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Introduction

The classical Wold decomposition for isometries ([15, Chapter I.1]) states that every
isometry on a Hilbert space decomposes into a direct sum of a unilateral shift and a
unitary operator.

More precisely, for every isometry V ∈ L(H) on a Hilbert space H there exists a
Hilbert spaceW such that V is unitarily equivalent to (Mz⊗ idW)⊕U , where Mz⊗ idW
is the unilateral shift on the W-valued Hardy space H2(D,W) ∼= H2(D)⊗W and U is a
unitary operator on

H0 =

∞⋂
n=0

V nH.

Every unilateral shift operator as above is an isometry with H0 = {0}. These isometries
are called pure. A pair (V1, V2) ∈ L(H)2 of commuting isometries is said to be pure if
the product V1V2 is a pure isometry.

Pure pairs of commuting isometries have been studied by C. A. Berger, L. A. Coburn
and A. Lebow in 1978 (see [5]). The following result is of particular interest for the
purpose of this thesis:

Theorem 1 (Berger, Coburn, Lebow). Let V ∈ L(H) be a pure isometry and let
V1, V2 ∈ L(H) be commuting isometries. Then the following are equivalent:

(i) V = V1V2.

(ii) There exist a Hilbert space E , a unitary operator U ∈ L(E) and an orthogonal
projection P ∈ L(E) such that the operator-valued functions Φ,Ψ: D → L(E)
defined by

Φ(z) =
(
P + zP⊥

)
U∗ and Ψ(z) = U

(
P⊥ + zP

)
(z ∈ D)

induce a pure pair (MΦ,MΨ) ∈ L(H2(D, E))2 of isometric multiplication operators
with

MΦMΨ = MΨMΦ = Mz ⊗ idE

and such that

(V1, V2, V ) ∼= (MΦ,MΨ,Mz ⊗ idE).
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Introduction

Pure isometries V ∈ L(H) are exactly those isometries that are of class C·0, that
is, for which lim

n→∞
V ∗n = 0 in the strong operator topology. In the following, we will

consider the more general case of contractions of class C·0. Analogously, we say that a
pair (T1, T2) ∈ L(H)2 of commuting contractions is of class C·0 if the contraction T1T2

is of class C·0. We denote by DS = (idH−SS∗)H the defect space of a given contraction
S ∈ L(H) and assume that H is separable.

In 2017, B. K. Das, J. Sarkar and S. Sarkar obtained an extension of the Berger-
Coburn-Lebow result for pairs of commuting contractions (see [8]). The purpose of the
present thesis is to give a complete proof of the results from [8] and to provide the
necessary tools. The main result of this thesis will be the following:

Theorem 2 (Das, Sarkar, Sarkar). Let T ∈ L(H) be a contraction of class C·0 and let
(T1, T2) ∈ L(H)2 be a pair of commuting contractions. Then the following are equivalent:

(i) T = T1T2.

(ii) There exist a Hilbert space E , a unitary operator U ∈ L(E) and an orthogonal
projection P ∈ L(E) such that the operator-valued mappings Φ,Ψ: D → L(E)
defined by

Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP ) (z ∈ D)

induce a pure pair (MΦ,MΨ) ∈ L(H2(D, E))2 of commuting isometries with

MΦMΨ = MΨMΦ = Mz ⊗ idE

and such that

(T1, T2, T ) ∼= PQ(MΦ,MΨ,Mz ⊗ idE)|Q

with a suitable joint (M∗Φ,M
∗
Ψ,M

∗
z ⊗ idE)-invariant subspace Q ⊆ H2(D, E).

(iii) There exist L(DT )-valued polynomials ϕ,ψ of degree at most 1 such that

PQMz ⊗ idDT
|Q = PQMϕψ|Q = PQMψϕ|Q

and

(T1, T2) ∼= PQ(Mϕ,Mψ)|Q

for a suitable joint (M∗ϕ,M
∗
ψ)-invariant subspace Q ⊆ H2(D,DT ).

As an application of this result, one can prove the following version of von Neumann’s
inequality:
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Theorem 3 (Das, Sarkar, Sarkar). Let (T1, T2) ∈ L(H)2 be a pair of commuting con-
tractions of class C·0 with finite dimensional defect spaces DT1 ,DT2 . Then there exists
an algebraic variety V ⊆ C2 with V ∩ T2 6= T2 such that

‖p(T1, T2)‖ ≤ ‖p‖V ∩T2

for all polynomials p ∈ C[z1, z2].

Earlier in 2017, B. K. Das and J. Sarkar studied the case of commuting contractions
T1, T2 ∈ L(H) where T1 or T2 is of class C·0 (see [7]). Using a similar approach as in [8],
they obtained the following dilation theorem:

Theorem 4 (Das, Sarkar). Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions
with finite dimensional defect spaces DT1 ,DT2 and let T1 be of class C·0. Then there
exists an analytic operator-valued function Φ: D → L(DT1) which induces an isometric
multiplication operator MΦ ∈ L(H2(D,DT1)) such that

(T1, T2) ∼= PQ

(
Mz ⊗ idDT1

,MΦ

) ∣∣
Q

for some joint
(
M∗z ⊗ idDT1

,M∗Φ

)
-invariant subspace Q ⊆ H2(D,DT1).

Using Theorem 4, one finds another improvement of von Neumann’s inequality for
commuting pairs of contractions which reads as follows:

Theorem 5 (Das, Sarkar). Let T1, T2 ∈ L(H) be commuting contractions of class C·0
with finite dimensional defect spaces DT1 ,DT2 . Then there exists a distinguished variety
V ⊆ D2 such that

‖p(T1, T2)‖ ≤ ‖p‖V

for all polynomials p ∈ C[z1, z2].

In the particular case that T1 and T2 are commuting contractive matrices of class C·0
(or, equivalently, without unimodular eigenvalues) Theorem 5 was first proved by Agler
and McCarthy in [2].

Besides the main result described in Theorem 2, we will explicitly present the argu-
ments used in [7] to give a proof of Theorem 4 and Theorem 5.

The structure of the thesis is the following. In the first three chapters we provide the
tools that are needed in both [8] and [7]. The fourth chapter is divided into two cases.
We first consider commuting contractions T1, T2 ∈ L(H) with finite dimensional defect
spaces such that T1 is of class C·0 and give a proof of Theorem 4. Subsequently, we drop
the assumption of finite dimensional defect spaces and consider commuting contractions
T1, T2 ∈ L(H) such that the product T1T2 is of class C·0 to prove Theorem 2. Finally,
in the last chapter we give proofs of Theorem 3 and Theorem 5.
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1. Reproducing Kernels

Let E be a Hilbert space and let X be an arbitrary set. The set of all mappings from X
to E will be denoted by EX .

1.1. Functional Hilbert Spaces

Firstly, we define vector-valued functional Hilbert spaces using the same approach as in
[3] and [4].

Definition 1.1. A Hilbert space H ⊆ EX is called a functional Hilbert space if the point
evaluations

δλ : H −→ E , f 7−→ f(λ)

are continuous for all λ ∈ X.

Since positive definite functions play a key role in the theory of functional Hilbert
spaces, we recall the definition of positive definiteness.

Definition 1.2. A function K : X ×X → L(E) satisfying

n∑
i,j=1

〈K (λi, λj)hj , hi〉 ≥ 0

for all finite sequences (λi)
n
i=1 in X and (hi)

n
i=1 in E is called positive definite.

Remark 1.3. (i) Using the identification C ∼= L(C), where a complex number α ∈ C
is considered as the multiplication operator

Mα : C −→ C, z 7−→ αz,

a function K : X ×X → C is positive definite if and only if

n∑
i,j=1

K (λi, λj) zjzi ≥ 0

holds for all finite sequences (λi)
n
i=1 in X and (zi)

n
i=1 in C.

1



1. Reproducing Kernels

(ii) A function K : X ×X → L(E) is positive definite if and only if all finite operator
matrices

(K (λi, λj))
n
i,j=1 ∈Mn (E) ∼= L(En) (n ≥ 1, λ1, ..., λn ∈ X)

define positive operators on En. Since positive operators are self-adjoint, positive
definite functions satisfy K (λ, µ)∗ = K (µ, λ) for all λ, µ ∈ X.

Proofs of the following results can be found in the first chapter of [3].

Theorem 1.4. Let H ⊆ EX be a Hilbert space. The following are equivalent:

(i) The space H is a functional Hilbert space.

(ii) There exists a function K : X ×X → L(E) such that

K (·, µ)x ∈ H

and

〈f,K (·, µ)x〉 = 〈f (µ) , x〉

hold for all x ∈ E , µ ∈ X and f ∈ H.

In this case, the function K is uniquely determined by K (λ, µ) = δλδ
∗
µ for all λ, µ ∈ X.

In the setting of Theorem 1.4 the function K is called the reproducing kernel of the
functional Hilbert space H.

Lemma 1.5. Let H ⊆ EX be a functional Hilbert space. Then we have:

(i) The reproducing kernel K of H is positive definite.

(ii)
∨
{K (·, µ)x | µ ∈ X,x ∈ E} = H.

Theorem 1.6 (Moore). Every positive definite function K : X ×X → L(E) induces a
unique functional Hilbert space HK ⊆ EX with reproducing kernel K.

Remark 1.7. Let H ⊆ EX be a functional Hilbert space with reproducing kernel
K : X × X → L(E) and let Y ⊆ X be a subset. The positive definite function
K|Y×Y : Y × Y → L(E) induces a functional Hilbert space HY , which can be identi-
fied with the subspace ∨

{K (·, µ)x | µ ∈ Y, x ∈ E}

of H. More precisely, the restriction map

ϕ : H −→ HY , f 7−→ f |Y

is a well-defined contraction and its adjoint induces a unitary operator
ϕ∗ : HY →

∨
{K (·, µ)x | µ ∈ Y, x ∈ E}.
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1.2. Multipliers of Functional Hilbert Spaces

Theorem 1.8. If K : X ×X → C is positive definite, then

KE : X ×X −→ L(E), (λ, µ) 7−→ K(λ, µ) idE

is positive definite and there is a uniquely determined unitary operator V : HK⊗E → HKE
such that

V (f ⊗ x) = f · x

holds for all f ∈ HK and x ∈ E, where HK ⊆ CX and HKE ⊆ EX denote the functional
Hilbert spaces with reproducing kernels K and KE respectively.

1.2. Multipliers of Functional Hilbert Spaces

Let E1, E2 be Hilbert spaces and let Hi ⊆ EXi (i = 1, 2) be functional Hilbert spaces with
reproducing kernels Ki : X ×X → L(Ei) (i = 1, 2).

Definition 1.9. The functions in

M (H1,H2) = {φ : X → L (E1, E2) | φf ∈ H2 for all f ∈ H1}

are called multipliers between H1 and H2. Here φf : X → E2 is defined by

(φf)(λ) = φ(λ)f(λ) (λ ∈ X)

for every f : X → E1.
For φ ∈M(H1,H2), we call

Mφ : H1 −→ H2, f 7−→ φf

the multiplication operator with symbol φ. Whenever H1 = H2 = H, we will writeM(H)
instead of M(H,H).

Remark 1.10. For φ ∈ M(H1,H2), an elementary application of the closed graph
thereom shows that Mφ ∈ L(H1,H2). One obtains a norm

‖φ‖M(H1,H2) = ‖Mφ‖L(H1,H2) (φ ∈M(H1,H2))

on M(H1,H2) if

M(H1,H2) −→ L(H1,H2), φ 7−→Mφ

is injective. This holds true if, for example, H1 contains all constant functions.
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1. Reproducing Kernels

Remark 1.11. Let E be a non-trivial Hilbert space. If H ⊆ EX is a functional Hilbert
space that contains all constant functions, then the reproducing kernel K : X×X → L(E)
of H satisfies

K(µ, µ) ≥ 0 and K(µ, µ) 6= 0

for all µ ∈ X. This follows from the observation that

‖K (·, µ)x‖2 = 〈K (µ, µ)x, x〉 ≤ ‖K (µ, µ)‖ ‖x‖2

for all µ ∈ X and x ∈ E.

Corollary 1.12. Let H ⊆ CX be a functional Hilbert space with reproducing kernel
K : X ×X → C such that H contains all constant functions. Then the inequality

sup
λ∈X
‖φ(λ)‖ ≤ ‖φ‖M

(
HKE1

,HKE2

)

holds for each multiplier φ ∈M
(
HKE1 ,HKE2

)
.

Proof. Let φ ∈M
(
HKE1 ,HKE2

)
be given. An elementary exercise shows that

M∗φK(·, µ)x = K(·, µ)φ(µ)∗x

for µ ∈ X and x ∈ E2. Using the identifications explained in Theorem 1.8 one easily
obtains that

K (µ, µ) ‖φ (µ)∗ x‖2 = ‖K (·, µ)φ (µ)∗ x‖2

≤
∥∥M∗φ∥∥2 ‖K (·, µ)x‖2

= ‖Mφ‖2K (µ, µ) ‖x‖2

for µ ∈ X and x ∈ E2. Since K(µ, µ) > 0 by Remark 1.11, we may conclude that

‖φ (µ)‖2 = sup
‖x‖≤1

‖φ (µ)∗ x‖2 ≤ ‖Mφ‖2

for all µ ∈ X.

1.3. Vector-valued Hardy Spaces

In this section, we introduce the functional Hilbert space over the unit disk D known as
the Hardy space. This functional Hilbert space will play a fundamental role throughout
the remainder of this thesis.
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1.3. Vector-valued Hardy Spaces

Definition 1.13. The space

H2(D) =

{
f =

∞∑
n=0

fnz
n ∈ O(D)

∣∣∣ ‖f‖2H2(D) =
∞∑
n=0

|fn|2 <∞

}

is, together with the inner product〈 ∞∑
n=0

fnz
n,
∞∑
n=0

gnz
n

〉
H2(D)

=
∞∑
n=0

fngn

( ∞∑
n=0

fnz
n,
∞∑
n=0

gnz
n ∈ O(D)

)
,

a functional Hilbert space with reproducing kernel

K : D× D −→ C, (z, w) 7−→ 1

1− zw
.

The Hilbert space H2(D) is called the Hardy space over D.

The E-valued Hardy space on D is defined by

H2(D, E) =

{
f =

∞∑
n=0

fnz
n ∈ O(D, E)

∣∣∣ ‖f‖2H2(D,E)
=

∞∑
n=0

‖fn‖2E <∞

}
.

This space, equipped with the inner product〈 ∞∑
n=0

fnz
n,

∞∑
n=0

gnz
n

〉
H2(D,E)

=

∞∑
n=0

〈fn, gn〉E

( ∞∑
n=0

fnz
n,

∞∑
n=0

gnz
n ∈ O(D, E)

)
,

is a functional Hilbert space with reproducing kernel KE = K · idE (see e.g. [13, Section
1.15]).

As explained in Theorem 1.8, one can identify the Hilbert space tensor product
H2(D) ⊗ E with the E-valued Hardy space H2(D, E). We shall use this identification
throughout the whole paper.

Corollary 1.14. The Hilbert space tensor product H2(D)⊗E is isometrically isomorphic
to H2(D, E) via the unitary operator

V : H2(D)⊗ E −→ H2(D, E)

uniquely determined by

V (f ⊗ x) = f · x

for all f ∈ H2(D) and x ∈ E.

5



1. Reproducing Kernels

One can show that

∞∑
n=0

‖fn‖2 = sup
0<r<1

1

2π

2π∫
0

‖f(reit)‖2dt

for f =
∞∑
n=0

fnz
n ∈ O(D, E) (cf. [13, Section 1.15]). We are now able to identify the

multipliers of vector-valued Hardy spaces over D.

Proposition 1.15. The identity

M
(
H2(D, E)

)
=

{
φ ∈ O(D,L(E))

∣∣∣ ‖φ‖D = sup
z∈D
‖φ(z)‖ <∞

}
holds and the multiplier norm is given by

‖φ‖M(H2(D,E)) = ‖φ‖D

for all φ ∈M
(
H2(D, E)

)
.

Proof. Let φ : D → L(E) be a bounded holomorphic function. For f ∈ H2(D, E), the
function φf : D→ E is analytic with

1

2π

2π∫
0

∥∥(φf)
(
reit
)∥∥2

dt ≤ ‖φ‖2D‖f‖2H2(D,E)

for 0 < r < 1. Thus φ ∈M
(
H2(D, E)

)
with ‖φ‖M(H2(D,E)) ≤ ‖φ‖D.

Conversely, let φ ∈M
(
H2(D, E)

)
be given. Then

D −→ E , z 7−→ φ(z)x

belongs to H2(D, E) and hence is analytic for every x ∈ E . A well known application of
the uniform boundedness principle implies that the operator-valued map φ : D → L(E)
is analytic. By Corollary 1.12 we know that

‖φ‖D ≤ ‖φ‖M(H2(D,E)).

This observation completes the proof.
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2. C·0-Contractions and Inner Functions

The purpose of this chapter is to provide basic definitions and preliminaries that are
needed to prove the main results of the thesis. Our starting point is the Wold decom-
position for isometries. For the rest of this thesis, let H be a separable Hilbert space.

2.1. Wold Decomposition

We begin with the definition of reducing subspaces.

Definition 2.1. Let T ∈ L(H).

(i) A closed linear subspace M⊆ H is called invariant for T if TM⊆M.

(ii) A closed linear subspaceM⊆ H is called reducing for T ifM andM⊥ are invariant
for T .

Definition 2.2. Two operators T ∈ L(H1) and S ∈ L(H2) on Hilbert spaces H1 and
H2 are said to be unitarily equivalent if there exists a unitary operator U : H1 → H2

such that

UT = SU.

In this case, we write T ∼= S.

In the setting of Definition 2.2, it is easy to see that T ∼= S if and only if T ∗ ∼= S∗.

The following theorem describes the Wold decomposition for isometries. Its proof can
be found in [15, Chapter I.1].

Theorem 2.3 (Wold decomposition). Let V ∈ L(H) be an isometry. Then H = H0⊕H1

decomposes into the orthogonal sum of the closed subspaces

H0 =
∞⋂
n=0

V nH and H1 =
∞∨
n=0

V nW,

where W = H 	 VH. Furthermore, the spaces H0 and H1 are reducing for V , the
operator V |H0 is unitary and the operator V |H1 is unitarily equivalent to the unilateral
shift

Mz ⊗ idW : H2(D,W) −→ H2(D,W), f 7−→ zf

7



2. C·0-Contractions and Inner Functions

via the unitary operator

U : H1 −→ H2(D,W),
∞∑
n=0

V nxn 7−→
∞∑
n=0

xnz
n.

Remark 2.4. Let V ∈ L(H) be an isometry and let M ⊆ H be a closed invariant
subspace for V such that V |M is unitary. Then we obtain

M =
∞⋂
n=0

V nM⊆
∞⋂
n=0

V nH.

Thus, the space H0 in Theorem 2.3 is the largest reducing subspace for V such that V |H0

is unitary.

Definition 2.5. A contraction T ∈ L(H) is said to be completely non-unitary if there
is no reducing subspace {0} 6=M⊆ H for T such that T |M is unitary.

More generally, in [15, Chapter I.3] is proven that a similar decomposition exists for
contractions on Hilbert spaces.

Theorem 2.6. Every contraction T ∈ L(H) admits a unique orthogonal decomposition
of H = H0⊕H1 into reducing subspaces H0 and H1 for T = T0⊕T1 ∈ L(H0⊕H1) such
that T0 ∈ L(H0) is unitary and T1 ∈ L(H1) is completely non-unitary. The space H0 is
given by

H0 = {h ∈ H | ‖Tnh‖ = ‖h‖ = ‖T ∗nh‖ for all n ∈ N} .

For isometries, this decomposition coincides with the Wold decomposition.

We are particularly interested in isometries with trivial unitary part H0 = {0}. This
leads to the following definition.

Definition 2.7. An isometry V ∈ L(H) is called pure if H0 = {0}. Moreover, we call a
commuting pair of isometries (V1, V2) ∈ L(H)2 pure if the isometry V1V2 is pure.

Remark 2.8. By the Wold decomposition theorem, pure isometries act, up to unitary
equivalence, as vector-valued unilateral shifts

Mz ⊗ idE : H2(D, E) −→ H2(D, E), f 7−→ zf

with a suitable Hilbert space E.

Another class of operators we are interested in is introduced in the following definition.

Definition 2.9. We say that a given contraction T ∈ L(H) is of class C·0 if

lim
n→∞

T ∗nh = 0

for all h ∈ H. In this case, we call T a C·0-contraction.

8



2.2. Transfer Functions

Example 2.10. Let E be a Hilbert space. The unilateral shift

Mz ⊗ idE : H2(D, E) −→ H2(D, E), f 7−→ zf

is of class C·0.

Proof. Let w ∈ D and x ∈ E . Since the sequence (M∗nz )n∈N is norm-bounded, the
assertion follows from Lemma 1.5 and the observation that

lim
n→∞

M∗nz K(·, w)⊗ x = lim
n→∞

wnK(·, w)x = 0.

The properties described in the Definitions 2.5, 2.7 and 2.9 coincide for isometries.

Proposition 2.11. For an isometry V ∈ L(H), the following statements are equivalent:

(i) V is completely non-unitary.

(ii) V is pure.

(iii) V is of class C·0.

Proof. Both H0 and H1 are invariant for V . Thus, if (i) is true, then by Theorem 2.3,
the space H0 is trivial and hence (ii) follows.

Let V be pure. Then Remark 2.8 yields V ∼= Mz ⊗ idE ∈ L(H2(D, E)) for a suitable
Hilbert space E . Since Mz ⊗ idE is of class C·0 by Example 2.10, so is V .
Now suppose that (iii) holds and let h ∈ H0 be arbitrary. Then, for all n ∈ N, there
exists gn ∈ H with h = V ngn. Since

‖h‖ = ‖V ngn‖ = ‖gn‖ = ‖V ∗nV ngn‖ = ‖V ∗nh‖ (n→∞)−−−−−→ 0,

we conclude that h = 0. By Remark 2.4, the isometry V is completely non-unitary.

2.2. Transfer Functions

The goal of this section is to specify a class of operator-valued functions φ on D, which
induce isometric multiplication operators. For this purpose, let H1 and H2 be Hilbert
spaces.

Definition 2.12. For a unitary operator

U =

(
A B
C D

)
∈ L(H1 ⊕H2),

we call

τU : D −→ L(H1), z 7−→ A+ zB (idH2 −zD)−1C

the transfer function of U .

9



2. C·0-Contractions and Inner Functions

Remark 2.13. In the setting of Definition 2.12, we have ‖A‖, ‖B‖, ‖C‖, ‖D‖ ≤ 1.
Hence τU : D→ L(H1) is a well-defined analytic function.

The following lemma is based on a standard computation for transfer functions. A
proof can also be found in [1, Theorem 6.5].

Lemma 2.14. For U and τU as in Definition 2.12, it follows that

idH1 −τU (z)∗τU (z) =
(
1− |z|2

)
C∗ (idH2 −zD∗)

−1 (idH2 −zD)−1C

for all z ∈ D.

Proof. Since U∗U = idH1⊕H2 , we conclude that(
A∗A+ C∗C A∗B + C∗D
B∗A+D∗C B∗B +D∗D

)
=

(
A∗ C∗

B∗ D∗

)(
A B
C D

)
=

(
idH1 0

0 idH2

)
.

Thus, it follows

idH1 −τU (z)∗τU (z) = idH1 −
(
A∗ + zC∗ (idH2 −zD∗)

−1B∗
)(

A+ zB (idH2 −zD)−1C
)

= idH1 −A∗A− zA∗B (idH2 −zD)−1C − zC∗ (idH2 −zD∗)
−1B∗A

− zzC∗ (idH2 −zD∗)
−1B∗B (idH2 −zD)−1C

= C∗C + zC∗D (idH2 −zD)−1C + zC∗ (idH2 −zD∗)
−1D∗C

− |z|2C∗ (idH2 −zD∗)
−1 (idH2 −D∗D) (idH2 −zD)−1C

= C∗
[

idH2 +zD (idH2 −zD)−1 + z (idH2 −zD∗)
−1D∗

− |z|2 (idH2 −zD∗)
−1 (idH2 −D∗D) (idH2 −zD)−1 ]C

= C∗ (idH2 −zD∗)
−1 [ (idH2 −zD∗) (idH2 −zD) + z (idH2 −zD∗)D

+ zD∗ (idH2 −zD)− |z|2 (idH2 −D∗D)
]

(idH2 −zD)−1C

= C∗ (idH2 −zD∗)
−1 [ idH2 −zD − zD∗ + |z|2D∗D + zD − |z|2D∗D

+ zD∗ − |z|2D∗D − |z|2 idH2 +|z|2D∗D
]

(idH2 −zD)−1C

= C∗ (idH2 −zD∗)
−1 (1− |z|2) (idH2 −zD)−1C

for all z ∈ D.

Remark 2.15. Let τU as in Definition 2.12. Then Lemma 2.14 yields ‖τU (z)‖ ≤ 1 for
all z ∈ D.

Remark 2.16. Let U =

(
A B
C D

)
∈ L(H1⊕H2) be unitary. Lemma 2.14 applied to the

unitary operator U∗ =

(
A∗ C∗

B∗ D∗

)
∈ L(H1 ⊕H2) yields that

idH1 −τU (z)τU (z)∗ = idH1 −τU∗(z)∗τU∗(z)
=
(
1− |z|2

)
B (idH2 −zD)−1 (idH2 −zD∗)

−1B∗

10



2.2. Transfer Functions

for all z ∈ D.

We continue with a very simple but useful result about contractions that will be needed
in the following.

Lemma 2.17. Let T ∈ L(H) be a contraction and let h ∈ H be arbitrary. Then Th = h
if and only if T ∗h = h.

Proof. Suppose that Th = h. Then 〈h, T ∗h〉 = 〈Th, h〉 = 〈h, h〉 = ‖h‖2 and hence

‖h− T ∗h‖2 = ‖h‖2 − 2 Re 〈h, T ∗h〉+ ‖T ∗h‖2 = ‖h‖2 − 2 ‖h‖2 + ‖T ∗h‖2 ≤ 0,

because ‖T ∗h‖ ≤ ‖h‖. Thus T ∗h = h. The converse assertion follows by symmetry.

Remark 2.18. Let T ∈ L(H) be a contraction, let λ ∈ T and h ∈ H be given. By
applying Lemma 2.17 to the contraction 1

λT , we obtain that Th = λh if and only if
T ∗h = λh. In particular, it follows that a completely non-unitary contraction cannot
possess any unimodular eigenvalues. This is due to the fact that any unimodular eigen-
value of T provides an eigenspace M such that T |M is unitary.

Proposition 2.19. Let U =

(
A B
C D

)
∈ L(H1 ⊕H2) be unitary. If A ∈ L(H1) is com-

pletely non-unitary, then, for all z ∈ D, the operator τU (z) does not have any unimodular
eigenvalues.

Proof. Let z ∈ D and assume that τU (z) has a unimodular eigenvalue, that is

τU (z)v = λv

for some v ∈ H1\{0} and λ ∈ T. Since τU (z) is a contraction by Remark 2.15, Remark
2.18 yields that

τU (z)∗v = λv,

and hence that

(idH1 −τU (z)∗τU (z)) v = 0.

Thus, Lemma 2.14 yields Cv = 0 and the definition of τU implies

Av = τU (z)v = λv.

Then A has a non-trivial unitary part and is therefore not completely non-unitary.

Proposition 2.20. Let U =

(
A B
C D

)
∈ L(H1 ⊕ H2) be a unitary operator. Let

A = A0 ⊕ A1 ∈ L(H0
1 ⊕ H1

1) be the orthogonal decomposition of A ∈ L(H1) into its

11



2. C·0-Contractions and Inner Functions

unitary part A0 on H0
1 and its completely non-unitary part A1 on H1

1 as in Theorem 2.6.
Then

U1 =

(
A1 B
C|H1

1
D

)
∈ L(H1

1 ⊕H2)

is unitary and the transfer function τU of U admits the decomposition

τU (z) =

(
A0 0
0 τU1(z)

)
∈ L(H0

1 ⊕H1
1)

for all z ∈ D.

Proof. Because U is unitary, we have

A∗A+ C∗C = idH1 and AA∗ +BB∗ = idH1 .

Since A∗A|H0
1

= AA∗|H0
1

= idH0
1
, we conclude that

H0
1 ⊆ kerC and H0

1 ⊆ kerB∗,

or, equivalently,

H0
1 ⊆ kerC and ImB ⊆ H1

1.

Thus, one easily checks that

U1 =

(
A1 B
C|H1

1
D

)
∈ L

(
H1

1 ⊕H2

)
is isometric and surjective again and hence unitary.

The matrix representation of τU (z) = A + zB(idH2 −zD)−1C ∈ L(H1) (z ∈ D) with
respect to the decomposition H1 = H0

1 ⊕H1
1 is given by

τU (z) =

(
A0 0
0 A1 + zB(idH2 −zD)−1C|H1

1

)
for all z ∈ D. Hence τU (z) = A0 ⊕ τU1(z) ∈ L

(
H0

1 ⊕H1
1

)
(z ∈ D), where

τU1 : D −→ L
(
H1

1

)
, z 7−→ A1 + zB(idH2 −zD)−1C|H1

1

is the transfer function of U1.

Let m be the normalized, one-dimensional Lebesgue-measure on T.

Definition 2.21. A bounded analytic function φ : D→ L(H) is called inner if the limit

SOT- lim
r↑1

φ(rz)

exists in the strong operator topology and is an isometry on H for m-almost every z ∈ T.

12



2.2. Transfer Functions

One can show that the limit in Definition 2.21 exists for every bounded analytic
function φ : D→ L(H) for m-almost every z ∈ T. For a proof see [15, Chapter V.2].

For f ∈ H2(D,H) one can show that there is an m-zero set N ⊆ T such that the limit

f∗(z) = lim
r↑1

f(rz) ∈ H

exists in the norm-topology of H for every z ∈ T \N . The function

f∗ : T −→ H, z 7−→

lim
r↑1

f(rz), z /∈ N

0, z ∈ N

defines an element in L2(T,H) which is independent of the choice of N and satisfies the
identity

‖f‖2
H2(D,H)

=

∫
T

‖f∗(z)‖2dm(z).

For a bounded analytic function φ : D→ L(H), there is a zero set N ⊆ T such that the
limit

φ∗(z) = SOT- lim
r↑1

φ(rz) ∈ L(H)

exists in the strong operator topology of L(H) for every z ∈ T \N . The function

φ∗ : T −→ L(H), z 7−→

SOT- lim
r↑1

φ(rz), z ∈ T \N

0, z ∈ N

defines an element in L∞(T,L(H)) which is independent of the choice of N and satisfies
the identity

‖φ‖D = ‖φ∗‖L∞(T,L(H)).

Proofs of these results can be found in [13, Sections 4.5-4.7].

Let φ : D→ L(H) be a bounded analytic function and let φ∗ : T→ L(H) be the radial
limit of φ defined as above. Denote by

ρ : H2(D,H) −→ L2(T,H), f 7−→ f∗

the isometric embedding associating with each function f ∈ H2(D,H) its radial limit
f∗ ∈ L2(T,H). For f ∈ H2(D,H), there is an m-zero set N ⊆ T such that

φ∗(z) = SOT- lim
r↑1

φ(rz) and f∗(z) = lim
r↑1

f(rz)

13



2. C·0-Contractions and Inner Functions

hold for all z ∈ T \N . Since

‖φ(rz)f(rz)− φ∗(z)f∗(z)‖ = ‖φ(rz)(f(rz)− f∗(z)) + (φ(rz)− φ∗(z))f∗(z)‖

≤ ‖φ‖D ‖f(rz)− f∗(z)‖+ ‖(φ(rz)− φ∗(z))f∗(z)‖ (r↑1)−−−→ 0

for every z ∈ T \N , it follows that the multiplication operators

Mφ : H2(D,H) −→ H2(D,H) and Mφ∗ : L2(T,H) −→ L2(T,H)

satisfy the intertwining relation

ρMφ = Mφ∗ρ.

Lemma 2.22. For an inner multiplier φ ∈ M
(
H2(D,H)

)
, the multiplication operator

Mφ : H2(D,H)→ H2(D,H) is an isometry.

Proof. By definition, there exists an m-zero set N ⊆ T such that φ∗(z) ∈ L(H) is an
isometry for every z ∈ T \N . But then, for f ∈ H2(D,H),∫

T

‖φ∗(z)f(z)‖2 dm(z) =

∫
T

‖f(z)‖2 dm(z)

and hence

‖Mφf‖H2(D,H) = ‖(ρMφ) f‖L2(T,H) = ‖(Mφ∗ρ) f‖L2(T,H) = ‖f‖H2(D,H) .

Proposition 2.23. Let U =

(
A B
C D

)
∈ L(H1 ⊕ H2) be a unitary operator and let

D = D0 ⊕ D1 ∈ L
(
H0

2 ⊕H1
2

)
be the orthogonal decomposition of D ∈ L(H2) from

Theorem 2.6. If σ(D1) ⊆ D, then the transfer function τU of U extends to a holomorphic
map

τU : DR(0) −→ L(H1)

on a disc with radius R > 1 and τU (z) ∈ L(H1) is a unitary operator for every z ∈ T.
The condition σ(D1) ⊆ D is satisfied, for instance, if dimH2 < ∞ or if D = 0. In
particular, the transfer function τU is inner.

Proof. Since

CC∗ +DD∗ = idH2 and DD∗|H0
2

= idH0
2
,

we find that H0
2 ⊆ kerC∗, or, equivalently,

ImC ⊆ H1
2.
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But then the hypothesis that σ(D1) ⊆ D implies that the transfer function τU of U has
the form

τU (z) = A+ zB(idH1
2
−zD1)−1C (z ∈ D)

and hence extends to a holomorphic function τU : DR(0)→ L(H1) on an open disc DR(0)
with R > 1. In the same way one finds that the function

(idH2 −zD∗)−1(idH2 −zD)−1C = (idH1
2
−zD∗1)−1(idH1

2
−zD1)−1C : D −→ L(H2)

admits a continuous extension to an open neighborhood of D. But then Lemma 2.14
implies that

τU (z)∗τU (z) = idH1

for all z ∈ T. Since

D∗ =
(
D∗|H0

2

)
⊕
(
D∗|H1

2

)
is the decomposition of D∗ into its unitary part D∗|H0

2
and completely non-unitary part

D∗|H1
2

and since σ
(
D∗|H1

2

)
⊆ D, it follows in exactly the same way from Remark 2.16

that also

τU (z)τU (z)∗ = idH1

for all z ∈ T. The remaining assertion in Proposition 2.23 obviously holds.
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3. Sz.-Nagy’s and Foias’ Dilation Theory

The aim of this chapter is to prepare the construction of dilations for two commuting
contractions. We begin by proving some elementary results on defect operators.

Definition 3.1. For a contraction S ∈ L(H), we call DS = (idH−SS∗)
1
2 ∈ L(H) the

defect operator of S. Furthermore, we define the defect space of S by DS = DSH ⊆ H.

Lemma 3.2. Let T1, T2 ∈ L(H) be commuting contractions. Define T = T1T2. For all
h ∈ H, we have:

(i) ‖DT1T
∗
2 h‖

2 + ‖DT2h‖
2 = ‖DT1h‖

2 + ‖DT2T
∗
1 h‖

2,

(ii) ‖DTh‖2 = ‖DT1h‖
2 + ‖DT2T

∗
1 h‖

2.

Proof. By definition

T2D
2
T1T

∗
2 +D2

T2 = T2T
∗
2 − T2T1T

∗
1 T
∗
2 + (idH−T2T

∗
2 )

= (idH−T1T
∗
1 ) + T1T

∗
1 − T1T2T

∗
2 T
∗
1

= D2
T1 + T1D

2
T2T

∗
1

and therefore

‖DT1T
∗
2 h‖

2 + ‖DT2h‖
2 =

〈
T2D

2
T1T

∗
2 h, h

〉
+
〈
D2
T2h, h

〉
=
〈(
T2D

2
T1T

∗
2 +D2

T2

)
h, h

〉
=
〈(
D2
T1 + T1D

2
T2T

∗
1

)
h, h

〉
=
〈
D2
T1h, h

〉
+
〈
T1D

2
T2T

∗
1 h, h

〉
= ‖DT1h‖

2 + ‖DT2T
∗
1 h‖

2

as well as

‖DTh‖2 =
〈
D2
Th, h

〉
= 〈(idH−T1T2(T1T2)∗)h, h〉

= 〈(idH−T1T
∗
1 )h, h〉+ 〈(T1T

∗
1 − T1T2T

∗
2 T
∗
1 )h, h〉

=
〈
D2
T1h, h

〉
+
〈
T1D

2
T2T

∗
1 h, h

〉
= ‖DT1h‖

2 + ‖DT2T
∗
1 h‖

2

for all h ∈ H.
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3. Sz.-Nagy’s and Foias’ Dilation Theory

Remark 3.3. For commuting contractions T1, T2 ∈ L(H) and T = T1T2, Lemma 3.2
(ii) implies that there is a unique isometry V : DT −→ DT1 ⊕DT2 satisfying

V (DTh) = (DT1h,DT2T
∗
1 h)

for all h ∈ H.

In the following proposition we construct a unitary operator on a certain Hilbert space,
which will be crucial in the following chapter. In particular, one should pay attention to
the construction of the Hilbert space D.

Proposition 3.4. For commuting contractions T1, T2 ∈ L(H), there exist a Hilbert space
D and a unitary operator U : (D ⊕DT1)⊕DT2 → (D ⊕DT1)⊕DT2 satisfying

U

( 0
DT1T

∗
2 h

)
DT2h

 =

( 0
DT1h

)
DT2T

∗
1 h

 (h ∈ H). (3.1)

Proof. Let D be a Hilbert space such that

dimD =

{
0, if dimDT1 ,dimDT2 <∞
dimDT1 + dimDT2 , else.

If we set

M1 = {0D} ⊕ {DT1T
∗
2 h⊕DT2h | h ∈ H} ,

M2 = {0D} ⊕ {DT1h⊕DT2T
∗
1 h | h ∈ H} ,

we obtain that

(D ⊕DT1)⊕DT2 = Mi ⊕Mi
⊥

(i = 1, 2),

where

dimM1 = dimM2

and

Mi
⊥

= ((D ⊕DT1)⊕DT2)	Mi (i = 1, 2).

By Lemma 3.2 (i), Ũ : M1 →M2 defined by Equation 3.1 is a surjective isometry. Thus,
Ũ extends to a unitary operator U1 : M1 →M2.

If dimDT1 ,dimDT2 < ∞, then dim(D ⊕ DT1) ⊕ DT2 < ∞ and we conclude that

dimM1
⊥

= dimM2
⊥

. On the other hand, if dimDT1 =∞ or dimDT2 =∞, we consider
the set

{(h, 0, 0) | h ∈ D} ⊆Mi
⊥

(i = 1, 2).
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Since dim{(h, 0, 0) | h ∈ D} = dimD, we find that

dimD ≤ dimMi
⊥ ≤ dim((D ⊕DT1)⊕DT2) = dimD (i = 1, 2),

which yields dimM1
⊥

= dimM2
⊥

(see Theorem A.5).

Hence, there is a unitary operator U2 : M1
⊥ → M2

⊥
and, in particular, U = U1 ⊕ U2

is a unitary operator satisfying Equation 3.1.

We continue with a generalization of Definition 2.2. Let H1 and H2 be Hilbert spaces.

Definition 3.5. We say that (T1, ..., Tn) ∈ L(H1)n and (S1, ..., Sn) ∈ L(H2)n are uni-
tarily equivalent if there exists a unitary operator U : H1 → H2 such that

UTi = SiU (i = 1, ..., n).

In this case, we write (T1, ..., Tn) ∼= (S1, ..., Sn).

In the setting of Definition 3.5, it can be easily seen that (T1, ..., Tn) and (S1, ..., Sn)
are unitarily equivalent if and only if (T ∗1 , ..., T

∗
n) and (S∗1 , ..., S

∗
n) are unitarily equivalent.

Definition 3.6. Let T = (T1, ..., Tn) ∈ L(H1)n and S = (S1, ..., Sn) ∈ L(H2)n be
commuting tuples of bounded linear operators. We call S a coextension of T if there
exists an isometry Π: H1 → H2 such that

ΠT ∗i = S∗i Π (i = 1, ..., n).

In the setting of Definition 3.6, the closed subspace Q = ΠH1 ⊆ H2 is invariant for
(S∗1 , ..., S

∗
n) and

(T ∗1 , ..., T
∗
n) ∼= (S∗1 , ..., S

∗
n)|Q

as well as

(T1, ..., Tn) ∼= PQ(S1, ..., Sn)|Q,

where the restrictions and compressions are formed componentwise.
Moreover, since Q is a joint (S∗1 , ..., S

∗
n)-invariant subspace of H2, we find that

S∗1 |Q · ... · S∗n|Q = (S∗1 · ... · S∗n)|Q

and hence

PQS1|Q · ... · PQSn|Q = PQ(S1 · ... · Sn)|Q.

Thus, we conclude that

p(T1, ..., Tn) ∼= PQp(S1, ..., Sn)|Q

for every polynomial p ∈ C[z1, ..., zn].
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Theorem 3.7. Let T ∈ L(H) be a C.0-contraction. Then

ΠT : H −→ H2(D,DT ), h 7−→
∞∑
k=0

(
DTT

∗kh
)
zk

is a well-defined isometry satisfying

ΠTT
∗ = (M∗z ⊗ idDT

) ΠT .

Furthermore, if V ∈ L (DT , E) is an isometry with values in a Hilbert space E, then

ΠV
T : H −→ H2(D, E), h 7−→

(
idH2(D)⊗V

)
ΠTh

is an isometry satisfying

ΠV
T T
∗ = (M∗z ⊗ idE) ΠV

T .

Proof. For all h ∈ H and N ∈ N, one finds that

N∑
k=0

∥∥∥DTT
∗kh
∥∥∥2

=

N∑
k=0

〈
DTT

∗kh,DTT
∗kh
〉

=

〈
N∑
k=0

T kD2
TT
∗kh, h

〉
=

〈
N∑
k=0

T k (idH−TT ∗)T ∗kh, h

〉

=

〈
N∑
k=0

(
T kT ∗k − T k+1T ∗(k+1)

)
h, h

〉
=
〈(

idH−TN+1T ∗(N+1)
)
h, h

〉
= ‖h‖2 −

∥∥∥T ∗(N+1)h
∥∥∥2
.

Thus, by passing to the limit as N →∞, we obtain that

∞∑
k=0

∥∥∥DTT
∗kh
∥∥∥2

= ‖h‖2

for all h ∈ H, since T is a C·0-contraction. Hence ΠT is a well-defined isometry. Fur-
thermore, it holds

ΠTT
∗h =

∞∑
k=0

(
DTT

∗kT ∗h
)
zk =

∞∑
k=0

(
DTT

∗(k+1)h
)
M∗z (zk+1)

= (M∗z ⊗ idDT
)
∞∑
k=0

(
DTT

∗kh
)
zk = (M∗z ⊗ idDT

) ΠTh

for all h ∈ H.
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Now, let V ∈ L (DT , E) be an isometry. Then, ΠV
T =

(
idH2(D)⊗V

)
ΠT is an isometry

satisfying

ΠV
T T
∗h =

(
idH2(D)⊗V

)
ΠTT

∗h =
(

idH2(D)⊗V
)

(M∗z ⊗ idDT
) ΠTh

= (M∗z ⊗ idE)
(

idH2(D)⊗V
)

ΠTh

= (M∗z ⊗ idE) ΠV
T h

for all h ∈ H.

Corollary 3.8. In the setting of Theorem 3.7, we have

T ∼= PQ (Mz ⊗ idDT
) |Q

for the (M∗z ⊗ idDT
)-invariant subspace Q = ΠTH of H2(D,DT ) and

T ∼= PQ̃ (Mz ⊗ idE) |Q̃

for the (M∗z ⊗ idE)-invariant subspace Q̃ = ΠV
TH of H2(D, E).
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4. Pairs of Commuting Contractions

We are now able to prove the main results of this thesis described in the introduction.

4.1. Contractions with Finite Dimensional Defect Spaces

In this section, we only consider pairs of commuting contractions with finite dimensional
defect spaces. Note that in these cases the Hilbert space D constructed in the proof of
Proposition 3.4 vanishes.

Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions such that dimDTi <∞ for
i = 1, 2. Proposition 3.4 provides a unitary operator

U =

(
A B
C D

)
: DT1 ⊕DT2 −→ DT1 ⊕DT2

such that (
A B
C D

)(
DT1T

∗
2 h

DT2h

)
=

(
DT1h
DT2T

∗
1 h

)
for all h ∈ H. Then, the unitary operator

U∗ =

(
A∗ C∗

B∗ D∗

)
: DT1 ⊕DT2 −→ DT1 ⊕DT2

satisfies (
A∗ C∗

B∗ D∗

)(
DT1h
DT2T

∗
1 h

)
=

(
DT1T

∗
2 h

DT2h

)
for all h ∈ H. Since dimDT2 <∞, the transfer functions τU , τU∗ : D→ L(DT2) of U and
U∗ are inner by Proposition 2.23.

Note that

Ũ =

(
D∗ B∗

C∗ A∗

)
: DT2 ⊕DT1 −→ DT2 ⊕DT1

is a unitary operator such that(
D∗ B∗

C∗ A∗

)(
DT2T

∗
1 h

DT1h

)
=

(
DT2h
DT1T

∗
2 h

)
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for all h ∈ H. Thus, the unitary operator

Ũ∗ =

(
D C
B A

)
: DT2 ⊕DT1 −→ DT2 ⊕DT1

satisfies (
D C
B A

)(
DT2h
DT1T

∗
2 h

)
=

(
DT2T

∗
1 h

DT1h

)
for all h ∈ H. Again, since dimDT1 <∞, the transfer functions τŨ , τŨ∗ : D→ L(DT1) of

Ũ and Ũ∗ are inner by Proposition 2.23.

In the following, we consider those pairs of commuting contractions (T1, T2) ∈ L(H)2

where T1 or T2 is of class C·0. We will see that the results in these two cases are
symmetric.

Lemma 4.1. Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions and let T1 be of
class C·0. Then, it holds

DT1T
∗
2 = A∗DT1 +

∞∑
i=0

C∗D∗iB∗DT1T
∗(i+1)
1 ,

where the series converges in the strong operator topology.

Proof. Let h ∈ H. Using the operator U∗, we have

DT1T
∗
2 h = A∗DT1h+ C∗DT2T

∗
1 h (4.1)

and

DT2h = B∗DT1h+D∗DT2T
∗
1 h. (4.2)

Replacing h by T ∗1 h in Equation 4.2, we have

DT2T
∗
1 h = B∗DT1T

∗
1 h+D∗DT2T

∗2
1 h. (4.3)

Inserting Equation 4.3 in Equation 4.1 yields

DT1T
∗
2 h = A∗DT1h+ C∗

(
B∗DT1T

∗
1 h+D∗DT2T

∗2
1 h
)

= A∗DT1h+ C∗B∗DT1T
∗
1 h+ C∗D∗DT2T

∗2
1 h. (4.4)

We now repeat this step by replacing h by T ∗1 h in Equation 4.3, that is

DT2T
∗2
1 h = B∗DT1T

∗2
1 h+D∗DT2T

∗3
1 h,
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4.1. Contractions with Finite Dimensional Defect Spaces

and insert this in Equation 4.4 to observe

DT1T
∗
2 h = A∗DT1h+ C∗B∗DT1T

∗
1 h+ C∗D∗B∗DT1T

∗2
1 h+ C∗D∗2DT2T

∗3
1 h

= A∗DT1h+

1∑
i=0

C∗D∗iB∗DT1T
∗(i+1)
1 h+ C∗D∗2DT2T

∗3
1 h.

Successively, we obtain

DT1T
∗
2 h = A∗DT1h+

N∑
i=0

C∗D∗iB∗DT1T
∗(i+1)
1 h+ C∗D∗(N+1)DT2T

∗(N+2)
1 h

for all h ∈ H and N ∈ N. Since ‖D‖ ≤ 1 and T1 is of class C·0, it follows that

lim
N→∞

∥∥∥C∗D∗(N+1)DT2T
∗(N+2)
1 h

∥∥∥ = 0

for all h ∈ H. Finally, for all h ∈ H, we conclude∥∥∥∥∥DT1T
∗
2 h−A∗DT1h−

N∑
i=0

C∗D∗iB∗DT1T
∗(i+1)
1 h

∥∥∥∥∥ =
∥∥∥C∗D∗(N+1)DT2T

∗(N+2)
1 h

∥∥∥
≤
∥∥∥T ∗(N+2)

1 h
∥∥∥ (N→∞)−−−−−→ 0.

A similar proof using the operator Ũ∗ instead of U∗ yields the following remark.

Remark 4.2. Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions and let T2 be
of class C·0. Then we have

DT2T
∗
1 = DDT2 +

∞∑
i=0

CAiBDT2T
∗(i+1)
2 ,

where the series converges in the strong operator topology.

Theorem 4.3. Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions such that
T1 is of class C·0 and let dimDTi < ∞ for i = 1, 2. Then, the transfer function
τU : D→ L (DT1) of U induces an isometric multiplication operator MτU ∈ L(H2(D,DT1))
such that

(T1, T2) ∼= PQ

(
Mz ⊗ idDT1

,MτU

) ∣∣
Q

for the joint
(
M∗z ⊗ idDT1

,M∗τU

)
-invariant subspace Q = ΠT1H ⊆ H2(D,DT1).

Proof. Since T1 is of class C·0, Theorem 3.7 yields

T1
∼= PQ

(
Mz ⊗ idDT1

) ∣∣
Q
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4. Pairs of Commuting Contractions

for the
(
M∗z ⊗ idDT1

)
-invariant subspaceQ = ΠT1H of H2(D,DT1). As mentioned before,

the transfer function τU of U is inner and hence induces the isometry
MτU ∈ L(H2(D,DT1)) by Lemma 2.22. Therefore it is enough to show that ΠT1 in-
tertwines T ∗2 and M∗τU . Let h ∈ H, n ≥ 0 and η ∈ DT1 . We obtain〈

M∗τU ΠT1h, z
nη
〉

= 〈ΠT1h,MτU (znη)〉

=

〈 ∞∑
k=0

(
DT1T

∗k
1 h
)
zk,

(
A+ zB

(
idDT1

−zD
)−1

C

)
(znη)

〉

=

〈 ∞∑
k=0

(
DT1T

∗k
1 h
)
zk, A (znη) +

∞∑
i=0

(
BDiCη

)
zi+n+1

〉

= 〈A∗DT1T
∗n
1 h, η〉+

∞∑
i=0

〈
C∗D∗iB∗DT1T

∗(i+n+1)
1 h, η

〉
=

〈(
A∗DT1 +

∞∑
i=0

C∗D∗iB∗DT1T
∗(i+1)
1

)
T ∗n1 h, η

〉
= 〈DT1T

∗
2 (T ∗n1 h) , η〉 ,

where we have used Lemma 4.1 in the last equation.
On the other hand, we observe

〈ΠT1T
∗
2 h, z

nη〉 =

〈 ∞∑
k=0

(
DT1T

∗k
1 T ∗2 h

)
zk, znη

〉
= 〈DT1T

∗n
1 T ∗2 h, η〉

= 〈DT1T
∗
2 (T ∗n1 h) , η〉

and hence M∗τU ΠT1 = ΠT1T
∗
2 .

A similar proof using Remark 4.2 instead of Lemma 4.1 yields the following remark.

Remark 4.4. Let (T1, T2) ∈ L(H)2 be a pair of commuting contractions such
that T2 is of class C·0 and let dimDTi < ∞ for i = 1, 2. Then, the transfer
function τŨ : D → L(DT2) of Ũ is induces an isometric multiplication operator
MτŨ

∈ L(H2(D,DT2)) such that

(T1, T2) ∼= PQ

(
MτŨ

,Mz ⊗ idDT2

) ∣∣
Q

for the joint
(
M∗τŨ

,M∗z ⊗ idDT2

)
-invariant subspace Q = ΠT2H ⊆ H2 (D,DT2).

4.2. Factorizations of Contractions

In this section, we consider pairs of commuting contractions (T1, T2) ∈ L(H)2 such that
the product T1T2 is of class C·0. In particular, we do not assume the defect spaces of
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4.2. Factorizations of Contractions

T1 or T2 to be finite dimensional. The first theorem will be of central importance in the
following. In fact, Theorem 4.5 will be used twice in the proof of Theorem 4.7.

Theorem 4.5. Let S1, S2 ∈ L(H) be commuting contractions such that S2 is of class
C.0 and let V ∈ L (DS2 , E) be an isometry into a Hilbert space E. Furthermore, let F be
a Hilbert space and let

W =

(
A B
C 0

)
: E ⊕ (F ⊕DS1)→ E ⊕ (F ⊕DS1)

be a unitary operator such that(
A B
C 0

) V DS2h(
0

DS1S
∗
2h

) =

V DS2S
∗
1h(

0
DS1h

)
holds for all h ∈ H. Then the transfer function

τW ∗ : D −→ L(E), z 7−→ A∗ + zC∗B∗

of W ∗ satisfies the identity

ΠV
S2
S∗1 = M∗τW∗Π

V
S2
.

Proof. By hypothesis, we have that

V DS2S
∗
1h = AVDS2h+B

(
0

DS1S
∗
2h

)
and

(
0

DS1h

)
= CV DS2h

for all h ∈ H and hence

V DS2S
∗
1 = AVDS2 +BCVDS2S

∗
2 . (4.5)

For h ∈ H, n ≥ 1, η ∈ E , we obtain

〈
M∗τW∗Π

V
S2
h, znη

〉
=

〈(
idH2(D)⊗V

) ∞∑
k=0

(
DS2S

∗k
2 h
)
zk, (A∗ + zC∗B∗) znη

〉

=

〈(
idH2(D)⊗V

) ∞∑
k=0

(
DS2S

∗k
2 h
)
zk, A∗znη

〉

+

〈(
idH2(D)⊗V

) ∞∑
k=0

(
DS2S

∗k
2 h
)
zk, C∗B∗zn+1η

〉
= 〈V DS2S

∗n
2 h,A∗η〉+

〈
V DS2S

∗n+1
2 h,C∗B∗η

〉
=
〈
AVDS2S

∗n
2 h+BCVDS2S

∗n+1
2 h, η

〉
= 〈(AVDS2 +BCVDS2S

∗
2) (S∗n2 h) , η〉

= 〈V DS2S
∗
1(S∗n2 h), η〉 ,
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4. Pairs of Commuting Contractions

where we used Equation 4.5 in the last step.
On the other hand, for h ∈ H, n ≥ 1 and η ∈ E we find that

〈
ΠV
S2
S∗1h, z

nη
〉

=

〈(
idH2(D)⊗V

) ∞∑
k=0

(
DS2S

∗k
2 S∗1h

)
zk, znη

〉

=

〈 ∞∑
k=0

(
V DS2S

∗
1S
∗k
2 h
)
zk, znη

〉
= 〈V DS2S

∗
1S
∗n
2 h, η〉 .

Thus we have proved the identity ΠV
S2
S∗1 = M∗τW∗Π

V
S2

.

Remark 4.6. In the setting of Theorem 4.5, we have

S∗1
∼= M∗τW∗ |Q

and, according to Theorem 3.7,

S∗2
∼= (M∗z ⊗ idE) |Q,

where Q = ΠV
S2
H ⊆ H2(D, E).

Theorem 4.7. Let T ∈ L(H) be a C·0-contraction and let T1, T2 ∈ L(H) be commuting
contractions. Then the following are equivalent:

(i) T = T1T2.

(ii) There exist a Hilbert space E, a unitary operator U ∈ L(E) and an orthogonal pro-
jection P ∈ L(E) such that the operator-valued mappings Φ,Ψ: D → L(E) defined
by

Φ(z) = (P + zP⊥)U∗ and Ψ(z) = U(P⊥ + zP ) (z ∈ D)

induce a pure pair (MΦ,MΨ) ∈ L
(
H2(D, E)

)2
of isometric multiplication operators

with

MΦMΨ = MΨMΦ = Mz ⊗ idE .

Moreover, there exists an isometry V ∈ L(DT , E) such that Q = ΠV
TH is a joint

(M∗Φ,M
∗
Ψ,M

∗
z ⊗ idE)-invariant subspace of H2(D, E) and such that

(T1, T2, T ) ∼= PQ (MΦ,MΨ,Mz ⊗ idE) |Q

via the unitary operator ΠV
T : H → Q.
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4.2. Factorizations of Contractions

(iii) There exist L(DT )-valued polynomials ϕ and ψ of degree at most 1 such that
Q = ΠTH is a joint (M∗ϕ,M

∗
ψ)-invariant subspace of H2(D,DT ),

PQ(Mz ⊗ idDT
)|Q = PQMϕψ|Q = PQMψϕ|Q,

and such that

(T1, T2) ∼= PQ(Mϕ,Mψ)|Q

via the unitary operator ΠT : H → Q.

Proof. Suppose that (ii) holds. Then there exists a unitary operator Π: Q → H such
that

(T1, T2, T ) = ΠPQ (MΦ,MΨ,Mz ⊗ idE) |QΠ∗

and hence

T1T2 = ΠPQMΦ|QΠ∗ΠPQMΨ|QΠ∗

= ΠPQMΦ|QPQMΨ|QΠ∗

= ΠPQMΦMΨ|QΠ∗

= ΠPQ (Mz ⊗ idE) |QΠ∗ = T.

Thus, (ii) implies (i).
Suppose that T = T1T2. Let D be the Hilbert space constructed in Proposition 3.4

and define

E = (D ⊕DT1)⊕DT2 .

Let furthermore U : E → E be the operator from Proposition 3.4 satisfying

U

( 0
DT1T

∗
2 h

)
DT2h

 =

( 0
DT1h

)
DT2T

∗
1 h


for all h ∈ H. Let ι1 : D ⊕DT1 → E and ι2 : DT2 → E be the inclusion mappings defined
by

ι1 (h, h1) = (h, h1, 0) and ι2h2 = (0, 0, h2)

for h ∈ D, h1 ∈ DT1 and h2 ∈ DT2 . Then

P = ι2ι
∗
2 : E −→ E , (h, h1, h2) 7−→ (0, 0, h2)

is the orthogonal projection onto DT2 and the orthogonal projection P⊥ onto D ⊕ DT1
is given by

ι1ι
∗
1 : E −→ E , (h, h1, h2) 7−→ (h, h1, 0).
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4. Pairs of Commuting Contractions

Thus (
P ι1
ι∗1 0

)
: E ⊕ (D ⊕DT1) −→ E ⊕ (D ⊕DT1)

is unitary since(
P ι1
ι∗1 0

)(
P ι1
ι∗1 0

)
=

(
P + P⊥ Pι1
ι∗1P ι∗1ι1

)
=

(
idE 0
0 idD⊕DT1

)
.

But then also

W1 =

(
U 0
0 idD⊕DT1

)(
P ι1
ι∗1 0

)
=

(
UP Uι1
ι∗1 0

)
∈ L (E ⊕ (D ⊕DT1))

defines a unitary operator. By Remark 3.3, there is a unique isometry V : DT → E with

V (DTh) = (0, DT1h,DT2T
∗
1 h) (h ∈ H).

By construction, we have

W1 (V (DTh) , (0, DT1T
∗h)) = W1 ((0, DT1h,DT2T

∗
1 h) , (0, DT1T

∗h))

= (UP (0, DT1h,DT2T
∗
1 h)

+ Uι1 (0, DT1T
∗h) , ι∗1 (0, DT1h,DT2T

∗
1 h))

= (U (0, 0, DT2T
∗
1 h) + U (0, DT1T

∗h, 0) , (0, DT1h))

= (U (0, DT1T
∗
2 T
∗
1 h,DT2T

∗
1 h) , (0, DT1h))

=
((

0, DT1T
∗
1 h,DT2T

∗2
1 h
)
, (0, DT1h)

)
= (V (DTT

∗
1 h) , (0, DT1h))

for all h ∈ H. Applying Theorem 4.5 to the commuting contractions T1, T and the
unitary operator W1, we conclude

ΠV
T T
∗
1 = M∗ΦΠV

T , (4.6)

where

Φ(z) = τW ∗1 (z) = PU∗ + zι1ι
∗
1U
∗ =

(
P + zP⊥

)
U∗ ∈ L(E) (z ∈ D)

is the transfer function of W ∗1 .

Analogously, we obtain the unitary operator

W2 =

(
P⊥ ι2
ι∗2 0

)(
U∗ 0
0 idDT2

)
=

(
P⊥U∗ ι2
ι∗2U

∗ 0

)
∈ L(E ⊕ DT2).
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4.2. Factorizations of Contractions

Again, by construction we have

W2 (V (DTh) , DT2T
∗h) = W2 ((0, DT1h,DT2T

∗
1 h) , DT2T

∗h)

=
(
P⊥U∗ (0, DT1h,DT2T

∗
1 h)

+ ι2 (DT2T
∗h) , ι∗2U

∗ (0, DT1h,DT2T
∗
1 h)

)
=
(
P⊥ (0, DT1T

∗
2 h,DT2h)

+ (0, 0, DT2T
∗h) , ι∗2 (0, DT1T

∗
2 h,DT2h)

)
= ((0, DT1T

∗
2 h, 0) + (0, 0, DT2T

∗h) , DT2h)

= ((0, DT1T
∗
2 h,DT2T

∗
1 T
∗
2 h) , DT2h)

= (V (DTT
∗
2 h) , DT2h)

for all h ∈ H. Theorem 4.5 applied to the commuting contractions T2, T and the unitary
operator W2 yields

ΠV
T T
∗
2 = M∗ΨΠV

T , (4.7)

where

Ψ(z) = τW ∗2 (z) = UP⊥ + zUι2ι
∗
2 = U(P⊥ + zP ) (z ∈ D)

is the transfer function of W ∗2 . Furthermore, since T is of class C·0, Theorem 3.7 yields

ΠV
T T
∗ = (M∗z ⊗ idE)Π

V
T . (4.8)

Summing up Equations 4.6, 4.7, 4.8, we derive

(T1, T2, T ) ∼= PQ (MΦ,MΨ,Mz ⊗ idE) |Q

via the unitary operator ΠV
T : H → Q, where Q = ΠV

TH is a joint (M∗Φ,M
∗
Ψ,M

∗
z ⊗ idE)-

invariant subspace of H2(D, E).
Moreover, we have

Φ(z)Ψ(z) =
(
P + zP⊥

)
U∗U

(
P⊥ + zP

)
= PP⊥ + zP + zP⊥ + z2P⊥P

= z
(
P + P⊥

)
= z idE

and analogously

Ψ(z)Φ(z) = U
(
P⊥ + zP

)(
P + zP⊥

)
U∗

= U
(
P⊥P + zP⊥ + zP + z2PP⊥

)
U∗

= U
(
z
(
P⊥ + P

))
U∗ = z idE
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4. Pairs of Commuting Contractions

for all z ∈ D. Hence

MΦMΨ = MΨMΦ = Mz ⊗ idE .

Since Φ and Ψ are inner by Proposition 2.23, we conclude that MΦ and MΨ are isometries
by Lemma 2.22. By Example 2.10, we know that Mz ⊗ idE is of class C·0. Hence,
MΦMΨ = Mz ⊗ idE is pure by Proposition 2.11. Thus (i) implies (ii).

Let T = T1T2. Then with the notations from above

ΠV
T T
∗
1 = M∗ΦΠV

T and ΠV
T T
∗
2 = M∗ΨΠV

T ,

where V : DT → E is an isometry and Φ,Ψ: D→ L(E) are inner L(E)-valued polynomials

of degree at most 1. Since ΠV
T =

(
idH2(D)⊗V

)
ΠT , we find that

ΠTT
∗
1 = (idH2(D)⊗V

∗)M∗Φ(idH2(D)⊗V )ΠT ,

or that

ΠTT
∗
1 = M∗ϕΠT

with

ϕ : D −→ L(DT ), z 7−→ V ∗Φ(z)V.

Similarly, we obtain that

ΠTT
∗
2 =

(
idH2(D)⊗V

∗
)
M∗Ψ

(
idH2(D)⊗V

)
ΠT ,

or

ΠTT
∗
2 = M∗ψΠT

with

ψ : D −→ L(DT ), z 7−→ V ∗Ψ(z)V.

In particular, ϕ and ψ are L(DT )-valued polynomials of degree at most 1 such that

(T1, T2) ∼= PQ (Mϕ,Mψ) |Q

via the unitary operator ΠT : H → Q.

Furthermore, Q = ΠTH is a joint
(
M∗ϕ,M

∗
ψ

)
-invariant subspace. Since

ΠTT
∗ = (M∗z ⊗ idDT

) ΠT ,

32



4.2. Factorizations of Contractions

Q is also a (M∗z ⊗ idDT
)-invariant subspace of H2(D,DT ). To sum up, we know that

M∗ϕψΠT = M∗ψM
∗
ϕΠT = M∗ψΠTT

∗
1

= ΠTT
∗
2 T
∗
1 = ΠTT

∗
1 T
∗
2

= M∗ϕΠTT
∗
2 = M∗ϕM

∗
ψΠT = M∗ψϕΠT

and

ΠTT
∗
1 T
∗
2 = ΠTT

∗ = (M∗z ⊗ idDT
)ΠT .

Hence

M∗ϕψ|Q = (M∗z ⊗ idDT
) |Q = M∗ψϕ|Q

and therefore

PQMϕψ|Q = PQ (Mz ⊗ idDT
) |Q = PQMψϕ|Q.

Thus, (i) implies (iii).
On the other hand, if polynomials ϕ,ψ : D→ L(DT ) are given such that

PQ (Mz ⊗ idDT
) |Q = PQMϕψ|Q = PQMψϕ|Q

and

(T1, T2) ∼= PQ (Mϕ,Mψ) |Q

holds for the joint
(
M∗ϕ,M

∗
ψ

)
-invariant subspace Q = ΠTH ⊆ H2(D,DT ), then it follows

exactly as at the beginning of the proof that T = T1T2.

In the following, we give applications of the main result proven in this section. We
first note that Theorem 4.7 is a generalization of the dilation theorem of Berger, Coburn
and Lebow in [5], which reads as follows.

Theorem 4.8. Let V ∈ L(H) be a pure isometry and let V1, V2 ∈ L(H) be commuting
isometries. Then the following are equivalent:

(i) V = V1V2.

(ii) There exist a Hilbert space E, a unitary operator U ∈ L(E) and an orthogonal pro-
jection P ∈ L(E) such that the operator-valued functions Φ,Ψ: D → L(E) defined
by

Φ(z) =
(
P + zP⊥

)
U∗ and Ψ(z) = U

(
P⊥ + zP

)
(z ∈ D)

induce a pure pair (MΦ,MΨ) ∈ L(H2(D, E))2 of isometric multiplication operators
with

MΦMΨ = MΨMΦ = Mz ⊗ idE

and such that

(V1, V2, V ) ∼= (MΦ,MΨ,Mz ⊗ idE).
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4. Pairs of Commuting Contractions

Proof. If (ii) holds, then (i) follows exactly as in the proof of Theorem 4.7.
Suppose that V = V1V2 and let Φ,Ψ, E and Q be as in Theorem 4.7. Then it suffices

to show that

Q = H2(D,M)

with a closed subspace M ⊆ E that is reducing for U and P . The existence of M can
be shown as follows.

Since the multiplication operators MΦ,MΨ and Mz⊗ idE as well as their compressions
PQMΦ|Q, PQMΨ|Q and PQ(Mz⊗idE)|Q to Q are isometric, it follows by the Pythagorean
theorem that Q is a reducing subspace for MΦ,MΨ and Mz ⊗ idE . Since Q is reducing
for Mz⊗ idE , it follows that there is a closed subspaceM⊆ E with Q = H2(D,M). This
is a particular case of [12, Lemma 4.1.6].

Since

PU∗x = Φ(0)x ∈M

for all x ∈M, the space M is invariant for PU∗. Since

PU∗x+ zP⊥U∗x ∈ Q = H2(D,M)

for all x ∈ M, it follows that M is also invariant for P⊥U∗. Playing the same game
with Ψ instead of Φ, one obtains that M is also invariant for UP⊥ and UP . But then
M is invariant for

U∗ = PU∗ + P⊥U∗, U = UP⊥ + UP and P = (PU∗)(UP ).

Thus

(V1, V2, V ) ∼= (Mα,Mβ,Mz ⊗ idM),

where α, β : D→ L(M) are defined by

α(z) =
(
P |M + zP |⊥M

)
U |∗M and β(z) = U |M

(
P |⊥M + zP |M

)
for all z ∈ D.

Note that Theorem 4.7 is a sharper version of Andô’s dilation theorem for a pair of
commuting contractions, whose product has the C·0-property. In fact, Theorem 4.7 gives
a proof of the following theorem.

Theorem 4.9 (Andô). Let T1, T2 ∈ L(H) be commuting contractions such that T1T2 is
a C.0-contraction. Then there exist commuting unitary operators U1, U2 ∈ L(H̃) on a
Hilbert space H̃ ⊇ H such that

Tn1 T
m
2 h = PHU

n
1 U

m
2 h

for all h ∈ H and n,m ∈ N.
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4.2. Factorizations of Contractions

Proof. Theorem 4.7 provides a Hilbert space E as well as a pair of commuting isometries
(MΦ,MΨ) ∈ L(H2(D, E))2 such that

(T1, T2) ∼= PQ (MΦ,MΨ) |Q

for the joint (M∗Φ,M
∗
Ψ)-invariant subspace Q = ΠV

TH ⊆ H2(D, E). Furthermore, we have
H ∼= Q via the unitary operator ΠV

T : H → Q. By [11, Lemma 4], (MΦ,MΨ) extends to
a commuting pair (U1, U2) ∈ L(H̃)2 of unitary operators on a Hilbert space H̃ ⊇ Q. By
construction, the unitary operators U1, U2 ∈ L(H̃) have the desired property.
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5. Von Neumann Inequality

In this final chapter, we will prove two sharper versions of von Neumann’s inequality for
certain pairs of commuting contractions using Theorem 4.3 and Theorem 4.7. We start
with the construction of the joint spectrum of a commuting tuple of normal operators
on H.

Let A be a commutative unital Banach algebra. For a = (a1, ..., an) ∈ An, the joint
spectrum of a is defined as

σA(a) =

{
z ∈ Cn |

n∑
i=1

(zi − a)A 6= A

}
.

One can show (cf. [9, Korollar 12.3]) that σA(a) ⊆ Cn is a non-empty compact set such
that the polynomial spectral mapping theorem

σA((p1(a), ..., pm(a))) = p(σA(a))

holds for each tuple p = (p1, ..., pm) ∈ C[z1, ..., zn]m.
Let N = (N1, ..., Nn) ∈ L(H)n be a commuting tuple of normal operators. By the

Putnam-Fuglede theorem, the (2n)-tuple (N,N∗) = (N1, ..., Nn, N
∗
1 , ..., N

∗
n) ∈ L(H)2n is

commuting again. Hence also the C∗-algebra

C∗(N) = {p(N,N∗) | p ∈ C[z1, ..., z2n]} ⊆ L(H)

generated by N is commutative. We call the set

σ(N) = σC∗(N)(N)

the joint spectrum of N . Note that, for each single operator A ∈ C∗(N), the set
σC∗(N)(A) = σC∗(A)(A) coincides with the usual spectrum of the bounded linear op-
erator A ∈ L(H). Moreover, we obtain the inclusion

σ(N) ⊆ σ(N1)× ...× σ(Nn).

Lemma 5.1. Let N = (N1, ..., Nn) ∈ L(H)n be a commuting tuple of normal operators.
Then

σ(N1 · ... ·Nn) = {z1 · ... · zn | (z1, ..., zn) ∈ σ(N)}
⊆ {z1 · ... · zn | zi ∈ σ(Ni) for i = 1, ..., n}.

Proof. It suffices to apply the polynomial spectral mapping theorem to the polynomial
p(z1, ..., zn) = z1 · ... · zn.
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5. Von Neumann Inequality

We continue with the definition of distinguished varieties and observe some of their
properties.

Definition 5.2. A non-empty set V ⊆ D2 is called a distinguished variety if

V =
{

(z1, z2) ∈ D2 | det (τU (z1)− z2 idCn) = 0
}
,

where τU : D→ L (Cn) is the transfer function of a unitary operator

U =

(
A B
C D

)
: Cn ⊕ Cm −→ Cn ⊕ Cm.

Lemma 5.3. Let U and V be as in Definition 5.2. Then, for the unitary operator

Ũ =

(
D∗ B∗

C∗ A∗

)
∈ L(Cm ⊕ Cn) and

Ṽ =
{

(z1, z2) ∈ D2 | det
(
τŨ (z2)− z1 idCm

)
= 0
}
,

it holds V = Ṽ . In particular, Ṽ is a distinguished variety.

Proof. Let (z1, z2) ∈ D2. Then we have (z1, z2) ∈ V if and only if[
A+ z1B (idCm −z1D)−1C

]
v1 = z2v1 for a vector v1 ∈ Cn\{0}. (5.1)

We will show that Property 5.1 holds if and only if(
A B
C D

)(
v1

z1v2

)
=

(
z2v1

v2

)
for some v1 ∈ Cn\{0} and v2 ∈ Cm\{0}. (5.2)

If Property 5.2 holds, then solving gives Property 5.1. On the other hand, if Property
5.1 holds, then Property 5.2 follows for

v2 = (idCm −z1D)−1Cv1.

Assume that v2 = 0. Then v1 ∈ kerC and Av1 = z2v1. Since

‖Ax‖2 + ‖Cx‖2 = 〈(A∗A+ C∗C)x, x〉 = ‖x‖2

for all x ∈ Cn, it follows

‖v1‖2 = ‖Av1‖2 = ‖z2v1‖2

and thus z2 ∈ T, contradicting the fact that (z1, z2) ∈ D2.
Applying this to Ũ and Ṽ , we obtain that (z1, z2) ∈ Ṽ if and only if(

D∗ B∗

C∗ A∗

)(
v2

z2v1

)
=

(
z1v2

v1

)
for some v1 ∈ Cn\{0} and v2 ∈ Cm\{0}. (5.3)

Interchanging coordinates, Property 5.3 becomes(
A∗ C∗

B∗ D∗

)(
z2v1

v2

)
=

(
v1

z1v2

)
for some v1 ∈ Cn\{0} and v2 ∈ Cm\{0}. (5.4)

Since U is unitary, Property 5.2 and Property 5.4 are equivalent.
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Lemma 5.4. A distinguished variety V ⊆ D2 satisfies the identity

V ∩ ∂(D2) = V ∩ T2.

Moreover, we have V ∩ T2 6= T2.

Proof. Let U =

(
A B
C D

)
∈ L (Cn ⊕ Cm) be unitary and let A = A0 ⊕ A1 on

Cn = H0 ⊕ H1 be the decomposition as in Theorem 2.6. By Proposition 2.20, we
have

τU (z) =

(
τ0
U (z) 0
0 τ1

U (z)

)
∈ L

(
H0 ⊕H1

)
(z ∈ D),

where

τ0
U (z) = A0 ∈ L

(
H0
)

(z ∈ D)

and

τ1
U (z) = τU1(z) = A1 + zB (idCm −zD)−1C|H1 ∈ L

(
H1
)

(z ∈ D)

is the transfer function of the unitary

U1 =

(
A1 B
C|H1 D

)
∈ L

(
H1 ⊕ Cm

)
.

With respect to this decomposition, the distinguished variety

V =
{

(z1, z2) ∈ D2 | det (τU (z1)− z2 idCn) = 0
}

is given by V = V0 ∪ V1, where

V0 =
{

(z1, z2) ∈ D2 | det
(
τ0
U (z1)− z2 idH0

)
= 0
}

and

V1 =
{

(z1, z2) ∈ D2 | det
(
τ1
U (z1)− z2 idH1

)
= 0
}
.

As τ0
U (z) = A0 ∈ L (H0) is unitary for all z ∈ D, we have σ

(
τ0
U (z)

)
⊆ T for all z ∈ D

and hence

V =
{

(z1, z2) ∈ D2 | det
(
τ1
U (z1)− z2 idH1

)
= 0
}
.

Since A1 ∈ L(H1) is completely non-unitary, τ1
U (z) does not have any unimodular eigen-

values for z ∈ D by Proposition 2.19. Due to Remark 2.15, we obtain that

σ
(
τ1
U (z)

)
⊆ D (z ∈ D).
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5. Von Neumann Inequality

By Proposition 2.23, both transfer functions τU , τ
1
U admit continuous extensions to the

closed unit disc D which we again denote by τU and τ1
U . In particular, the boundary

values τU (z) ∈ L(DT1) and τ1
U (z) ∈ L(H1) are unitary for z ∈ T and hence

σ(τU (z)) ⊆ T and σ(τ1
U (z)) ⊆ T (z ∈ T).

Let (z1, z2) ∈ V ⊆ D2. Since σ(τ1
U (z)) ⊆ D for z ∈ D and σ

(
τ1
U (z)

)
⊆ T for z ∈ T, we

conclude that z1 ∈ T if and only if z2 ∈ T. Since τ1
U (z) are matrices for all z ∈ T2, the

remaining assertion follows.

Proposition 5.5. Let U =

(
A B
C D

)
∈ L(Cn ⊕ Cm) be a unitary operator and let

V =
{

(z1, z2) ∈ D2 | det (τU (z1)− z2 idCn) = 0
}
.

If σ(τU (z)) ⊆ D for all z ∈ D, then the identity

V =
{

(z1, z2) ∈ D2 | det (τU (z1)− z2 idCn) = 0
}

holds.

Proof. The inclusion ⊆ is obvious. By Proposition 2.23, there exists an open disc
DR(0) with radius R > 1 such that τU extends holomorphically to a function
τU : DR(0)→ L(Cn). In particular, τU (z) is unitary for z ∈ T and hence

σ (τU (z)) ⊆ T (z ∈ T).

By Lemma 5.4 it is enough to show that{
(z1, z2) ∈ T2 | det (τU (z1)− z2 idCn) = 0

}
⊆ V .

Let (z̃, w̃) ∈ T2 such that

det(τU (z̃)− w̃ idCn) = 0.

Consider the analytic function

f : DR(0)× C −→ C, (z, w) 7−→ det(τU (z)− w idCn).

An application of Rouché’s theorem allows one to show (see [9, Lemma 4.3]) that there
is a real number r0 > 0 such that, for every n ∈ N with 1

n ∈ (0, r0), there is a δn > 0
with δn <

1
n and

Dδn(z̃)×D 1
n

(w̃) ⊆ DR(0)× C.

Furthermore, for each z ∈ Dδn(z̃) ∩ D, the function f(z, ·) has at least one zero in
D 1

n
(w̃)∩D. It follows that there are sequences (zn)n∈N in D and (wn)n∈N in D such that

det(τU (zn)− wn idCn) = 0 for all n ∈ N and

lim
n→∞

zn = z̃ and lim
n→∞

wn = w̃.
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In the following, we consider pairs of commuting C·0-contractions (T1, T2) ∈ L(H)2

with finite dimensional defect spaces. Using Theorem 4.3, we are able to prove the
following version of von Neumann’s inequality.

Theorem 5.6. Let (T1, T2) ∈ L(H)2 be a pair of commuting C·0-contractions with
dimDTi < ∞ for i = 1, 2. Then there exists a distinguished variety V ⊆ D2 such
that

‖p(T1, T2)‖ ≤ ‖p‖V

for all polynomials p ∈ C[z1, z2].

Proof. By Theorem 4.3 it follows that

(T1, T2) ∼= PQ

(
Mz ⊗ idDT1

,MτU

) ∣∣
Q

for the inner multiplier τU : D → L (DT1) and the joint
(
M∗z ⊗ idDT1

,M∗τU

)
-invariant

subspace Q = ΠT1H ⊆ H2 (D,DT1). Note that

τU (z) = A+ zB
(

idDT2
−zD

)−1
C ∈ L(DT1) (z ∈ D)

is the transfer function of the unitary U =

(
A B
C D

)
∈ L (DT1 ⊕DT2) as defined in

the beginning of Section 4.1. Let A = A0 ⊕ A1 ∈ L(H0 ⊕ H1) on DT1 = H0 ⊕ H1 be
the orthogonal decomposition of A into the unitary part A0 on H0 and the completely
non-unitary part A1 on H1 as in Theorem 2.6. By Proposition 2.20 it follows that the
transfer function τU of U decomposes into

τU (z) =

(
τ0
U (z) 0
0 τ1

U (z)

)
∈ L

(
H0 ⊕H1

)
(z ∈ D),

where

τ0
U (z) = A0 ∈ L

(
H0
)

(z ∈ D)

and

τ1
U (z) = τU1(z) = A1 + zB

(
idDT2

−zD
)−1

C|H1 ∈ L
(
H1
)

(z ∈ D)

is the transfer function of the unitary operator

U1 =

(
A1 B
C|H1 D

)
∈ L(H1 ⊕DT2).

We first want to prove that

σ(τU (z)) ⊆ D
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5. Von Neumann Inequality

for all z ∈ D. By Proposition 2.19 this will follow if we can show that the contraction
A ∈ L(DT1) is completely non-unitary, that is, if A0 ∈ L(H0) vanishes. With respect to
the decomposition

H2 (D,DT1) = H2
(
D,H0

)
⊕H2

(
D,H1

)
,

the multiplication operator MτU ∈ L
(
H2 (D,DT1)

)
acts as the direct sum

MτU = A0 ⊕Mτ1U
.

Let f ∈ H2
(
D,H0

)
. Define fn = M∗nτU f = A∗n0 f for n ∈ N. Since∣∣ 〈f,ΠT1h〉
∣∣ =

∣∣ 〈Mn
τU
fn,ΠT1h

〉 ∣∣ =
∣∣ 〈fn,M∗nτU ΠT1h

〉 ∣∣ =
∣∣ 〈fn,ΠT1T2

∗nh〉
∣∣

≤ ‖fn‖ ‖ΠT1T
∗n
2 h‖ ≤ ‖f‖ ‖T ∗n2 h‖ (n→∞)−−−−−→ 0

for all h ∈ H, it follows that H2
(
D,H0

)
⊆ (Im ΠT1)⊥ or, equivalently,

Q = Im ΠT1 ⊆ H2
(
D,H1

)
.

Since ΠT1 : H → H2 (D,DT1) is a minimal dilation of T1 and H2
(
D,H1

)
is a (Mz ⊗ idH1)-

reducing subspace of H2(D,DT1), it follows that

H2 (D,DT1) =
∨
k∈N

zk H2
(
D,H1

)
= H2

(
D,H1

)
(cf. [6, Section 2]). This shows H0 = {0}. Therefore A = A1 is completely non-unitary.

Consider the distinguished variety

V =
{

(z1, z2) ∈ D2 | det(τU (z1)− z2 idDT1
) = 0

}
.

By Proposition 2.23, the transfer function τU admits a continuous extentions to the
closed unit disc D which we again denote by τU . In particular, the boundary values
τU (z) ∈ L(DT1) are unitary for z ∈ T.

Let p ∈ C[z1, z2] be an arbitrary polynomial. Using Proposition 1.15 and the maxi-
mum principle for holomorphic functions with values in Banach spaces, we obtain the
estimation

‖p(T1, T2)‖ =
∥∥∥PQp(Mz ⊗ idDT1

,MτU

) ∣∣
Q

∥∥∥
≤ ‖PQ‖

∥∥∥p(Mz ⊗ idDT1
,MτU

)∥∥∥
=

∥∥∥∥Mp
(
z idDT1

,τU

)∥∥∥∥
= sup

z∈D

∥∥∥p(z idDT1
, τU (z)

)∥∥∥
= sup

z∈T

∥∥∥p(z idDT1
, τU (z)

)∥∥∥
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Note that the norm and spectral radius of the normal operators p
(
z idDT1

, τU (z)
)
∈

L(DT1) coincide for z ∈ T. We obtain that

sup
z∈T

∥∥∥p(z idDT1
, τU (z)

)∥∥∥ = sup
z∈T

sup
{
|λ| | λ ∈ σ

(
p
(
z idDT1

, τU (z)
))}

= sup
z∈T

sup
{
|p(λ1, λ2)| | (λ1, λ2) ∈ σ

(
z idDT1

, τU (z)
)}

≤ sup
z∈T

sup
{
|p(λ1, λ2)| | λ1 ∈ σ

(
z idDT1

)
, λ2 ∈ σ (τU (z))

}
= sup

z∈T
sup {|p(z, λ2)| | λ2 ∈ σ (τU (z))}

by applying the spectral mapping theorem for the joint spectrum as well as Lemma 5.1

to the commuting normal pairs
(
z idDT1

, τU (z)
)
∈ L(H) for z ∈ T. Since σ (τU (z)) ⊆ D

for z ∈ D, Proposition 5.5 shows that

{(z1, z2) | z1 ∈ T, z2 ∈ σ (τU (z1))} ⊆ V .

In particular, since V ⊆ D2 is a compact set und p is continuous, we have proven that

‖p(T1, T2)‖ ≤ ‖p‖V = ‖p‖V .

Lemma 5.4 shows that Theorem 5.6 is an improvement of von Neumann’s inequality
for pairs of commuting contractions.

Theorem 5.6 in the case that T1, T2 are commuting matrices was first proved with a
different method by Agler and McCarthy (see [2, Theorem 3.1]).

Corollary 5.7. Let T1, T2 ∈ L(Cn) be commuting contractions neither of which has
eigenvalues of modulus one. Then there is a distinguished variety V ⊆ D2 such that

‖p(T1, T2)‖ ≤ ‖p‖V

for all polynomials p ∈ C[z1, z2].

Proof. By the spectral radius formula a contraction T ∈ L(Cn) has no unimodular
eigenvalues if and only if T is of class C·0. Hence the result follows immediately from
Theorem 5.6.

Using Remark 4.4 instead of Theorem 4.3 one obtains a similar proof of Theorem 5.6.
More precisely, one finds that

‖p(T1, T2)‖ ≤ ‖p‖Ṽ (p ∈ C[z1, z2])

for

Ṽ =
{

(z1, z2) ∈ D2
∣∣ det

(
τŨ (z2)− z1 idDT2

)
= 0
}
,
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5. Von Neumann Inequality

where

τŨ (z) = D∗ + zB∗
(

idDT1
−zA∗

)−1
C∗ ∈ L(DT2) (z ∈ D)

is the transfer function of the unitary operator Ũ =

(
D∗ B∗

C∗ A∗

)
∈ L(DT2 ⊕ DT1) as

defined in the beginning of Section 4.1. In particular, Lemma 5.3 shows that Ṽ is a
distinguished variety and coincides with the distinguished variety

V =
{

(z1, z2) ∈ D2 | det
(
τU (z1)− z2 idDT1

)
= 0
}

constructed in the proof of Theorem 5.6.

Example 5.8. Let H = H2(D) and let (T1, T2) ∈ L
(
H2(D)

)2
be given by

(T1, T2) = (Mz,Mz)

(cf. Example 2.10). Since DMz = PC and thus DMz = C, we obtain that the unitary
operator U defined in the beginning of Section 4.1 has the form

U =

(
0 1
1 0

)
: C2 −→ C2.

Thus the transfer function τU : D→ L(C) is given by

τU (z) = z

for all z ∈ D and we observe that

det(τU (z1)− z2 idC) = z1 − z2

for all (z1, z2) ∈ D2. Hence, the distinguished variety V ⊆ D2 from the proof of Theorem
5.6 is given by

V = {(z, z) | z ∈ D}.

Before we are able to prove another version of von Neumann’s inequality, we recall
the definition of algebraic varieties.

Definition 5.9. A non-empty set V ⊆ C2 is called an algebraic variety if there is a
subset F ⊆ C[z1, z2] such that

V = V (F ) = {(z1, z2) ∈ C2 | p(z1, z2) = 0 for all p ∈ F}.

It is easy to see that V (F ∪ G) = V (F ) ∩ V (G) holds for any given subsets
F,G ⊆ C[z1, z2]. Furthermore, by Hilbert’s basis theorem, for every F ⊆ C[z1, z2]
there exist polynomials p1, ..., pm ∈ C[z1, z2] such that V (F ) = V ({p1, ..., pm}).
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Theorem 5.10. Let T1, T2 ∈ L(H) be commuting contractions such that T1T2 is a C.0-
contraction and dimDTi <∞ for i = 1, 2. Then there exists an algebraic variety V ⊆ C2

with V ∩ T2 6= T2 such that

‖p(T1, T2)‖ ≤ ‖p‖V ∩T2

for all polynomials p ∈ C[z1, z2].

Proof. The proof of Theorem 4.7 provides a pure pair of commuting isometries
(MΦ,MΨ) ∈ L

(
H2(D, E)

)2
as well as a joint (M∗Φ,M

∗
Ψ)-invariant subspace Q ⊆ H2(D, E)

such that

(T1, T2) ∼= PQ (MΦ,MΨ) |Q,

where the multipliers Φ,Ψ: D→ L(E) are commuting transfer functions defined as

Φ(z) =
(
P + zP⊥

)
U∗ and Ψ(z) = U

(
P⊥ + zP

)
(z ∈ D)

with a suitable unitary operator U ∈ L(E) and a suitable orthogonal projection
P ∈ L(E). Since dimDTi <∞ for i = 1, 2, one can choose

E = DT1 ⊕DT2 ∼= Cm

with m = dim(DT1 ⊕DT2) (see the proofs of Theorem 4.7 and Proposition 3.4).
Both Φ and Ψ can be extended to all of C by the same formulas. We denote these

extensions again by Φ and Ψ. Due to Proposition 2.23, Φ(z) and Ψ(z) are unitary
matrices for all z ∈ T since dimDTi <∞ for i = 1, 2.

Let p ∈ C[z1, z2] be a polynomial. Using Proposition 1.15 and the maximum principle
one obtains as before that

‖p(T1, T2)‖ = ‖PQp (MΦ,MΨ) |Q‖
≤ ‖PQ‖‖p(MΦ,MΨ)‖
=
∥∥Mp(Φ,Ψ)

∥∥
= sup

z∈D
‖p (Φ(z),Ψ(z))‖

= sup
z∈T
‖p (Φ(z),Ψ(z))‖

Again, we use that the norm and spectral radius of the normal operators
p (Φ(z),Ψ(z)) ∈ L(E) (z ∈ T) coincide:

sup
z∈T
‖p(Φ(z),Ψ(z))‖ = sup

z∈T
sup {|λ| | λ ∈ σ(p(Φ(z),Ψ(z)))}

= sup
z∈T

sup{|p(λ1, λ2)| | (λ1, λ2) ∈ σ(Φ(z),Ψ(z))}

In the last step we have used the polynomial spectral mapping theorem for the joint
spectrum of the commuting normal pairs (Φ(z),Ψ(z)) ∈ L(E)2 (z ∈ T).
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5. Von Neumann Inequality

For z ∈ T and (λ1, λ2) ∈ σ(Φ(z),Ψ(z)), it follows by Lemma 5.1 that

λ1λ2 ∈ σ(Φ(z)Ψ(z)) = σ(z idE) = {z}

and hence that λ1λ2 = z.
Since Φ(z) and Ψ(z) are matrices for all z ∈ C, the non-empty sets

V1 =
{

(λ1, λ2) ∈ C2 | det(Φ(λ1λ2)− λ1 idE) = 0
}

and

V2 =
{

(λ1, λ2) ∈ C2 | det(Ψ(λ1λ2)− λ2 idE) = 0
}

define algebraic varieties. Thus, the set

V = V1 ∩ V2

is again an algebraic variety and we find that⋃
z∈T

σ(Φ(z),Ψ(z)) ⊆ V.

In particular, since Φ(z),Ψ(z) are unitary for z ∈ T, we find that⋃
z∈T

σ(Φ(z),Ψ(z)) ⊆ V ∩ T2.

Hence we have proven that

‖p(T1, T2)‖ ≤ ‖p‖V ∩T2

for every p ∈ C[z1, z2]. An elementary argument shows that V ∩ T2 6= T2. Indeed,
otherwise V1 ∩ T2 = T2 and one would obtain the contradiction that

λ ∈ σ
(

Φ

(
λ

1

λ

))
= σ(Φ(1))

for all λ ∈ T.

Example 5.11. Let H = H2(D) and let (T1, T2) ∈ L
(
H2(D)

)2
be given by

(T1, T2) = (Mz,Mz).

With the observations from Example 5.8 we find that E = C2 and the orthogonal projec-
tions P, P⊥ ∈ L(C2) from the proof of Theorem 4.7 have the form

P =

(
0 0
0 1

)
∈ L(C2) and P⊥ =

(
1 0
0 0

)
∈ L(C2)
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With U =

(
0 1
1 0

)
∈ L(C2) as in Example 5.8 we obtain that

Φ(z) =
(
P + zP⊥

)
U∗ =

((
0 0
0 1

)
+ z

(
1 0
0 0

))(
0 1
1 0

)
=

(
0 z
1 0

)
and

Ψ(z) = U
(
P⊥ + zP

)
=

(
0 1
1 0

)((
1 0
0 0

)
+ z

(
0 0
0 1

))
=

(
0 z
1 0

)
for all z ∈ C. Since

det (Φ(z1z2)− z1 idC2) = det

(
−z1 z1z2

1 −z1

)
= z1(z1 − z2) (z1, z2 ∈ C),

and

det (Ψ(z1z2)− z2 idC2) = det

(
−z2 z1z2

1 −z2

)
= z2(z1 − z2) (z1, z2 ∈ C),

we conclude

V1 = {0} × C ∪ {(z, z) | z ∈ C} and V2 = C× {0} ∪ {(z, z) | z ∈ C}.

Hence the algebraic variety from the proof of Theorem 5.10 has the form

V = V1 ∩ V2 = {(z, z) | z ∈ C}.
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A. Cardinal Numbers

In this section we recall the concept of cardinal numbers and give some basic properties.
For the proofs of the following results and a more detailed approach to this topic, see
[10, Chapter I.4].

With every set A we associate a symbol, called the cardinal number of A, such that
two sets A and B have the same symbol attached to them if and only if there exists a
bijection f : A→ B. We will write A ∼ B if such a bijection exists. In this case, we say
that A andB have the same cardinality. We write |A| to denote the cardinal number of A.

The main purpose of cardinal numbers is to compare the cardinality of different sets.
This leads to the following definitions.

Definition A.1. Let |A| = a and |B| = b for cardinal numbers a, b. We write a ≤ b to
mean that there is a subset U ⊆ B of B such that |U | = a.

Definition A.2. A set A is said to be finite if there is a natural number n ∈ N such
that A ∼ {k ∈ N | k ≤ n}. A set that is not finite is called infinite.

Lemma A.3. Let A be an infinite set and let B be a finite set. If A ∩ B = ∅, then
|A| = |A ∪B|.

The sum of two cardinal numbers a and b is defined as the cardinal number of the
union of two disjoint representatives of a and b.

Definition A.4. Let a and b be cardinal numbers. Define a + b = |A ∪ B| if A and B
are sets with a = |A|, b = |B| and A ∩B = ∅.

It is important to notice that a + b is defined for all cardinal numbers a, b, since it is
always possible to find appropriate sets A and B. In fact, if A ∩B 6= ∅, then define

A0 = {(a, 0) | a ∈ A} and B0 = {(b, 1) | b ∈ B}

to obtain A ∼ A0, B ∼ B0 and A0 ∩B0 = ∅.
For the purpose of this thesis, we are particularly interested in the following result.

Theorem A.5. Let a be an infinite cardinal number. Then a + a = a. In particular, if
b is a cardinal number such that b ≤ a, then a + b = a.
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