =

{∫
∞

−∞
P(z, t)v(it)dt for z ∈ H,

v(z) for z ∈ ∂H.

Then an easy calculation shows that u is continuous, bounded by ‖v‖
∞

and harmonic on
H, since u(z) = uṽ

(
−iz
)

for all z ∈ H. For k ∈ N≥1, we define

hk : H→ R, hk (z) = v(z)−u(z)− 1
k

log |z+1| .

Since log |z+1| and u are harmonic on H and v is subharmonic on H we deduce that hk
is subharmonic on H as sum of subharmonic functions. Next let z0 ∈ H be arbitrary. Set
Ak = e2‖v‖

∞
k and

G = {z ∈ C; 0 < Rez < max(2Rez0,Ak) , |Imz|< max(2 |Imz0| ,Ak)} .

Then z0 ∈ G ⊂ H and G is simply connected. Since v(z)− u(z) ≤ 2‖v‖
∞

for all z ∈ H
and

1
k

log |z+1| ≥ 1
k

logAk = 2‖v‖
∞

for all z ∈ ∂G with Rez > 0, we have hk (z)≤ 0 for all z ∈ ∂G. Since hk is continuous on
G and subharmonic on G, we have hk (z) ≤ 0 for all z ∈ G by [4, 11.3] and in particular
hk (z0)≤ 0. Thus, we conclude

v(z0)−u(z0) = lim
k→∞

hk (z0)≤ 0.

Since z0 ∈ H was chosen arbitrary, the claim holds.

Proposition 3.1.5. Let U ⊂ C be open, E a Hilbert space, f : U → E holomorphic and
p ∈ [1,∞). Then, the function

U → R, z→‖ f (z)‖p
E

is continuous, bounded and subharmonic on U.
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3 Multiplier Theorem

Proof. Let w ∈ E and Dr (z0)⊂U . Then we have by Cauchy’s integral formula:

〈 f (z0) ,w〉E =
1

2πi

∫
Dr(z0)

〈 f (z,w)E 〉
z− z0

dz

=
1

2π

∫
π

−π

〈
f
(
z0 + reit) ,w〉

E
dt.

Thus, we conclude

|〈 f (z0) ,w〉E | ≤
1

2π

∫
π

−π

∣∣〈 f
(
z0 + reit) ,w〉

E

∣∣dt

≤ 1
2π

∫
π

−π

∥∥ f
(
z0 + reit)∥∥

E
dt ‖w‖E

and in particular

‖ f (z0)‖2
E ≤

1
2π

∫
π

−π

∥∥ f
(
z0 + reit)∥∥

E
dt ‖ f (z0)‖E .

Therefore

‖ f (z0)‖E ≤
1

2π

∫
π

−π

∥∥ f
(
z0 + reit)∥∥

E
dt

and

U → R, z→‖ f (z)‖E

is subharmonic. One can easily show that ϕ : R→ R,

ϕ (x) =

{
xp for x > 0,
0 for x≤ 0

is monotonically increasing and convex for 1≤ p < ∞. Hence

U → R, z→‖ f (z)‖p
E = ‖ f (z)‖p

E (1≤ p < ∞)

is subharmonic.

Proposition 3.1.6. Let g ∈ CN (Ω) be a function with 0 /∈ g(Ω). Then for β ∈ Nd with
|β |= j ∈ {1, . . . ,N} the partial derivative ∂ β

(
1
g

)
is a linear combination of functions of

the form

∏
r
i=1 (∂

αig)
gk+1 ,

where k ∈ {1, . . . , j}, r ∈ {1, . . . , j} and α1, . . . ,αr ∈ Nd \{0} are multindices with

|α1|+ · · ·+ |αr|= j.
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3.1 A multiplier criterion

Proof. This assertion follows by a finite induction on j = 1, . . . ,N.

Remark 3.1.7. For F ∈Hk (E ) and w ∈ C with Rew > 0 we have 1
VF+w ∈Mult(Hs) ⊂

CN (Ω) by Remark 3.1.2 and thus for β ∈ Nd with |β |= j ∈ {1, . . . ,N}, it follows that

∂
β

(
1

VF +w

)
=

j

∑
k=1

1

(VF +w)k+1 bβ ,k

with suitable functions bβ ,k = bβ ,k (F) ∈C (Ω) not depending on w.

Remark 3.1.8. For F ∈Hk (E ), w ∈ C with Rew > 0 and f = ∑
r
i=1 fi⊗xi ∈D⊗alg E , we

find that

L(l)
E

(
f

VF +w

)
=

r

∑
i=1

L(l)
(

fi

VF +w

)
xi

=
r

∑
i=1

∑
|α|≤N

a(l)α ∂
α

(
fi

VF +w

)
xi

=
r

∑
i=1

∑
|α|≤N

∑
0≤β≤α

(
α

β

)
a(l)α ∂

β

(
1

VF +w

)(
∂

α−β fi

)
xi

=
1

VF +w
L(l)

E ( f )+ ∑
|α|≤N

∑
06=β≤α

(
α

β

)
a(l)α ∂

β

(
1

VF +w

)(
∂

α−β f
)

=
1

VF +w
L(l)

E ( f )+
N

∑
j=1

∑
|β |= j

∂
β

(
1

VF +w

)
∑

|α|≤N,β≤α

(
α

β

)
a(l)α

(
∂

α−β f
)

=
1

VF +w
L(l)

E ( f )+
N

∑
k=1

1

(VF +w)k+1 L(l,k)
E ( f ) ,

with linear maps L(l,k)
E : D⊗alg E → L0 (µl,E ) acting as

L(l,k)
E ( f ) =

N

∑
j=k

∑
|β |= j

bβ ,k ∑
|α|≤N,β≤α

(
α

β

)
a(l)α

(
∂

α−β f
)

Note that the operators L(l,k)
E : D ⊗alg E → L0 (µl,E ) are partial differential operators

acting as

L(l,k)
E ( f ) = ∑

|α|≤N−1
c(l,k)α ∂

α ( f )

with suitably defined functions c(l,k)α = c(l,k)α (F) ∈ L0 (µl). Defining

L(l,0)
E = L(l)

E : D⊗alg E → L2 (µl,E ) ,
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3 Multiplier Theorem

the above result can be written as

L(l)
E

(
f

VF +w

)
=

N

∑
k=0

1

(VF +w)k+1 L(l,k)
E ( f )

(
l = 1 . . . ,K, f ∈D⊗alg E

)
.

Lemma 3.1.9. Let Ω,µl,L
(l)
E for l = 1, . . . ,K, Hk and D be as above. Let b0, · · · ,bm ∈ C,

z0, · · · ,zm ∈ Ω, and h = ∑
m
i=0 biszi . Let F = ∑

r
i=0 fi⊗ xi ∈ D ⊗alg E with f0, . . . , fr ∈ D

and an orthonormal system (xi)
r
i=0. By VF we denote the Sarason function of F. Then we

have

∫
Ω

∥∥∥L(l)
E (hF)(z)

∥∥∥2

E

(ReVF (z)+3)2N+1 dµl (z)≤CN ‖h‖2
Hs

for some CN > 0 and all l = 1, . . . ,K.

Proof. Fix l ∈ {l = 1, . . . ,K}. Since ReVF ≥ 0 and VF is in Mult(Hs) ⊂ CN (Ω), the
measurable function 1

(ReVF+3)2N+1 is bounded. By Remark 3.1.1, hF is in D ⊗alg E and

thus since L(l)
E hF is square integrable the function

∥∥∥L(l)
E hF

∥∥∥2

E

(ReVF+3)2N+1 is integrable. Note that
1

VF+ah∈Hs by Remark 3.1.2. By Proposition 2.1.13 and an easy calculation we conclude
for a ∈ C with Rea > 0

4Rea
∥∥∥∥ 1

VF +a
hF
∥∥∥∥2

Hk(E )

≤ ‖h‖2
Hs−

∥∥∥∥VF −a
VF +a

h
∥∥∥∥2

Hs

= 4ReaRe
〈

1
VF +a

h,h
〉

Hs
−4(Rea)2

∥∥∥∥ 1
VF +a

h
∥∥∥∥2

Hs

≤ 4ReaRe
〈

1
VF +a

h,h
〉

Hs
.

Hence, inequality (3.3) yields

0≤
∫

Ω

∥∥∥∥L(l)
E

(
1

VF +a
hF
)
(z)
∥∥∥∥2

E

dµl (z)

≤ c2

∥∥∥∥ 1
VF +a

hF
∥∥∥∥2

Hk(E )

≤ c2 Re
〈

1
VF +a

h,h
〉

Hs
.
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Next let a = x+ iy with x > 0 be arbitrary. By Proposition 3.2.7 we have

∫
∞

−∞

(
1

VF(z)+ x− iy
+

1

VF(w)+ x+ iy

)
dy = 2π.

for all z,w ∈Ω. We now want to show that R×Ω→ R,

(t,z) 7→
∥∥∥∥L(l)

E

(
G

VF + x− it

)
(z)
∥∥∥∥2

E

is (λ ×µl)-measurable where G = ∑
s
i=1 gi⊗ yi ∈D⊗alg E is a fixed element with

g1, . . . ,gs ∈D and an orthonormal system (yi)
s
i=1 in E . Then G

VF+x−it = ∑
s
i=1

gi
VF+x−it yi ∈

D⊗alg E and ∥∥∥∥L(l)
E

(
G

VF + x− it

)
(z)
∥∥∥∥2

E

=
s

∑
i=1

∣∣∣∣L(l)
(

gi

VF + x− it

)
(z)
∣∣∣∣2 .

To show that R×Ω→ R,

(t,z) 7→
∥∥∥∥L(l)

E

(
G

VF + x− it

)
(z)
∥∥∥∥2

E

is (λ ×µl)-measurable, it hence suffices to show that, for g ∈D , the function R×Ω→ C,

(t,z) 7→ L(l)
(

g
VF + x− it

)
(z) = ∑

|α|≤N
a(l)α (z)∂

α

(
g

VF + x− it

)
(z)

is (λ ×µl)-measurable. Because of

∂
α

(
g

VF + x− it

)
(z) = ∑

0≤β≤α

(
α

β

)
∂

β

(
1

VF + x− it

)
(z)
(

∂
α−β g

)
(z)

it suffices to show the (λ ×µl)-measurability of R×Ω→ C,

(t,z) 7→ ∂
β

(
1

VF + x− it

)
(z) .

But since

1
VF + x

∈Mult(Hs)⊂CN (Ω)

by Remark 3.1.2 the function R×Ω→ C,

(t,z) 7→ 1
VF + x− it

(z) .
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3 Multiplier Theorem

even belongs to CN (R×Ω). Using that, h = ∑
m
i=0 biszi and by Fubini’s theorem we have

∫
Ω

∫
R

∥∥∥∥L(l)
E

(
1

VF + x− iy
hF
)
(z)
∥∥∥∥2

E

(y)dλdµl (z)

=
∫
R

(∫
Ω

∥∥∥∥L(l)
E

(
1

VF + x− iy
hF
)
(z)
∥∥∥∥2

E

dµl (z)

)
dλ (y)

≤ c2

∫
∞

−∞

Re
〈

1
VF + x− iy

h,h
〉

Hs
dy

=
c2

2

m

∑
i, j=0

b jbisz j (zi)
∫

∞

−∞

(
1

VF(zi)+ x− iy
+

1

VF
(
z j
)
+ x+ iy

)
dy

= c2π

m

∑
i, j=0

b jbisz j (zi)

= c2π ‖h‖2
Hs .

Note that by Remark 3.1.8

L(l)
E

(
hF

VF + x− iy

)
=

N

∑
k=0

1

(VF + x− iy)k+1 L(l,k)
E (hF) .

Further we have for z ∈Ω, that the map

Uz : {w ∈ C; Rew > 0}C→ E ,

Uz (w) =
N

∑
k=0

1

(VF (z)+ x+w)k L(l,k)
E (hF)(z)

is continuous. Due to ReVF (z) ,Re(w)≥ 0 and x > 0 it is also bounded by

N

∑
k=0

1
xk

∥∥∥L(l,k)
E (hF)(z)

∥∥∥
E
.

The map

{w ∈ C; Rew > 0}→ E , w 7→Uz (w)

is analytic. Hence

{w ∈ C; Rew > 0}→ R≥0, w 7→ ‖Uz (w)‖2
E

subharmonic on {w ∈ C; Rew > 0} by Proposition 3.1.5. Therefore

‖Uz‖2
E : {w ∈ C; Rew > 0}C→ R≥0, ‖Uz‖2

E (w) = ‖Uz (w)‖2
E
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3.1 A multiplier criterion

is continuous, bounded and subharmonic on {w ∈ C; Rew > 0} by Proposition 4.0.7.
Note that

P : {w ∈ C; Rew > 0}×R→ R, P(w,y) =
Rew

π

(
(Rew)2 +(Imw− y)2

)
=

Rew

π |w− iy|2

is the Poisson kernel for the right-half plane. Thus we have by Theorem 3.1.4

‖Uz (w)‖2
E ≤

∫
∞

−∞

Rew

π |w− iy|2
‖Uz (iy)‖2

E dy

for all w ∈ C with Rew > 0. For t,x ∈ R with 2 |t| ≤ x, z ∈Ω, we can use ReVF (z)≥ 0 to
show that

2 |VF (z)+ x+ it− iy|2−|VF (z)+ x− iy|2

= ReVF (z)2 +2ReVF (z)x+
(
x2−2t2)+(ImVF (z)− y+2t)2

≥ ReVF (z)2 +4ReVF (z) |t|+2 |t|2 +(ImVF (z)− y+2t)2

≥ 0.

and hence

ReVF (z)+ x

π |VF (z)+ x+ it− iy|2
≤ 2

ReVF (z)+ x

π |VF (z)+ x− iy|2
.

Thus, we conclude for x ∈ [1,2], t ∈
[
−1

2 ,
1
2

]
and µl-almost every z ∈Ω:∫

R

∥∥∥∥L(l)
E

(
1

VF + x− iy
hF
)
(z)
∥∥∥∥2

E

dλ (y)

=
π

ReVF (z)+ x

∫
∞

−∞

ReVF (z)+ x

π |VF (z)+ x− iy|2
‖Uz (iy)‖2

E dy

≥ π

2(ReVF (z)+ x)

∫
∞

−∞

ReVF (z)+ x

π |VF (z)+ x+ it− iy|2
‖Uz (iy)‖2

E dy

≥ π

2(ReVF (z)+ x)
‖Uz (VF (z)+ x+ it)‖2

E

=
π

2(ReVF (z)+ x)

∥∥∥∥∥ N

∑
k=0

(2ReVF (z)+2x− it)−k L(l,k)
E (hF)(z)

∥∥∥∥∥
2

E

=
π

∥∥∥∑
N
k=0 (2ReVF (z)+2x− it)N−k L(l,k)

E (hF)(z)
∥∥∥2

E

|2ReVF (z)+2x− it|2N 2(ReVF (z)+ x)

≥
π

∥∥∥∑
N
k=0 (2ReVF (z)+2x− it)N−k L(l,k)

E (hF)(z)
∥∥∥2

E

22N+1 (ReVF (z)+3)2N+1 .
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3 Multiplier Theorem

Set dν(l) = dµl

(ReVF (z)+3)2N+1 . Since ∑
N
k=0 (2ReVF +2x− it)N−k L(l,k)

E (hF) is µl-measur-

able, we conclude that ∑
N
k=0 (2ReVF +2x− it)N−k L(l,k)

E (hF) is in L2
(

ν(l),E
)

and the
estimate from above yields

∥∥∥∥∥ N

∑
k=0

(2ReVF +2x− it)N−k L(l,k)
E (hF)

∥∥∥∥∥
2

L2(ν(l),E )

=
∫

Ω

∥∥∥∑
N
k=0 (2ReVF (z)+2x− it)N−k L(l,k)

E (hF)(z)
∥∥∥2

E

(ReVF (z)+3)2N+1 dµl (z)

≤ 22N+1

π

∫
Ω

∫
R

∥∥∥∥L(l)
E

(
1

VF + x− iy
hF
)
(z)
∥∥∥∥2

E

dλ (y)dµl (z)

≤ c222N+1 ‖h‖2
Hs

= AN ‖h‖2
Hs

for (x, t) ∈ [1,2]×
[
−1

2 ,
1
2

]
with AN = c222N+1. For u ∈ L2

(
ν(l),E

)
we define

pu : Ω×
{

w ∈ C;Rew ∈ [2,4] , Imw ∈
[
−1

2
,
1
2

]}
→ C,

pu (z,w) =

〈
N

∑
k=0

(2ReVF (z)+w)N−k L(l,k)
E (hF)(z) ,u(z)

〉
E

This is a polynomial in w of degree ≤ N with
〈

L(l)
E (hF)(z) ,u(z)

〉
E

as coefficient of wN .
For all z ∈Ω, we have by the Cauchy-Schwarz and the Hölder inequality∫

Ω

|pu (z,w)|dν
(l) (z)

=
∫

Ω

∣∣∣∣∣
〈

N

∑
k=0

(2ReVF (z)+w)N−k L(l,k)
E (hF)(z) ,u(z)

〉
E

∣∣∣∣∣dν
(l) (z)

≤
∫

Ω

∥∥∥∥∥ N

∑
k=0

(2ReVF (z)+w)N−k L(l,k)
E (hF)(z)

∥∥∥∥∥
E

‖u(z)‖E dν
(l) (z)

≤

∥∥∥∥∥ N

∑
k=0

(2ReVF +w)N−k L(l,k)
E (hF)

∥∥∥∥∥
L2(ν(l),E )

‖u‖L2(ν(l),E )

≤ A
1
2
N ‖u‖L2(ν(l),E ) ‖h‖Hs

for all w ∈ C with Rew ∈ [2,4] and Imw ∈
[
−1

2 ,
1
2

]
. Since |pu| is νl×λ -measurable we
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3.1 A multiplier criterion

can apply Fubini’s theorem and the Cauchy integral formula to conclude that:∣∣∣∣∫
Ω

〈
L(l)

E (hF)(z) ,u(z)
〉

E
dν

(l) (z)
∣∣∣∣

=

∣∣∣∣∣
∫

Ω

p(N)
u (z,3)

N!
dν

(l) (z)

∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω

1
2πi

∫
∂D 1

2
(3)

pu (z,ξ )

(ξ −3)N+1 dξ dν
(l) (z)

∣∣∣∣∣∣
=

2N−1

π

∣∣∣∣∫
Ω

∫
π

−π

pu

(
z,3+

1
2

eit
)

e−iNtdtdν
(l) (z)

∣∣∣∣
≤ 2N−1

π

∫
Ω

∫
π

−π

∣∣∣∣pu

(
z,3+

1
2

eit
)∣∣∣∣dtdν

(l) (z)

=
2N−1

π

∫
π

−π

∫
Ω

∣∣∣∣pu

(
z,3+

1
2

eit
)∣∣∣∣dν

(l) (z)dt

≤ 2N−1

π

∫
π

−π

A
1
2
N ‖u‖L2(ν(l),E ) ‖h‖Hs dt

= 2NA
1
2
N ‖u‖L2(ν(l),E ) ‖h‖Hs

= BN ‖u‖L2(ν(l),E ) ‖h‖Hs

with BN = 2NA
1
2
N . From L(l)

E (hF) ∈ L2
(

ν(l),E
)

and〈
L(l)

E (hF) ,u
〉
L2(ν(l),E )

≤ BN ‖u‖L2(ν(l),E ) ‖h‖Hs

for all u ∈ L2
(

ν(l),E
)

it follows that∥∥∥L(l)
E (hF)

∥∥∥
L2(ν(l),E )

≤ BN ‖h‖Hs

and therefore

∫
Ω

∥∥∥L(l)
E (hF)(z)

∥∥∥2

E

(ReVF (z)+3)2N+1 dµl (z)≤ B2
N ‖h‖

2
Hs
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3 Multiplier Theorem

Theorem 3.1.10. Let Ω,µl, L̃
(l)
E , Hk and D be as above and assume that

c1 ‖G‖2
Hk(E ) ≤

K

∑
l=1

∥∥∥L̃(l)
E G

∥∥∥2

L2(µl ,E )
≤ c2 ‖G‖2

Hk(E ) .

holds for all G ∈Hk (E ). If F ∈Hk (E ) and ReVF is bounded on Ω, then

F ∈Mult
(
Hs,Hk (E )

)
, and there exists a constant cN > 0 depending only on N such

that

‖F‖
Mult

(
Hs,Hk(E )

) ≤ cN (‖ReVF‖∞
+3)N+ 1

2 .

Proof. Let F ∈Hk (E ) be a function such that ReVF is bounded on Ω. Let h∈Hs. Since

{
r

∑
i=1

fixi; fi ∈D ,xi ∈ E

}
∼= D⊗alg E ⊂Hk⊗E ∼= Hk (E )

and span{sz; z ∈Ω} ⊂Hs are dense there are sequences (Fn)n∈N in
{∑r

i=1 fixi; fi ∈D ,xi ∈ E } and (hn)n∈N in span{sz; z ∈Ω} with Hk (E ) - limn→∞ Fn = F
and Hs- limn→∞ hn = h. In this case ReVFn converges pointwise to ReVF . For n ∈ N
and l = 1, . . . ,K we define dν

(l)
n = dµl

(ReVFn+3)2N+1 . Since the functions 1
(ReVFn+3)2N+1 are

bounded µl-measurable functions the inclusion mappings
in : L2

(
µ(l),E

)
→ L2

(
ν
(l)
n ,E

)
, [ f ] 7→ [ f ] are continuous linear with ‖in‖ ≤∥∥∥∥ 1

(ReVFn+3)2N+1

∥∥∥∥ 1
2

∞,µl

≤ 1. Now let h̃ ∈ span{sz; z ∈Ω}. Then h̃ ∈Mult
(
Hk (E )

)
. Since

the operators Mh̃ : Hk (E )→Hk (E ) and L̃(l)
E : Hk→ L2 (µl,E ) are continuous we have:

∣∣∣∣∣∥∥∥L̃(l)
E h̃F

∥∥∥2

L2
(

ν
(l)
n ,E

)−∥∥∥L̃(l)
E h̃Fn

∥∥∥2

L2
(

ν
(l)
n ,E

)
∣∣∣∣∣

≤
∥∥∥L̃(l)

E h̃F− L̃(l)
E h̃Fn

∥∥∥
L2
(

ν
(l)
n ,E

)
(∥∥∥L̃(l)

E h̃F
∥∥∥

L2
(

ν
(l)
n ,E

)+∥∥∥L̃(l)
E h̃Fn

∥∥∥
L2
(

ν
(l)
n ,E

)
)

≤
∥∥∥L̃(l)

E h̃F− L̃(l)
E h̃Fn

∥∥∥
L2(µl ,E )

(∥∥∥L̃(l)
E h̃F

∥∥∥
L2(µl ,E )

+
∥∥∥L̃(l)

E h̃Fn

∥∥∥
L2(µl ,E )

)
n→∞−→ 0
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3.1 A multiplier criterion

Using the Lemma of Fatou we conclude:

limsup
n→∞

∣∣∣∣∣∣∣
∫

Ω


∥∥∥L̃(l)

E

(
h̃F
)∥∥∥2

E

(ReVF +3)2N+1 −

∥∥∥L̃(l)
E

(
h̃Fn
)∥∥∥2

E

(ReVFn +3)2N+1

dµl

∣∣∣∣∣∣∣
≤ limsup

n→∞

∣∣∣∣∣∣∣
∫

Ω


∥∥∥L̃(l)

E

(
h̃F
)∥∥∥2

E

(ReVF +3)2N+1 −

∥∥∥L̃(l)
E

(
h̃F
)∥∥∥2

E

(ReVFn +3)2N+1

dµl

∣∣∣∣∣∣∣
+ limsup

n→∞

∣∣∣∣∣∣∣
∫

Ω


∥∥∥L̃(l)

E

(
h̃F
)∥∥∥2

E

(ReVFn +3)2N+1 −

∥∥∥L̃(l)
E

(
h̃Fn
)∥∥∥2

E

(ReVFn +3)2N+1

dµl

∣∣∣∣∣∣∣
≤
∫

Ω

∥∥∥L̃(l)
E

(
h̃F
)∥∥∥2

E
limsup

n→∞

∣∣∣∣∣ 1

(ReVF +3)2N+1 −
1

(ReVFn +3)2N+1

∣∣∣∣∣dµl

+ limsup
n→∞

∣∣∣∣∣∥∥∥L̃(l)
E h̃F

∥∥∥2

L2
(

ν
(l)
n ,Ω

)−∥∥∥L̃(l)
E h̃Fn

∥∥∥2

L2
(

ν
(l)
n ,Ω

)
∣∣∣∣∣

= 0

Using Lemma 3.1.9, we see in particular that

∫
Ω

∥∥∥L̃(l)
E

(
h̃F
)∥∥∥2

E

(ReVF +3)2N+1 dµl

= lim
n→∞

∫
Ω

∥∥∥L̃(l)
E

(
h̃Fn
)∥∥∥2

E

(ReVFn +3)2N+1 dµl

≤CN
∥∥h̃
∥∥2

Hs
.

Since h̃ ∈ span{sz; z ∈Ω} was arbitrary we have

∫
Ω

∥∥∥L̃(l)
E ((hl−hk)F)

∥∥∥2

E

(ReVF +3)2N+1 dµl ≤CN ‖hl−hk‖2
Hs

for all k, l ∈ N and therefore by the inequality from the assumption

‖hlF−hkF‖2
Hk(E ) ≤

1
c1

K

∑
l=1

∫
Ω

∥∥∥L̃(l)
E ((hl−hk)F)

∥∥∥2

E
dµl

≤ CNK
c1

(‖ReVF‖∞
+3)2N+1 ‖hl−hk‖2

Hs

for all k, l ∈ N. Hence (hlF)l∈N is a Cauchy sequence in Hk (E ) and

g = Hk (E ) - lim
l→∞

hlF
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3 Multiplier Theorem

exists. Since the point evaluations on Hs and Hk (E ) are continuous we have

g(z) = E - lim
l→∞

(hl (z)F (z)) = h(z)F (z)

for all z ∈Ω and hence hF = g = Hk (E ) - liml→∞ hlF . We conclude

F ∈Mult
(
Hs,Hk (E )

)
and

‖hF‖2
Hk(E ) = lim

l→∞

‖hlF‖2
Hk(E )

≤ lim
l→∞

cN (‖ReVF‖∞
+3)2N+1 ‖hl‖2

Hs

= cN (‖ReVF‖∞
+3)2N+1 ‖h‖2

Hs

with cN = CNK
c1

.
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3.2 Counterexample

3.2 Counterexample

We now want to give a counterexample for the reverse implication in Theorem 3.1.10. We
show that there exist functions in certain weighted Dirichlet spaces, which are multipliers
such that the real part of their Sarason function is unbounded.

In the following, we write D= {z ∈ C; |z|< 1} for the unit disk and T= {z ∈ C; |z|= 1}
for the unit circle in C. Further,

O (D) = { f : D→ C; f holomorphic}

should be the set of all holomorphic functions on D and dm the normalized arc length
measure on the unit circle T. Furthermore we denote by f̂ (n) (n ∈ Z) the Fourier coeffi-
cients of a function f ∈ L2 (T), by

H2 (T) =
{

f ∈ L2 (T) ; f̂ (n) = 0 for n < 0
}

the Hardy space on the unit circle, by

H2 (D) =

{
f ∈ O (D) ; sup

0<r<1

∫
T

| f (rz)|2 dm(z)< ∞

}
the Hardy space on the unit disc and by H∞ (D) the space of all bounded holomorphic
functions on D. Finally, we write dA for the normalized area measure on the unit disk D.

Definition 3.2.1. Let 0 < α < 1. The vector spaces

Dα =

{
f ∈ H2 (D) ; ‖ f‖2

α
= ‖ f‖2

H2(D)+
∫
D

∣∣ f ′ (z)∣∣2(1−|z|2
)α

dA(z)< ∞

}
equipped with the norm ‖·‖

α
are called weighted Dirichlet spaces.

Let dµα (z) = −
(

1−|z|2
)

∆

(
1−|z|2

)α

dA(z) where ∆ denotes the Laplace operator.
Then an easy calculation shows that

dµα = 4α

(
1−|z|2

)α

+4 |z|2 α (1−α)
(

1−|z|2
)α−1

dA(z)

is a finite positive Borel-measure on D. Let H2 (D)→ H2 (T) , f 7→ [ f ∗] be the canonical
isometric isomorphism between H2 (D) and H2 (T). For f ∈H2 (D) and ζ ∈ D, we define
the local Dirichlet integral by

Dζ ( f ) =


∫
T

∣∣∣ f ∗(z)− f (ζ )
z−ζ

∣∣∣2 dm(z) if ζ ∈ D,∫
T

∣∣∣ f ∗(z)− f ∗(ζ )
z−ζ

∣∣∣2 dm(z) if ζ ∈ T
.

Proposition 3.2.2. For every f ∈ Dα , we have

‖ f‖2
α
= ‖ f‖2

H2(D)+
∫
D

Dζ ( f )dµα (ζ ) .
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3 Multiplier Theorem

Proof. For a proof see [18, Introduction] and note that Dα = D(µα) in [18, Introduction].

Proposition 3.2.3. For 0 < α < 1 the weighted Dirichlet space Dα is a functional Hilbert
space Hsα given by a reproducing kernel of the form

sα : D×D→ C, sα (z,w) = 1+
∞

∑
n=0

cα
n (zw)n

with coefficients cα
0 = 1, cα

n ∈ [0,∞) for n≥ 1 such that the limit limn→∞
cα

n
(n+1)α−1 ∈ (0,∞)

exists. The induced norm coincides with ‖·‖
α

.

Notation 3.2.4. We denote by sα
1 the analytic function

D→ C, z 7→ 1+
∞

∑
n=1

cα
n zn.

Note that limw→1 sα
w (z) = limw→1 sα

1 (wz) = sα
1 (z) holds for all z ∈ D.

Proposition 3.2.5. The map sα is a normalized complete Nevanlinna-Pick kernel.

Proof. For a proof note that Dα = D(µα) as it is shown in [18, Introduction] and see
[19].

Proposition 3.2.6. For every f ∈ Dα , we have

ReVf (z) =
∫
T

(
1−|z|2

)
| f (ζ )|2∣∣∣1−ζ z
∣∣∣2 dm(ζ )

+
∫
D

(
2Resα

z (ζ )−1
)

Dζ ( f )dµα (ζ )

≥ 2
∫
D

Re
(
sα

z
)
(ζ )Dζ ( f )dµα (ζ )−‖ f‖2

α
.

Proof. For a proof see [18, Proposition 4 and Corollary 3].

Proposition 3.2.7. For all z,w ∈ D we have Resαw (z)≥ 1
2 .

Proof. For a proof see [18, Theorem 2].

Lemma 3.2.8. (i) We have
∣∣∣1− 1

sα
1 (z)

∣∣∣ < 1 for all z ∈ D and
(

1− 1
sα

1

)
∈ Mult(Dα)

with

∥∥∥∥∥∥M(
1− 1
sα

1

)
∥∥∥∥∥∥

L(Dα )

≤ 1.

(ii) The maps sα1 and
(
sα1
)′ are non-negative on [0,1) and
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3.2 Counterexample

lim
r→1

sα1 (r)
(1− r)−α

≡ const, lim
r→1

(
sα1
)′
(r)

(1− r)−α−1 ≡ const,

where the constants involved are positive real numbers and only depend on α .

(iii) There exist εα ∈ (0,1) and δα > 0 such that

Resα1 (z)≥ δα (1−|z|)−α

whenever z belongs to the set S = {z ∈ D; |z−|z||< εα (1−|z|)}.

Proof. (i) Since sα is a normalized complete Nevanlinna-Pick kernel, there are functions
un : D→ C (n ∈ N) with

sα (z,w) =
1

1−∑
∞
n=0 un (z)un (w)

(z,w ∈ D) .

and
(

∑
∞
n=0 |un (z)|2

) 1
2
< 1 for all z ∈ D. By Cauchy-Schwarz we have

∣∣∣∣∣ ∞

∑
n=0

un (z)un (w)

∣∣∣∣∣≤
(

∞

∑
n=0
|un (z)|2

) 1
2
(

∞

∑
n=0
|un (w)|2

) 1
2

≤

(
∞

∑
n=0
|un (z)|2

) 1
2

for all z,w ∈ D. Hence ∣∣∣∣1− 1
sα1 (z)

∣∣∣∣= lim
w→1

∣∣∣∣1− 1
sα1 (zw)

∣∣∣∣
= lim

w→1

∣∣∣∣∣ ∞

∑
n=0

un (z)un (w)

∣∣∣∣∣
≤

(
∞

∑
n=0
|un (z)|2

) 1
2

< 1.

for all z ∈ D. Now, let h ∈ Dα . Using the notations from Lemma 2.1.1 we then have for
all z,w ∈ D: (

1− 1
sαw (z)

)
h(z) =

∞

∑
n=0

un (z)un (w)h(z)

= U(z)
((

un (w)h(z)
)

n∈N

)
= MU

((
un (w)h

)
n∈N

)
(z) .
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3 Multiplier Theorem

Hence (
1− 1

sαw

)
h = MU

((
un (w)h

)
n∈N

)
∈ Dα ,

that is
(

1− 1
sα

w

)
∈Mult(Dα) for all w ∈ D. Since ‖MU‖L(Hsα (l2),Hsα ) ≤ 1 we further

conclude ∥∥∥∥(1− 1
sα

w

)
h
∥∥∥∥2

Hsα

≤
∥∥∥(un (w)h

)
n∈N

∥∥∥2

Hsα (l2)

=
∞

∑
n=0
|un (w)|2 ‖h‖2

Hsα

≤ ‖h‖2
Hsα

for all w ∈ D and h ∈Hsα = Dα . Hence we have
∥∥∥∥M(

1− 1
sα

w

)∥∥∥∥
L(Dα )

≤ 1 for all w ∈ D.

Because

lim
w→1

(
1− 1

sα
w

)
(z) =

(
1− 1

sα
1

)
(z)

holds for all z ∈ D and
∥∥∥1− 1

sα
w

∥∥∥
L(Dα )

≤ 1 holds for all w ∈ D, we can use Corollary 4.0.2

to find that
(

1− 1
sα

1

)
∈Mult(Dα) with

∥∥∥∥∥∥M(
1− 1
sα

1

)
∥∥∥∥∥∥

L(Dα )

≤ 1.

(ii) The maps sα1 and
(
sα1
)′ are positive on [0,1) by definition. By L’Hôpital’s rule,

limr→1
− log(r)

1−r = limr→1
1
r holds. For s < 1 we have by [20, Eq. (9.3)] that

lim
r→1

∑
∞
n=1 n−srn

(1− r)s−1 = lim
r→1

Lis (r)

(1− r)s−1

= lim
r→1

Lis
(

elog(r)
)
(− log(r))s−1

(− log(r))s−1 (1− r)s−1

= lim
r→1

Lis
(

elog(r)
)

(− log(r))s−1 rs−1

= Γ(1− s)

where Γ denotes the Gamma function and Lis(r) = ∑
∞
n=1 n−srn the polylogarithm. For

58



3.2 Counterexample

γ ∈ (0,2) we conclude for s = 1− γ < 1

lim
r→1

1+∑
∞
n=1 (n+1)γ−1 rn

(1− r)−γ
= lim

r→1

1+∑
∞
n=1 (n+1)−s rn

(1− r)s−1

= lim
r→1

∑
∞
n=1 n−srn

r (1− r)s−1

= Γ(1− s)
= c1γ

with c1γ = Γ(γ). We have

sα1 (r) =
∞

∑
n=0

cα
n rn and (sα1 )

′ (r) =
∞

∑
n=0

cα
n+1 (n+1)rn.

for all r ∈ [0,1). Setting c = limn→∞
cα

n
(n+1)α−1 ∈ R>0, we have

lim
n→∞

(n+1)cα
n+1

(n+1)α = lim
n→∞

cα
n+1

(n+2)α−1

(
n+2
n+1

)α−1

= c.

Define cα+1
n = (n+1)cα

n+1 for n≥ 0. We finish the proof by establishing that

∑
∞
n=0 cγ

nrn

(1− r)−γ

r→1−→ c1γc.

For this, let ε > 0 be arbitrary. Then for γ ∈ {α,α +1}, there exists an index Nε > 0 such
that

∣∣∣∣∣ cγ
n

(n+1)γ−1 − c

∣∣∣∣∣< ε

c1γ
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3 Multiplier Theorem

holds for all n≥ Nε +1. Hence we have

limsup
r→1

∣∣∣∣∑∞
n=0 cγ

nrn

(1− r)−γ
− c1γc

∣∣∣∣
≤ limsup

r→1

∣∣∣∣∣ cγ

0− c

(1− r)−γ

∣∣∣∣∣+ limsup
r→1

∣∣∣∣∣∣∣
∑

∞
n=1

(
cγ

n
(n+1)γ−1 − c

)
(n+1)γ−1 rn

(1− r)−γ

∣∣∣∣∣∣∣
+ limsup

r→1

∣∣∣∣∣∣
c
(

1+∑
∞
n=1 (n+1)γ−1 rn

)
(1− r)−γ

− c1γc

∣∣∣∣∣∣
≤ limsup

r→1

∑
Nε

n=1

∣∣∣ cγ
n

(n+1)γ−1 − c
∣∣∣(n+1)γ−1 rn

(1− r)−γ

+ limsup
r→1

∑
∞
n=Nε+1

∣∣∣ cγ
n

(n+1)γ−1 − c
∣∣∣(n+1)γ−1 rn

(1− r)−γ

≤ limsup
r→1

ε

c1γ

(
1+∑

∞
n=1 (n+1)γ−1 rn

)
(1− r)−γ

= ε.

Since ε > 0 was chosen arbitrary, the claim follows.
(iii) By (ii) the function

[0,1)→ R, r 7→
(
sα1
)′
(r)

(1− r)−α−1

has a continuous extension to the compact intervall [0,1]. Hence there exists a constant
Mα > 0 such that (

sα1
)′
(|z|)

(1−|z|)−α−1 ≤Mα

holds for all z ∈ D. Therefore we have∣∣(sα1 )′ (z)∣∣≤ (sα1 )
′ (|z|)≤Mα (1−|z|)−α−1

for all z ∈ D. If 0 < ε < 1 and |z−|z||< ε (1−|z|), it follows that

|Resα1 (z)−Resα1 (|z|)| ≤ |sα1 (z)− sα1 (|z|)|

=

∣∣∣∣∫
[|z|,z]

(sα1 )
′ (ξ )dξ

∣∣∣∣
≤ |z−|z|| sup

t∈[0,1]

∣∣(sα1 )′ (t |z|+(1− t)z)
∣∣

≤Mαε (1−|z|)−α .
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3.2 Counterexample

Here we used the obvious estimate

1−|z| ≤ 1−|t |z|+(1− t)z| (z ∈ D, t ∈ [0,1]) .

As above we conclude with (ii) that the function

[0,1)→ R, r 7→
sα1 (r)

(1− r)−α

has a continuous extension to the compact intervall [0,1]. Hence there exists a constant
Cα > 0 such that

sα1 (|z|)
(1−|z|)−α

≥Cα

for all z ∈ D. Using Resα
1 (|z|) = sα

1 (|z|)≥ 1 and setting

εα = min
(

Cα

2(Mα+1) ,
1
2

)
we have

εαMα (1−|z|)−α ≤ 1
2

Resα1 (|z|) .

for all z ∈ D. Therefore we conclude

2εαMα (1−|z|)−α −Resα1 (z)≤ |Resα1 (z)−Resα1 (|z|)|
≤Mαεα (1−|z|)−α ,

and consequently

Resα1 (z)≥Mαεα (1−|z|)−α ,

for all z ∈ D with |z−|z||< εα (1−|z|).

The following inequality is essential for the proof that certain multipliers of the
weighted Dirichlet spaces Dα with 0 < α < 1 have a Sarason function with unbounded
real part.

Lemma 3.2.9. Let S be the set from Lemma 3.2.8 (iii). There exists a real number cα > 0,
such that for all f ∈ Dα ,

‖ f‖2
α
+ sup

z∈D
ReVf (z)≥ cα

∫
S

∣∣ f ′ (ζ )∣∣2 dA(ζ ) .

Proof. Let f ∈ Dα . By Proposition 3.2.6 we have

‖ f‖2
α
+ReVf (z)≥

∫
D

2Resα
z (ζ )Dζ ( f )dµα (ζ ) .
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3 Multiplier Theorem

for all z∈D. Since Resαz ≥ 1
2 for all z∈D by Proposition 3.2.7 we can use Fatou’s lemma

to conclude

‖ f‖2
α
+ sup

z∈D
ReVf (z)≥ liminf

z→1

∫
D

2Resα
z (ζ )Dζ ( f )dµα (ζ )

≥
∫
D

2Resα
1 (ζ )Dζ ( f )dµα (ζ ) .

Let ζ ∈ D and set

g̃ζ : D\{ζ}→ C, g̃ζ (z) =
f (z)− f (ζ )

z−ζ
.

By Riemann’s theorem on removable singularities the function g̃ζ , has a holomorphic
extension gζ on D. Since gζ is continuous we have gζ (ζ ) = f ′ (ζ ) and since Dζ ( f )< ∞

we get gζ ∈ H2 (D). Note that 1−|z|2
|z−ζ | ≤ 2 for all z ∈ D and ζ ∈ ∂D. Thus, by the Cauchy

integral formula, we have

1
2

(
1−|z|2

)
|g(rz)|2 = 1

4π

∣∣∣∣∣
∫

π

−π

1−|z|2

eit− z
g
(
reit)2

ieitdt

∣∣∣∣∣
≤ 1

4π

∫
π

−π

1−|z|2

|eit− z|
∣∣g(reit)∣∣2 dt

≤ ‖g‖2
H2(D)

for all g ∈ H2 (D), r ∈ [0,1) and z ∈ D. For r→ 1 and g = gζ from above we obtain that

1
2

(
1−|ζ |2

)∣∣ f ′ (ζ )∣∣2 = 1
2

(
1−|ζ |2

)∣∣gζ (ζ )
∣∣2

≤
∥∥gζ

∥∥2
H2(D)

= Dζ ( f )

for all ζ ∈ D. Hence we conclude

‖ f‖2
α
+ sup

z∈D
ReVf (z)≥

∫
D

Resα
1 (ζ )

(
1−|ζ |2

)∣∣ f ′ (ζ )∣∣2 dµα (ζ ) .

Since

dµα (z) = 4α

(
1−|z|2

)α

+4 |z|2 α (1−α)
(

1−|z|2
)α−1

dA(z)
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3.2 Counterexample

we conclude, using Lemma 3.2.8 (iii) and Resα
1 ≥ 0:∫

D

Resα
1 (ζ )

(
1−|ζ |2

)∣∣ f ′ (ζ )∣∣2 dµα (ζ )

=
∫
D

Resα
1 (ζ )

(
1−|ζ |2

)∣∣ f ′ (ζ )∣∣2[
4α

(
1−|ζ |2

)α

+4 |ζ |2 α (1−α)
(

1−|ζ |2
)α−1

]
dA(ζ )

≥
∫

S
Resα

1 (ζ )
∣∣ f ′ (ζ )∣∣2[

4α

(
1−|ζ |2

)α+1
+4 |ζ |2 α (1−α)

(
1−|ζ |2

)α
]

dA(ζ )

≥ δα

∫
S

∣∣ f ′ (ζ )∣∣2 (1−|ζ |)−α[
4α

(
1−|ζ |2

)α+1
+4 |ζ |2 α (1−α)

(
1−|ζ |2

)α
]

dA(ζ )

= δα

∫
S

∣∣ f ′ (ζ )∣∣2[
4α

(
1−|ζ |2

)
(1+ |ζ |)α +4 |ζ |2 α (1−α)(1+ |ζ |)α

]
dA(ζ )

≥ δα

∫
S

∣∣ f ′ (ζ )∣∣2 [4α (1−α)
(

1−|ζ |2
)
+4 |ζ |2 α (1−α)

]
dA(ζ )

= 4α (1−α)δα

∫
S

∣∣ f ′ (ζ )∣∣2 dA(ζ ) .

With cα = 4α (1−α)δα the claim follows.

Remark 3.2.10. Let 0 < α < 1 and h ∈Mult(Dα) with M∗h
SOT−→ 0. Then we can show as

in [14, Lemma 2.26] that there exists a w∗-continuous algebra homomorphism

Φ : H∞ (D)→ L(Dα)

with ‖Φ‖= 1, Φ(1) = 1, and Φ( f ) = M f◦h for all f ∈ H∞ (D).

Lemma 3.2.11. Let B be an infinite interpolating Blaschke product (cf. [9, Chapter 7])
with zero set {zn; n ∈ N} ⊂ [0,1), that is, B is a function D→ C with

B(z) = ∏
n∈N

z− zn

1− znz
(z ∈ D)

and for the functions

Bk : D→ C, Bk (z) = ∏
n∈N,n6=k

z− zn

1− znz
(k ∈ N)

there exists δ > 0 such that infk∈N |Bk (zk)| ≥ δ . Then we have∣∣B′ (zk)
∣∣≥ δ

2(1− zk)

for all k ∈ N.
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3 Multiplier Theorem

Proof. Set bk : D→ C, bk (z) =
z−zk

1−zkz for k ∈ N. Then we conclude that

B′ (z) = b′k (z)Bk (z)+bk (z)B′k (z) .

for all z ∈ D. Let k ∈ N. Since bk (zk) = 0, |Bk (zk)| ≥ δ and zk ∈ [0,1) we have∣∣B′ (zk)
∣∣= ∣∣b′k (zk)

∣∣ |Bk (zk)|
≥ δ

∣∣b′k (zk)
∣∣

=
δ

1− z2
k

≥ δ

2(1− zk)
.

Proposition 3.2.12. For 0 < α < 1, there exists u ∈Mult(Dα) such that ReVu is unboun-
ded in D.

Proof. Let f =
(

1− 1
sα

1

)
. Then Lemma 3.2.8 (i) yields f ∈Mult(Dα) with

∥∥M f
∥∥

L(Dα )
≤

1 and | f (z)|< 1 for all z ∈ D. Hence we conclude

Dα - lim
n→∞

(
M∗f
)n sαz = Dα - lim

n→∞
f (z)

n
sαz = 0.

Therefore the inequality
∥∥∥(M∗f

)n∥∥∥
L(Dα )

≤ 1 for all n ∈ N and the fact that

Dα =
∨(

sα
z ; z ∈ D

)
yield τSOT- limn→∞

(
M∗f
)n

= 0. Using the map
Φ : H∞ (D)→ L(Hs) induced by f from Remark 3.2.10 we have Mg◦ f = Φ(g) ∈ L(Dα)
and hence g◦ f ∈Mult(Dα) with

∥∥Mg◦ f
∥∥

L(Dα )
≤‖Φ‖‖g‖

∞
= ‖g‖

∞
for all g∈H∞ (D) (∗).

We claim that for an infinite interpolating Blaschke product B with zero set {zn; n ∈ N} ⊂
[0,1) the function ReVB◦ f is unbounded in D. From the Blaschke condition
∑

∞
n=0 (1−|zn|)< ∞ we get limn→∞ zn = 1. By Lemma 3.2.8 (ii) we have

lim
r→1

(
1− 1

sα
1 (r)

)
= lim

r→1

(
1− (1− r)−α (1− r)α

sα
1 (r)

)
= 1.

Since f (0) = 0 and ( f (r))0<r<1 is increasing, it follows that f ([0,1)) = [0,1) by the
intermediate value theorem. Thus, we can choose a sequence (wn)n∈N in [0,1) with
limn→∞ wn = 1 and f (wn) = zn for all n ∈ N. With the notations from Lemma 3.2.8
(iii) we choose a subsequence (wnk)k∈N of (wn)n∈N with

wnk+1 >
2εα

3
+wnk(1−

2εα

3
)

for all k ∈ N. Then we can conclude that the disks

∆k =
{

z ∈ D; |z−wnk |<
εα

3
(1−wnk)

}
(k ∈ N)

64



3.2 Counterexample

are disjoint since wnk+1−wnk > 2
(

εα

3 (1−wnk)
)
. For z ∈ ∆k, we have

1−|z| ≥ 1−|z−wnk |− |wnk |>
(

1− εα

3

)
(1−wnk)

and thus

|z−|z|| ≤ 2 |z−wnk |<
2εα

3
(1−wnk)< εα (1−|z|) .

Hence we conclude ∆k ⊂ S for all k ∈ N. Since ‖B‖
∞
= 1, Lemma 3.2.9 in combinition

with (∗) yields

1+ sup
z∈D

ReVB◦ f (z)≥ cα

∞

∑
k=0

∫
∆k

∣∣(B◦ f )′ (ζ )
∣∣2 dA(ζ )

and since
∣∣(B◦ f )′

∣∣2 is subharmonic in D we get that

1+ sup
z∈D

ReVB◦ f (z)≥
πε2

αcα

9

∞

∑
k=0

(1−wnk)
2 ∣∣(B◦ f )′ (wnk)

∣∣2 .
Hence it suffices to show that

(
(1−wnk)

∣∣(B◦ f )′ (wnk)
∣∣)

k∈N is not a zero sequence. By
Lemma 3.2.11 there exists a δ > 0 such, that∣∣B′ (zk)

∣∣≥ δ

(1− zk)

for all k ∈ N. We have zn = f (wn) and thus 1− zn =
1

sα
1 (wn)

for all n ∈ N. Hence

(1−wnk)
∣∣(B◦ f )′ (wnk)

∣∣= (1−wnk)
∣∣B′ (znk)

∣∣ (sα
1
)′
(wnk)(

sα
1 (wnk)

)2

≥ δ (1−wnk)

(
sα

1
)′
(wnk)

sα
1 (wnk)

= δ

(
sα

1
)′
(wnk)(1−wnk)

−α

(1−wnk)
−α−1 sα

1 (wnk)

for all k ∈ N and the result follows by Lemma 3.2.8(ii).
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In the following let E be a complex Hilbert space and Ω an arbitrary set.

Theorem 4.0.1. Let Hk ⊂ E Ω be a functional Hilbert space with reproducing kernel
k : Ω×Ω→ L(E ). Let (hα)α∈A be a net in Hk and c≥ 0 with ‖hα‖Hk

≤ c for all α ∈ A.

If h ∈ E Ω with E - limα hα (z) = h(z) for all z ∈ Ω, then h ∈Hk with ‖h‖Hk
≤ c and

τ
Hk
w - limα hα = h.

Proof. By Alaoglu-Bourbaki the net (hα)α∈A has a weakly convergent subnet (hαi)
i−→

h̃ ∈Hk. Then
∥∥h̃
∥∥

Hk
≤ c and since weak convergence in Hk implies pointwise conver-

gence, we find that h = h̃. The last assertion follows from the fact that the net (hα)α∈A is

normbounded and
(
〈·,hα〉Hk

)
α−→ 〈·,h〉Hk

pointwise on the total subset{〈
·, kz
〉

; z ∈Ω
}
⊂Hk.

Corollary 4.0.2. Let Hi ⊂ E Ω
i (i = 1,2) be functional Hilbert spaces and let (ϕk)k∈N be

a sequence in Mult(H1,H2) such that (ϕk)k∈N converges pointwise on Ω to a function
ϕ : Ω→ L(E1,E2) and such that

∥∥Mϕk

∥∥
L(H1,H2)

≤ c for all k ∈ N. Then

ϕ ∈Mult(H1,H2) with
∥∥Mϕ

∥∥
L(H1,H2)

≤ c and ϕ f = τ
Hk
w - limk ϕk f for all f ∈H1.

Proof. Let f ∈H1. Then we have limk→∞ ϕk (z) f (z) = ϕ (z) f (z) for all z ∈Ω and

‖ϕk f‖H2
≤
∥∥Mϕk

∥∥
L(H1,H2)

‖ f‖H1
≤ c‖ f‖H1

for all k ∈ N. By Theorem 4.0.1 it follows that ϕ f ∈H2 with ‖ϕ f‖H2
≤ c‖ f‖H1

and
τ

H2
w - limk ϕk f = ϕ f holds. Hence we conclude ϕ is in

Mult(H1,H2) with
∥∥Mϕ

∥∥
L(H1,H2)

≤ c.

Proposition 4.0.3. Let H be a Hilbert space and (xn)n∈N a sequence in H, which con-
verges weakly to a x ∈ H. Then we have ‖x‖H ≤ liminfn→∞ ‖xn‖H .

Proof. Otherwise, one could choose a real number r with

‖x‖H > r > liminf
n→∞

‖xn‖H .

But then there would be a subsequence (xnk)k∈N of (xn)n∈N with ‖xnk‖H < r for all k ∈N.
Since x = τw- limk→∞ xnk and since {x ∈ H; ‖x‖H ≤ r}⊂H is τw-closed, we would obtain
the contradiction that ‖x‖H ≤ r < ‖x‖H .

67



4 Appendix

Proposition 4.0.4. Let (X ,σ ,µ) be a measure space. Then there exists a unique unitary
operator V : L2 (µ)⊗E → L2 (µ,E ) with V ([ f ]⊗ v) = [ f v] for all [ f ]∈ L2 (µ) and v∈ E .

Proof. The map

B : L2 (µ)×E → L2 (µ,E ) ,B([ f ] ,v) = [ f v]

is well defined due to∫
Ω

‖ f (z)v‖2
E dµ (z) =

(∫
Ω

| f (z)|2 dµ (z)
)
‖v‖E

for all [ f ]∈ L2 (µ) and v∈ E . Furthermore B is bilinear. Because of the universal property
of the algebraic tensor product ⊗a there exists a unique linear map Va : L2 (µ)⊗a E →
L2 (µ,E ) with V ([ f ]⊗a v) = [ f v] for all [ f ] ∈ L2 (µ) and v ∈ E . By a standard result
from functional analysis we have that Va has a unique extension V to the Hilbert space
L2 (µ)⊗E . To check that the map V is an isometry let k ∈N and

[
f (i)
]
∈ L2 (µ), v(i) ∈ E

for i = 1 · · · ,k. Then we deduce∥∥∥∥∥V k

∑
i=0

[
f (i)
]
⊗ v(i)

∥∥∥∥∥
2

L2(µ,E )

=

∥∥∥∥∥ k

∑
i=0

[
f (i)v(i)

]∥∥∥∥∥
2

L2(µ,E )

=
k

∑
i, j=0

∫
Ω

〈
f (i) (z)v(i), f ( j) (z)v( j)

〉
E

dµ (z)

=
k

∑
i, j=0

∫
Ω

f (i) (z) f ( j) (z)dµ (z)
〈

v(i),v( j)
〉

E

=
k

∑
i, j=0

〈[
f (i)
]
⊗ v(i),

[
f ( j)
]
⊗ v( j)

〉
L2(µ)⊗E

=

∥∥∥∥∥ k

∑
i=0

[
f (i)
]
⊗ v(i)

∥∥∥∥∥
2

L2(µ)⊗E

and due to

L2 (µ)⊗E = span{[ f ]⊗ v; [ f ] ∈ L2 (µ) ,v ∈ E }.

V is an isometry. We next want to show that V is surjective. Thus let [ f ] ∈ L2 (µ,E ) be
arbitrary. Then by [3, Prop. 4.8] there is a sequence of simple functions ( fn)n∈N with

lim
n→∞
‖ f − fn‖L2(µ,E ) = 0.
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For n ∈ N write

fn =
N

∑
k=0

a(n)k 1
A(n)

k

where a(n)k ∈ E and A(n)
k ∈ σ (n = 0, . . . ,N), such that µ

(
A(n)

k

)
< ∞ and

⋂N
k=0 A(n)

k = /0.
Set

gn =
N

∑
k=0

[
1

A(n)
k

]
⊗a(n)k ∈ L2 (µ)⊗E (n ∈ N)

Then we deduce V gn = [ fn] for all n ∈ N and we conclude that (gn)n∈N is a Cauchy
sequence in L2 (µ)⊗E since V is an isometry. Therefore

g = lim
n→∞

gn

exists in L2 (µ)⊗E and we have

‖V g− [ f ]‖L2(µ,E ) = lim
n→∞
‖V gn− [ f ]‖L2(µ,E )

= lim
n→∞
‖[ fn]− [ f ]‖L2(µ,E )

= lim
n→∞
‖ f − fn‖L2(µ,E )

= 0.

Hence V g = [ f ] and V is indeed surjective.

Set X = N, σ = P (N) and µ = ∑n∈N δn where δn (n ∈ N) denote the Dirac measures.
Then we have L2 (µ) = l2 and L2 (µ,E ) = l2 (E ) and we obtain the following corollary.

Corollary 4.0.5. There exists a unique unitary operator V : l2⊗E → l2 (E ) with
V
(
(xn)n∈N⊗ v

)
= (xnv)n∈N for all (xn)n∈N ∈ l2 and v ∈ E .

Corollary 4.0.6. Let Hk be a functional Hilbert space with reproducing kernel k : Ω×
Ω→ C .Then there exist unitary operators

Hk⊗ l2⊗E →Hk (E )⊗ l2 with h⊗ (xn)n∈N⊗ v 7−→ hv⊗ (xn)n∈N ,

Hk⊗ l2⊗E →Hk
(
l2
)
⊗E with h⊗ (xn)n∈N⊗ v 7−→ (xnh)n∈N⊗ v,

Hk⊗ l2⊗E →Hk
(
l2 (E )

)
with h⊗ (xn)n∈N⊗ v 7−→ (xnhv)n∈N ,

Hk⊗ l2⊗E → l2
(
Hk (E )

)
with h⊗ (xn)n∈N⊗ v 7−→ (xnhv)n∈N

for all h ∈Hk, (xn)n∈N ∈ l2 and v ∈ E .

Proof. Use that the tensor product is associative and commutative up to an unitary oper-
ator and apply [5, Satz 1.15] as well as Corollary 4.0.5.

69



4 Appendix

Proposition 4.0.7. If u : Ω→ [−∞,∞) is a subharmonic function on an open set Ω ⊂ C
then also the function ũ : Ω̃ = {z; z ∈Ω}→ [−∞,∞) , ũ(z) = u(z) is subharmonic.

Proof. Let Br (z0)⊂ Ω̃, h : Br (z0)→ R be continuous and harmonic on Br (z0) such that,
h(z)≥ ũ(z) holds for every z∈ ∂Br (z0). Set h̃ : Br (z0)→R, h̃(z) = h(z). We next want to
show that h̃ is harmonic on Br (z0). Thus, let z1 ∈ Br (z0). Since h is harmonic on Br (z0),
there exists a s∈ (0,∞) with Bs (z1)⊂ Br (z0) and a holomorphic function f : Bs (z1)→ C,
such that Re f (z) = h(z) for every z ∈ Bs (z1). Now, set f̃ : Bs (z1)→ C, f̃ (z) = f (z).
Then f̃ is holomorphic and we have

h̃(z) = h(z) = Re f (z) = Re f (z) = Re f̃ (z)

for all z ∈ Bs (z1). Hence, h̃ is harmonic on Br (z0). Further, we have

h̃(z) = h(z)≥ ũ(z) = u(z)

for all z ∈ ∂Br (z0). Since h̃ is harmonic on Br (z0) and u is subharmonic on Ω we deduce
u(z)≤ h̃(z) for all z ∈ Br (z0) and hence

ũ(z) = u(z)≤ h̃(z) = h(z)

for all z ∈ Br (z0).

70



Bibliography

[1] J. Agler and J.E. McCarthy, Complete Nevanlinna-Pick kernels, J. Funct. Anal. 175 (2000), 111–124.

[2] A. Aleman, M. Hartz, J.E. MCarthy, and S. Richter, Factorizations induced by complete Nevan-
linna–Pick factors, Advances in Mathematics 335 (2018), 372 –404.
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sionalen Operatorentheorie., Diplomarbeit, Universität des Saarlandes, Saarbrücken, 2001.

[6] , Beurling-type representation of invariant subspaces in reproducing kernel Hilbert spaces.,
Dissertation, Universität des Saarlandes, Saarbrücken, 2007.

[7] M. Bhattacharjee, J. Eschmeier, Dinesh K. Keshari, and Jaydeb Sarkar, Dilations, wandering sub-
spaces, and inner functions, Linear Algebra Appl. 523 (2017), 263–280.
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