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Introduction

The study of Toeplitz and Hankel operators was started by taking a closer
look at so called Toeplitz and Hankel matrices. These infinite matrices are
constant on each line parallel to the main diagonal or depend only on the
sum of the coordinates, respectively. It turned out (cf. [6]) that these can
also be seen as representations of the operators

Ty: HX(T) — H*(T), g+ P(f9)

and
Hy: H*(T) = L*(T), g~ (I — P)(fg),

where L?(T) denotes the Lebesgue space of square integrable functions on
the unit circle and P denotes the orthogonal projection from H?(T) to the
Hardy space on the unit circle, for some essentially bounded function f.
Since the Hardy space can be replaced by the Bergman space and the Fock
space, one can ask the question which operator theoretical properties the
corresponding operators have. For instance, one can ask under which con-
ditions these operators are compact. If we also drop the restriction that the
domains of the functions lie in the complex plane C, i.e., if we allow domains
to be in C™ for a positive integer n, the study of Toeplitz and Hankel oper-
ators intersects with the theory of complex analysis in several variables.
Towards the end of the last century K. Stroethoff and D. Zheng gave a char-
acterization of compact Toeplitz and Hankel operators for the two spaces of
analytic functions mentioned above in [12] and [10]. With the help of this
characterization they were able to prove the following explicit formula for
the essential spectrum of a Toeplitz operator with special symbols.

Theorem. Let f be an essentially bounded function on the unit ball B, such
that Hy is compact. If we denote by f the Berezin transform of f, then we
have

Je(Tf) = m Cl(f(Bn \ TBn))a

0<r<1

where o.(Ty) denotes the essential spectrum of Ty.

The result for the other cases looks similar. Since the Berezin tranform of
such a function f is continuous, the connectedness of the essential spectrum
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2 Introduction

for such Toeplitz operators follows at once.

In this thesis we present the above results in detail and prove a similar
result for weighted Bergman spaces as conjectured in [9] and [11] .
The first chapter contains some basic facts of weighted Bergman spaces and
the Fock space. Furthermore, we will introduce the Berezin transform of a
function and recall some basics about Toeplitz, Hankel and Hilbert-Schmidt
operators. The characterization of compact Toeplitz and Hankel operators
and some of its corollaries are presented in Chapter 2] where the interplay be-
tween the automorphisms and the reproducing kernels of the spaces becomes
important. The last two chapters deal with the question when Hankel oper-
ators with Berezin transformed symbols are compact as well as the formula
for the essential spectrum mentioned above.



Chapter 1

Preliminaries

In this chapter we gather some basic results about Mobius transformations,
Bergman spaces over the unit ball and the polydisc in C™ (n € N*) and the
Fock space. We also recall the definitions of Toeplitz and Hankel operators
as well as the definition of the Berezin transform. In the last section we
introduce Hilbert-Schmidt operators.

For the rest of this thesis, let n € N* be a fixed positive integer. We denote
by B, = {z € C"; ||z]| < 1} the open unit ball and by D" = {z € C"; |z]| <
1 for 1 <1 < n} the (open unit) polydisc in C".

Furthermore, we write, for a measure space (X, X, v), LP(X,v) = LP(v) (1 <
p < o0) for the LP-space over X relative to the measure v and we identify an
element f € LP(v) with a representative such that sup,ex | f(@)| = || fll po(1)-
For a subset D of a topological space X, we denote by cl(D) and 9D the
topological closure and the topological boundary of D, respectively.

1.1 Mobius transformations

We first recall the definitions of the Mobius transformations for the unit ball
and the polydisc.

Definition 1.1. (i) Let A € By, sy = (1 —|A[*)2 and

Z,A
&3% A#£0,

P:C"— A, 2+
L\ {0’ N

We call the function

A — P)\Z — 8)\([ — P,\)Z

B n
" B C
SD)\ 'fl_> ’Z|—> 1—<Z,)\>

a Mébius transformation on the unit ball.

3



4 Chapter 1. Preliminaries

(ii) Let A € D™. We call the function

n A — A — 2n,
@?:Dn%(cn,zn—)< L Z)

L—zih =2\,

a Mdbius transformation on the polydisc.

Remark 1.2. If n =1 and A € D, then cpIE" and goI/\D)" coincide since Py = [
if A # 0 and Py, = 0 if A = 0. Furthermore, we obtain the classical M6bius
transformations from complex analysis in one variable.

To shorten the notation, we will write 2 for B,, or D™ throughout this
thesis. The next proposition summarizes important properties of the Mobius
transformation and will be used frequently.

Proposition 1.3. If A € Q, then
(1) ©x(0) = A and pA(A) =0,
(i) (a)
- (Ot ) = TR
for all z,w € B, and \ € B,

(b)

~—

1— ) (2)i oY (w); = ((1 — ‘:\Z)\"))((ll )‘sz; (i=1,...,n)

for all z,w € D™ and A € D™,

(iii) (a)

v (L= AR =[P
e e AT

for all z € B,, and X\ € B,

(b) ) ,

2 _ . —z:

P [ T A
‘1_%)\2“

1- &)

for all z € D™ and A € D,
(iv) @y is an involution, i.e., @y o vy = id,
(v) ox € Aut(Q) (the automorphism group of 1),

(vi) @y can be extended to a homeomorphism of cl(Q) onto cl(Q) (which we
will denote with the same symbol).



1.1. Mobius transformations 5

Proof. A proof for the case 2 = B,, can be found in |8 Theorem 2.2.2]. For
the polydisc, use the first case with n = 1 for each component. ]

Proposition 1.4. Let z € Q and let (Ao)a be a net in Q with limit in 0.
Then @y, (z) converges to a point in OS).

Proof. Suppose that z € Q and let (A\y)q be a net in Q with limit A € 9.
Then, for Q = B,,, we have

A — Py, z— 50, Q02 — A+ (2, Aa) A

CHORRIE T— (2, )
(2, 0) (A= 29) = 51, Qa2 + (o = A)
- 1= (2, M)

o

— 0.

For Q = D", we observe that there exists an ¢ € {1,...,n} such that \; € 9D.
By the previous case, we have

SDH)?a,i (Zz) — )\z — 0,
hence the result follows. O

Notation 1.5. We write O(£2, C™) for the space of holomorphic functions from
Q to C" equipped with the topology of uniform convergence on all compact
subsets. We use O(Q2) as a shortcut for O(12,C).

We identity C" with R?" via the map
R?" — C™, (T1,Y1,s s Ty Yn) = (L1 F0Y1, - oo T+ 1Y)

For a function f € O(Q2), we define for j =1,...,n

_1[/of . Of
=5 (on, ~53,)

IfF=(f1,...,fn) € O(,C"), we denote by
JoF = (aifj)Zj:1

the complex Jacobian matrix. With the above identification we can also
form the real Jacobian matrix JgF'. The next result shows the connection
between the determinants of both Jacobian matrices.

Proposition 1.6. Let F' = (f1,..., fn) € O(2,C") and z € Q. Then

det((JrF)(2)) = |det((JcF)(2))]*.
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A proof of this result can be found in |8, Section 1.3.6]. As an application
of this proposition we obtain the following result.

Proposition 1.7. (i) For \ € B,,, we have

. ‘)\‘2 n+1
det((Jrea)(2)) = (u-<m>y>

for all z € B,.
(i) For A € D", we have
ST
det((Jrpr) (2 H( | " >

=1 zl)‘ |

for all z € D™,
Proof. Let A € Q.
(i) One can find a proof of the statement in |8, Theorem 2.2.6].
(ii) We observe that

P -1

T 2 )? (2 )

Oipa(2); =

for all 4,7 = 1,...,n. Hence with Proposition we conclude

2

det((Jrpa)(2)) = |det <5 ’M)

155

ij=1

1.2 Bergman spaces

Let m be the Lebesgue measure on C" and let v > —1 or v € R” with
>—1(i=1,...n) for Q =B, or Q =D", respectively.

In the following we denote by LP(V,) = LP(Q,V,) (1 < p < 00) the LP-space

over € relative to the measure V, given by

Fn+147)

S S N N S I P A
2l W”F(l+7) ( |Z| ) m|Bn
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on the unit ball and
_ 2'+'% 2\v;
Vy = — H T (1 = |2]|%)""m|pn

on the polydisc. One can check that V, is a probability measure on 2. We
use V' as a shortcut for V.

Definition 1.8 (Bergman space). For 1 < p < oo, we define the Bergman
space AP(V,,) by

AP(V;) = AP(Q,V;) = LP(V,) N O(€Y),

i.e., AP(V,) is the set of all equivalence classes in LP(V,) with a holomorphic
representative.

Since the holomorphic representative of an equivalence class in AP(V)
is uniquely determined, we identify the elements in AP(V) with their holo-
morphic representative.

Every element in AP(V,) satisfies a mean value formula in 0.

Proposition 1.9. Every g € AY(V,) satisfies

wmzzgmmwwy

Proof. Suppose g € AY(V,).
We first consider the case 2 = B,,.
For f =3 cnn @az® € O(B,) and 0 < 7 < 1, we have

Fr&)do(©) = Y aar™ [ £*do(€) = ap = £(0).

OB, aENn 0B,

Here o denotes the normalized surface measure on 0B,,, and we have used
|8, Proposition 1.4.8] to see that the series collapses to the summand with
index o = 0. For f € A(V,), integration in polar coordinates (|8, Section
1.4.3]) yields that

/ fav, = c,y/ f—|z*)av
B, B,

— ¢2n /01 P2n1(] 2y < B f(rg)da(§)> dr

=2 ( /0 1 r2n=1(1 — r2)7dr) £(0)
= f(0).

Here ¢, is a suitable normalization constant. To verify the last equality,
apply the same calculations with f = 1.

For 2 = D", we use the result above in each coordinate and apply Fubini’s
theorem. O
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For further studies, we introduce two important functions.

Definition 1.10. (i) We call the function
1
(1= (z,w))" 1+

Ba k() B, x By, (2,w) —

the reproducing kernel for A?(By, V5).

(ii) We call the function

" a 1 2+
D" (™). D x D", (z,w)HH( >
1=1

1 — z;w;

the reproducing kernel for A?(D", V).

For shorter notation we will use K for Bo K and 2" K. Further-
more we write K. for KO(. 2) (. € Q).

Remark 1.11. (i) From the definition we see Kiv)(z) = Ky)(/\), for all

z, A € €.
(ii) For z, A € ©, we have by Proposition
-2
Ko=) = [KD ()] KD VKD ()
and

K7 (0a(2) = KD (or(2) = K (2) K0,
Proposition 1.12. There exist constants Cq > 0 such that, for all X,z €
Q,
‘K@(z)‘ < Co K (N).
Proof. Suppose A, z € €.
For 2 = B,,, the Cauchy-Schwarz inequality implies that

{2, 0 < [z[ A

so that
L—[z, )] > 1= [2[[A] = 1= [A].

The triangle inequality shows

Bn 7-(7) ’ 1
K <
V@S T e
1
= L=
B ( 1+ [\ >”+1+7
1—[AP
2 n+1+-y
(i)
1—Al
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Similarly, we obtain, for 2 = D", the estimates

We can now reformulate Proposition [I.7]

Proposition 1.13. For A € Q, we have

1 0 2
(Japr)(2) = —gr— [K\(2)|
KX
for all z € Q).
Corollary 1.14. For h € LY(V,), we have

1

/Q AN () = oy

/Qh(z) ‘K@(z)fdv,y(z) (re Q).

Furthermore, the function ho ¢y (A € Q) lies in L*(V).

Proof. The first result follows directly by the change of variables formula
together with Proposition [I.3] Proposition [I.7] and Definition [T.10]

For the second statement, we observe, for A € €,
1 TR
hpr)] dVy(w) = —— [ KD ()] avz)
Q K" (\) /e
< Ch KO [ ]V, :) < o
Q

where we have used Proposition [I.12] O

With this corollary we can prove that every function in A'(V,) satisfies
a mean value formula in each point of (2.

Proposition 1.15. If g € AY(V,), then

g(N) = /Q 9(w) KD (w)dV, (w)

for all A € Q.
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Proof. Suppose that g € A'(V,) and X € €. Since there exists a d, > 0 such
that ‘K/(\V)(z) > 0y for all z € €2, the function

belongs to A1(V,) again. It follows from Corollarythat haopy € AY(VS).

Using Proposition and the change of variables formula from Corollary
[I.14] we obtain that

hy: Q—=C, z+—

9(2)

g(A) = ha(A) = (ka0 ©1)(0)

= [ Ialertunavi
= [ st (w)av; w).
O
Corollary 1.16. Let g € A*(V,). Then
g(\) = <9,K§W)>

for all X € Q).
Proof. Since A%(V,) c AY(V;), this follows immediately from Proposition
LI5 O

Remark 1.17. For z € ), we obtain

~—

z z z )

HKyH? _ <K(v)’K(V)> — KD(z
where we have used the above corollary.

Proposition 1.18. The Bergman spaces AP(V,) (1 < p < 00) is a closed
subspace of the Banach space LP(V,).

In particular, for p = 2, the space A2(V,Y) is a Hilbert space with the inner
product induced by L*(V,).

A proof of this statement can be found in |13, Corollary 2.5].

Corollary 1.19. The Bergman space A2(Vw) is a functional Hilbert space
with reproducing kernel K.

Proof. By Corollary we have
G = [(FED)] < 1flloq [ K], = 151, K3

for all f € A%2(V,) and z € 2, where we have used Remark Hence the
point evaluations are continuous and the reproducing kernel of the functional

Hilbert space A%(V,) is given by K1), O
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Remark 1.20. An orthonormal basis for A%(V;) is given by (2%/ [|2%|5)aenn-

In particular, the polynomials are dense in A?(V,).

Proof. We first show that (2%/||2%||3)aenn is an orthonormal system.

This follows, for Q = B,,, immediately by |13, Proposition 1.11] and the re-
mark before it.

For Q = D", the result follows by the first part with n = 1 and Fubini’s
theorem.

To see that (2%/|2%|ly)acn» is complete, let w € Q. The function K, €
A?(V,) can be seen as a holonorphic function on an open subset of cl(€2).
Hence K, is uniformly continuous on cl(£2) and can be uniformly approxi-
mated by polynomials. Since the set {K,; w € Q} is total, the polynomials
are dense in A%(V,). O

To end this section, we take a look at the orthogonal projection from
L%(V,) onto A%(V;) which is an integral operator.

Proposition 1.21. The operator
Py L*(V,) — L*(Vy),g — Pyg
with

Pg: Q= C, 2 /Q g(w) KD )V (w) (g € (V)

is the orthogonal projection from L?(V5) to A%(V,).

Proof. Let P. be the orthogonal projection from L*(V,) to A%(V,) and let
f € L*(V,) as well as z € Q. We obtain

PLf(z) = (PLf, K0 ) = (£, PIED)).
Since K € A?(V,), we have
P = (£.KD) = [ ) KD (w)av; (w) = P, 7(2)
Thus the result follows. O

1.3 Fock space

This section gives a brief overview about the defintion and the relevant prop-
erties of the Fock space.
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Definition 1.22 (Fock space). Let u be the measure on C™ given by

_ exp(— )
(2m)"

For 1 < p < oo, we define the Fock space (or Segal-Bargmann space) Lh(p)
by
La(p) = LP(p) N O(CY),

i.e., Lh(p) is the set of all equivalence classes in LP(u) with a holomorphic
representative.

The next proposition can be proven similar to Proposition [1.9

Proposition 1.23. Every g € L (u) satisfies

90) = [ glw)dtu).

A proof of the following two results can be found in [4, Section 7| (with
1

Proposition 1.24. The Fock space L2 () is a functional Hilbert space with
reproducing kernel

KLY ¢ x €, (z,w) — exp <<z,2w>> .

To shorten the notation we will write K for KLa(®) when it is clear that
we consider the Fock space. As before we use K, for K(-,z) (z € C").

Remark 1.25. An orthonormal basis for L2(u) is given by (2%/ [|2%|5)aenn-
In particular, the polynomials are dense in L2 ().

The translations
.:C"—=>C", w—w+z (z€C")

will play the same role for the Fock space as the Mobius transformations for
the Bergman space.

Proposition 1.26. Let h: C" — C be a measurable function and let A € C"
be such that h o1y € L*(u). Then the identity

L motpdno) = s [ he) ) anta)

holds.
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Proof. Suppose that h € L'(x) and A € C*. Then

/n h o 7\ (w)dp(w)
_ w/*) 1
—/n h o Ta(w) exp <—2) (27T)ndm(w)
_ 2=A%) 1
_/n h(z) exp (— 5 ) (27r)ndm(z)

2 2
:/n h(z) exp <—|Z2> exp <|)\2|> exp (Re((A, 2))) (271T)ndm(z)

- / h() O KaO) (),

where we have used the transformation z = 7 (w). O

Furthermore, we denote by P the orthogonal projection from L?(j) onto
L ().

1.4 Toeplitz and Hankel operators

Now we introduce the class of operators which we are interested in. We
use the notation LL(p) C LP(p) simultaneously for the weighted Bergman
spaces on B,, D" or the Fock spaces on C" and write P for the orthogonal
projection from L?(p) onto L2(p). The underlying domain B,,, D" or C" will
be written as G and for the automorphisms ¢y, 7\ we write k) (A € G). In
all three cases, the space

H>(G) = L>*(p) N O(G)

consists of the bounded analytic functions on G. Of course, H*(G) = C in
the Fock space case.

Definition 1.27 (Toeplitz and Hankel operators). For f € L*(p), we
define the Toeplitz operator Ty: L2(p) — LZ(p) and the Hankel Operator
Hp: Li(p) = La(p)*- via

Tf:PMf|L§(p) and Hf:(I—P)Mf‘Lg(p),

where
My: L*(p) — L*(p), g — fg

is the multiplication operator with symbol f. We call f the symbol of the
Toeplitz or Hankel operator, respectively.
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Remark 1.28. Let f € L*(p),g € L2(p) and z € G. Since

<P(fg)7Kz> = <fg7 Kz>7
we have

(Tyg)(2) = (Tyg, K / £ (w)g(w) K- (w)dp(w).

The next propositions describe some basic properties of Toeplitz and
Hankel operators.

Proposition 1.29. If f,g € L*(p), then
Ty — T,Ty = HiH;.
Proof. Let f,g € L®(p) and h,k € L2(p). Then

(HzHyh, k)

= (Hyh, Hgk)

= (M¢h, Mgk) — (PMyh, Mgk) — (M¢h, PMgk) 4 (PM¢h, PMgk)
= (MyMyh, k) — (MyPMjh, k) — (PMsh, PMgk) + (PMh, PMgk)
= (PMyMh, k) — (M,PM;¢h, k)

=((Tys = TyTp)h, k) -

O
Proposition 1.30. For f € L*®(p) and g,h € H*®(G), the identities
(i) Ttn, = T¢Th,
(ii) Typ = TIT;
hold.
Proof. Let f € L™®(p),g,h € H*(G) and k € L2(p). Then
(i) Tynk = P(fhk) = P(f Phk) = PM;PMyk = Ty Tjk.
(i) Ty = T3, = (T5T,)" = T;T}.
O

Proposition 1.31. Let f € L>®(p). For each X\ € G, the following identities
hold:

Ti(Kx) = (P(f o rx) 0 iy 1) Ky (1.1)

and

Hi(K)) = (f — P(f o ry) o k) ) K. (1.2)
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Proof. Let f € L>(p) and X € G.

(i) For the Bergman space let g € A%(V,) and h € L?(p). Then by Corol-
lary [I.14] we have

<(h oo K (go WA)K§7)>
- /Q h(oa(w)) K (w)g (o (w)) KD (w)dV (w)
= [ (@) o o) K )] av; )

k{0 [ (hg) v,
=K\ (%) (h.9)
=K (\) (Pyh, g) .
Replacing h once by f and once by P f, we obtain
((Foe K (g0 oK) = K () (P f.9)
= <((ow) oK, (g0 @A)K§7)> :
Corollary shows that (g/Ky)) o py € A%(V,). If we replace f by
fopy (e L*(Vy)) and g by (g/Kg'Y)) o ), we obtain that
<(P'y(f o py) o @A)K§7)79> = <fK§”) g>
holds for all g € A%(V,). Finally we have
Ty(5)) = PASEY)) = (P(f o a) 0 o) KL,
(ii) For the Fock space, let z € C". We see that
Ky(2) = K\(2)Ky-x(2)
=K. (N Kypy_x(z = N K,V EKy(N)
for all w € C", and therefore by Remark that

Tr(K))(2) = 1128 - Fw) K,z (w — M) [ Ky(N)]? dps(w)

— Ky(2) / o (@)K A(u)dp(u)

— K\(2) /C P(f o ma) () Ko x (o)
= K\(2)P(for\)(z—A)
= P(f o1y) om_x(2)KA(2),
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where we have used Proposition [1.26

1.5 Berezin transform

We first recall the definition of the Berezin transform.

Definition 1.32. Let ky = ”}j—:'b (A € G). Then ky € H®(Q) C A%(V,)

for @ = B,, or Q = D" and k) € L2(u) for G = C". Hence in the Bergman
space case, for each g € L2(V7), we obtain a well-defined function

1

2
G Q5 C, A (ghy, k) = M/Qg(z) \K@(z)\

dv,.
In the Fock space case, the same formula makes sense and defines a function

g: C" — C at least for each function g € L*(u). The function g is called
the Berezin transform of g.

Remark 1.33. Let g € L*°(p) and A € G.
(i) We obtain

5N = (gha, ky) = ij /G 9(2) [Ex(2) 2 dp(2)
= /Gg o kxdp = (g o kx, Ko) = P(goky)(0),

where we have used Corollaries and Proposition In the case
g € H>*(G), it follows that

9(A) = (g0 k) (0) = g(A).
For the Bergman space, these results hold also for g € A%(Q).
(ii) We have

G(A) = (Gkx, kx) = (kx, gk»)
= (gkx, kx) = g(N).

(iii) The Cauchy-Schwarz inequality yields that

9] < [lgkall 1Ralla < llgll »

and therefore
19l < 9l -
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The next propostions are basic but helpful results about the Berezin
transform of a function and the interplay with automorphisms and orthogo-
nal projections.

Proposition 1.34. For f € L>(p), we have
(f o ra)(w) = f(ra(w))
for all \,w € G.
Proof. Let \,w € G.
(i) Bergman space: We first claim that the function
U = ¢y, (w) © (910 pu)

is in Aut(?), unitary and linear. For Q = B,,, this follows by |8, Theo-
rem 2.2.5]) and Proposition (i). For Q@ = D", the statement is also
true, since the Mobius transformations act in each variable separately.
By Proposition we have

Pr 0 Puw = Poy(w) o U
and therefore (cf. Remark (i)
(Foeaw) = [ (fop)opudh;
- / fobp\w) o UdV,
/ foe,(w

= flpa(w)),

where we have used the change of variable formula in the third step.

(ii) Fock space: We have
(f o) (w) = / (fom) o mudn

f (T)\+w) o
(Cn

= (A +w)
= f(ra(w)).

Proposition 1.35. For g € L2(p), we have P(g) = g(0).
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Proof. Let g € L2(p) and B € N". Since g2 € Ll(p), we obtain as an
application of the mean value formula (cf. Propositions and [1.23) that

(0.2} (5.2)
=/Gg Zdp
—/ngﬁdp

= (927)(0)

= 05,09(0).
Thus, Remarks and yield that

P(g) = Z <P(g)’HzaH2> =T, = 9(0).

aeN”

Proposition 1.36. The identity

P(P(fory) = Ff(\)
holds for all f € L>®(p) and X € G.

Proof. Let f € L(p) and A € G. Then P(f o k) € L2(p) and therefore

P(P(fo k) = P(fory)(0)=(P(for)1)

:<?O/€>\’1>:<f0/€)\71>

=f(N)

where we have used Proposition in the first step and Remark (i) in

the last step.

1.6 Hilbert-Schmidt operators

O

In this section we gather the definition and some properties of Hilbert-

Schmidt operators.

Definition 1.37 (Hilbert-Schmidt operator). Let H be a Hilbert space, A
a bounded linear operator on H and (e;); an orthonormal basis for H. The

operator A is called a Hilbert-Schmidt operator, if

1
1Al = (Z HA«%H2>

is finite.
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Remark 1.38. Let A be a Hilbert-Schmidt operator on a Hilbert space H. If
(ei); and (f;); are orthonormal bases of H, then

S ledl® = 33 ldes ) = 1AL

In particular, the Hilbert-Schmidt norm ||Al|, is mdependent of the orthor-
mal basis chosen to define it.

Lemma 1.39. For a o-finite and separable measure space (X, %, v), consider
a€ L*(X x X,v®@v). Then
A L*(X,v) = L*(X,v), g— Ag
with
Ag: X > C o [ alwagl)dvy) (o€ (X))

defines a Hilbert-Schmidt operator with ||All, = ||a||5.
Proof. This follows by [3, Theorem 4.5| (and its proof). O

Proposition 1.40. FEvery Hilbert-Schmidt operator on a separable Hilbert
space 18 compact.

Proof. Let A be a Hilbert-Schmidt operator on a Hilbert space H and let
(ex)ken be a orthonormal basis of H. We will show that A can be approxi-
mated by operators with finite rank. Define

k
Ag: H— H, h Y (h,e;) Ae;,
i=0
which is an operator with finite rank. For h € H with ||h|| = 1, we have

A = Agl] < [[(A = Ap)hl

=11 S (hoes) Ae; Z (B, e3)] || Ae]
i=k+1 i=k+1

IN

(5w (£ paer)
< ||n]l < i IIAeiH2>é

i=k+1
1
o) 2
_ ( 5 uAeiu‘Z)
i=k+1
—0

as k — 0o, where we have used the Cauchy-Schwarz inequality. O
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Chapter 2

Compactness of Toeplitz and
Hankel operators

The goal of this chapter is to give a characterization of compact Toeplitz
and Hankel operators. Since the proofs differ in the Bergman space and
Fock space case, we split the proofs. The last section contains some corol-
laries, which will be useful in the next chapters. Throughout the chapter,
we consider f to be in L*(p).

2.1 The main result

We use

as a shortcut for the statements
(i) For all sequences (Ag)g in © with limit point in 92 (Bergman space),
(ii) For all sequences (Ag) in C™ with |Ag| — oo as k — oo (Fock space).

Proposition 2.1. We have
k)\ =0

weakly in L2(p) as A — A.

Proof. Let g € C|z1,...,2,] be a polynomial. With Remark we obtain
that

K _1
(1) = (9 i ) = Ka ) g
[FOY[P
For the Bergman space, we obtain
(9. kx) = Ka(N)"2g(A) = 0

21
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as A — A, since K)(\) = oo as A — A and g is bounded.
For the Fock space, we see

(. = exp (1 AP} a3) 0

as A — A.
By Remarks and the polynomials are dense in L2(p). Hence ky
converges weakly to 0 as A — A. O

Remark 2.2. An operator T on a Hilbert space H is compact if and only if
[ Thy|| — 0O

as k — oo for all sequences (hg)gen in H which converge weakly to 0.

Theorem 2.3. Let f € L™®(p) and Q be either P or I — P. The statements
(i) QMg|r2(,) is compact;
(1) |QMykxlly = 0 as A = A;

(1) |Q(f o ra)lly = 0 as A = A

are equivalent.

Proof. Suppose thatf € L*(p).
(i) implies (ii): Let @My|r2(,) be compact. By Proposition and the above
remark we have

p)

QM gkxll, — 0O
as A — A.
(ii) implies (iii): Let A € G. By Proposition we obtain that

QM (K)) = (Q(f o ka) 0 5y ) K.

Hence
2

K
QM = HQMf <||Kf||2>

2
= 0 L@ s e s 1) P an(e)
Z/G!Q(fom)(z)ﬁdp(z)

2
= Q(for)ll3,
where we have used Corollary and Proposition This leads to

1Q(f e rx)lly = 0 (A = A).

The remaining implication will be shown in the next sections.
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2.2 Bergman space

To verify the last implication in Theorem [2.3] we need some results from
function theory on the unit ball as well as some integral estimates.

Lemma 2.4. For the function
Mgq: [1,00) x (0,00) - RU{o0},

(1—2 )
) = sup/ ‘KW 1 KI(])(w)aquA,(w),
A€

there exist go > 1 and eq > 0 such that Mq(qq,cq) < oo and Mq(1l,eq) <
00.

Before proving this statement, we recall the following result.
Proposition 2.5 (Theorem 1.12 in |13|). Let ¢ € R and t > —1 and define

the function

(1= |w[?)
Jer: B, = C, z+ dV (w).
it B, |1 - <Z,U}>’n+1+t+c ( )

(i) If ¢ <0, then J.; is bounded in B,.

(i) If ¢ =0, then
Jct(Z)

log (1 22 )

has a positive finte limit as |z| T 1.

Proof of Lemma[2.]] First we consider the case Q! = B,,.

Note that
Mg, (g,¢) = W Sup Jet(N)
with
t=v—(n+1+7v)eq
and

c=Mm+1+79)(qg—eq—1).
The conditions ¢t > —1 and ¢ < 0 are equivalent to

1+~

—1l<eg< ———.
? ? (n+147)
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Thus, if we set

3
) 2(s) +3

an - n—7 an - n77
2<<m)+1) 2(m>+1

then the above chain of inequalities is satisfied with (¢,¢) = (1,¢p,) and

(q7 8) = (q]Bn7 8Bn>'
For the polydisc, choose

1
1 2

() ) e

where 79 = min;—1,..,y;. Then

Epn =

1 .
q— 1 < eq < i
(n+14+)
and the same inequalities with ¢ = 1 hold for all : = 1,...,n. Since

Mpn(g,¢) = H Mp(g;¢)
i=1

for all (g,e) € [1,00) x (0,00), the result follows. O

Lemma 2.6. For a nonnegative measurable function H on Q x 2, 1 < q <
00, p= % and € > 0, we have, for all w € Q,

[ Hw o) [ (0] K v )

<K (w)*Ma(g. )" < /Q H(w, z)pdwz))’l’

Proof. Let H be a nonnegative measurable function on €2 x €, 1 < ¢ < o0,
p= q_il, e >0 and w € Q. With Corollary and Remark we obtain

[ B o) [KD () KO )2av, )

2
Kq(]) (u)‘
Pw

Q K (w)
‘1—28

= [ H(w,w) |[KD ()| K (puw)? av; (u)

—KO(w) | H(w,u) ‘KW ()

w K (w)*dV; (u)
Q

where we have used the substitution z = ¢, (u) and the Holder inequality.
O
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Lemma 2.7. Let ¢ > 0. Then, for all z € Q,
L 1P 0 eolleu@I K ()] K w)av; w)
<Mo(1, 2| fllaor K (2)°
and
L 156 = P70 pudeul] [K9 ()] K wravy (o)
<2Mo(1,)? [ f]l , KO (2

Proof. Let € > 0 and z € Q.
(i) With Proposition and Remark we see, for w € €,

Py 0 0u) (pu(D K ()] = T3 (K0)(2)

- ’/Q FES) () KD )V (u)

<l [ |56 0] [0 @] av;

and therefore, using Fubini’s theorem, we find that

[P0 eodleu@I K ()] KD w)av: w)

<Ules [ 5] ([ |1600| K007 ) ) v o

By the proof of Lemma we see that, if we choose H = 1, the result
there holds also for ¢ = 1. Thus

Il [ [ £ 0] ([ 6 00] K0 wrav;w) ) av, )

<l [ [K 0] Mot KD 07V 0

<Mo(1,)* |l , KD (2)°
(ii) If we use part (i) (with f = 1) and the triangle inequality, we obtain
L1 = P70 pudeul)] [0 ()] K wravy (o)

< (||f||m+|P<fosow><sow ) £ @) KD w)av; (w)
<M1, [ f ey K ()
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O

Proposition 2.8. For g € (1,00), we have

1Py fllgy < Can 1 llooy

with a suitable constant C.

Proof. Let g € (1,00) and let f € L*>(V,). Since

P17, < Wi [ ([ [0 av; ) av: o)

it is enough to show that the integral on the right side is bounded.
For 2 = B,,, we see by Proposition [2.5] that

O = im fJBn [1— o ‘w|‘n+1+wdm(w)
= lim

I 1°g<1 TZI )

exists. Choose R > 1 such that

(1= fwf?) ( 1 )
d < 2C'1 _—
/Bn 1 (g ) =208 (T

for R < |z| < 1. For |z| < R, the same integral can be estimated by

(1—Jw*) 1
/IBn 11— <z,w>|”+1+7dm(w) = Hwy/m(l — [w]*) dm(w).

1772‘2) (1 — R)"™*7 is continuous and never zero, for |z| < R,

there exists a constant C’ > 0 such that

(1— ) , < e >
d < ("1
/Bnu—<z,w>r"““ miw) = Clog { 0

for all z € B,,.
Choose s > 0 such that v — sq > —1. Since

€ (0,00)

Since log (

lim log(t)t™° =0,

—00

log(l Bk ) q
(=57)

is bounded for z € B,,. Hence there is a constant C”” > 0 such that

< /B 1 _“éf;';):lﬂdm(w))q (1-1eP) < e (1= 1)

the function
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for z € B,,. It follows that

/n (/Bn n _(1<; lull;"i):lerdm(w)) (1 - ]2\2)7dm(z) < 0.

For Q = D", we observe that

L(L |

—CwH/ /%dm(wi) (1—|zi|2)% dm(z)

1—zz

KO aviw) a2

with a suitable constant c,. Hence the result follows by the previous proof
for the unit ball with n = 1. O

Proposition 2.9 (Schur Test). Let (X,X,v) be a measure space and let
F: X x X — C be a measurable function. If there are a strictly positive
measurable function h on X and positive numbers o and 3 such that

/X |F(z,y)|h(y)dv(y) < ah(x) (for almost every x € X)

and
/ |F(z,y)| h(z)dv(xz) < Bh(y) (for almost every y € X),
X
then
A: L*(X,v) = L*(X,v), g— Ag
with

Ag: X 5 C, ze /X Fla,)ow)dv(y) (g€ LA(X,v))

defines a bounded linear operator with || A||* < af.

Proof. Let g € L?(X,v). Then by Hélder’s inequality and Fubini’s theorem
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we have

gt = [ || Pemawany|
<[ ([ |F<x,y>r|g<y>|du<y>)2du<x>

-/ ( /. mm( 'F,i”f’;’)'m(yn) dv<y>>2du<x>

o ([ sommonas) ([ E o) o

< / ah(a >< [ 'F(gf)H W) dv<y>) v ()

[ 1ot ( [ Pl ) w)

!9
. h(y) ﬂh(y)dl/(y)

—aﬂ/X!g(y>\2dV(y)

dv(x)

We now present the main result of this section.

Theorem 2.10. Let Q) be either Py or I — P,. The statements
(i) QyMyla2(v,) is compact;

(ii) HQvak@HM 0 as A — 09

(iii) Q(f o @nll,,, — 0 as A — 9

(iv) @ (f oIl =0 as A — 0Q for all p € [1, o)

are equivalent.

Proof. In Section we proved already that (i) implies (ii) and that (ii)
implies (iii).

(ili) implies (iv): Suppose that [|Qy(f o pa)lly, — 0 as A — 99 and let
p € [1,00) be arbitrary. If p < 2, then

1@~(f o @M, < NQY(fo@n)lly, =0
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as A — 99, since LP(V,) C L?(V;) and the inclusion mapping is contractive.
Otherwise, if p > 2, then for F = [Q,(f o p)[?

/ Fav, = / FmF %4y,
Q

el anl

by Holder’s inequality. This can be rewritten as

1Q(feoenly ., < ||Q”/(f080>\>H2,y 1Q+(f oI
with ¢ = %(Zp — 1) > 1. Thus by Proposition we obtain

N

1Q+(F 0 eI, < 1Q+(F 0 el ((Con+ D 1Flm) " =0

as A — O0€L.

(iv) implies (i): Suppose that (iv) holds. By Schauder’s theorem it suffices
to show that (QyMy|a2(y,))" is compact. Furthermore, we only need to
prove that one can approximate (Q-Mj| AQ(Vw))* by compact operators in
the operator norm. For g € L*(V,), we have (Q, M| a2 ))*g € A*(V,) and

((Qy Ml a2(v,))"9) (w) = <(Q7Mf|A2(V7))*97KL(J)> = <97Q7MfK1(J)>
= (9. (@ (Fo ) 0 pu) K
- /Q 9(2)Q (f © o) (9w () KD (2)AV; (2),

for w € , where we have used Proposition [[.31] We will show that, for
0 < r <1, the operator

Sy: LA(V,) — LA(V,), g~ Sig

with

5,9: Q= C, wrs yra(w) /Q 4(2)Q(f © pu) (9w (=) KD (2)AV5 (2)

is compact. With Corollary we obtain
([ rat)]@: (o vk G)f ave)) avw
o \Ja
= | xal@ KD @) 117 0 eu)l3, 0V, (w)

= [ KD @1@:(f o0l , Vi)
<KD ]2, < .
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e, xro(W)Qy(f 0 pu)(pw(2)) KS)(2) € L2(Q x Q,V, ® V) (Tonelli) and
therefore S, is a Hilbert-Schmidt operator by Lemma [1.39] By Proposition
Sy is compact. If we set

F:QxQ—C, (w,2) = xa,e(@)Q(f o pu) () K (2),

we obtain
(@ Milaoey)” = $a)(w) = [ Pl 2)g(:)av; (o)
for all g € L?(V,) and w € Q. To complete the proof, we verify
tim 1S, — (@ My aeqr,) )| = 0.

Set ¢ = €q,q = go with €0, qo as in Lemma and let p = q%’l. For
w, z € §), we define

(i) h(w) = K3 (w)°,
(i) H(w,2) = xaya(®) [@y(f o pu)(2)],
(ii)) & = Ma(g,2)7 sup {Q4(f 0 ea)ll,,+ A€ @\ 72},
(iv) B =2Ma(1,6)* | f].c.,.
By Lemma [2.6] we have, for w € €,
[ 1P @) h(av; 2
Q

= | Xeno)1Q,(7 0 pu) (eul)] [K9) (2] K Vs (2)

_ /Q H(w, pu(2)) |[K) ()| KO(2)7aV; (2)

<K (w)* Ma(q, €) 3</sz PAV( ))

KO (w)* Mo(g, £)1 ( [ xanatw) IQw(fosow)(Z)pdVv(Z))p

<K (w)*Malg,2)7 sup {[Q(f o @)l A € 2\ r2}
=ah(w)
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as well as, for z € €,
[ PG, aw)av; )

= | Xona(w) 10,7 0 pu) (pulI K ()] K () aV, w)
<2Mo(1,0)? | fll e, KLV()°
=Bh(2)

by Lemma Thus the conditions of the Schur Test (Proposition are
satisfied and by hypothesis
a—0

as r — 1. Thus ,
(@ M| a2v))* = Sp||” < af =0

asr — 1. ]
Corollary 2.11. Let g € C(cl(B,,)). Then Hy is compact.

Proof. Suppose g € C(cl(B,,)) and z € B,,. Let (A;)r be a sequence in B,
with limit A € dB,,. Then by the proof of Proposition and the dominated
convergence theorem, we have

Jm g ooy, =gl =0,
since g € C(cl(By,)). From this, we obtain with g(\z) € A%(V,) (k € N)
I = Py) (goex)lla, = I =Py)(gopxn, —g(A)ll,,
<llgoen, —9(A)lly, =0
as k — 0o. By Theorem [2.3] H, is compact. O

The following Lemma will be useful for corollaries of the preceding the-
orem.

Lemma 2.12. The map
LAV, = LA(V,), g g
1s a well-defined bounded linear operator.

Proof. Let g € L*(V,),e = eq as in Lemma and let Cq , be the constant
from Proposition [1.12] For w, z € €2, define
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(i) h(w) = K5 (w),
(iii) a =B = Ca,Ma(l,)>.

With Proposition [I.12] we see, for w, z € Q,

’KI(UW)(Z)‘Q
Plw,z) = o - < Cay KO (=)

and hence by Lemma that, for z € Q,

[ 1F @) hw)av; w) < Cay [ K0 )] KD w)av; )
Q Q
< ConMo(1,6)° KO (2)°

z

as well as, for w € Q,

[ 1P bV < Cay [ KD G| KD @)
Q Q
< Ca,Mq(1,6)° K (w)e.

w

Thus the conditions of the Schur test (Proposition are satisfied, i.e., the
map - is a bounded linear operator on L?(V,) with

||§||2,7 < CQ/YMQ(LQZ)Q ||9||2,w

for all g € L3(V,). O

2.3 Fock space

For the Fock space, we proceed similarly to the previous chapter, i.e., we
begin by stating some integral estimates.

Lemma 2.13. We have

no 2
/ | K\ (2)]P e_%(z,z>%dm(z) — (1) e%aO\,)\)’
Cnrn

(2m)"

forall A€ C" a >0 and p > 0.
Furthermore, we have

(PN < ||f]l e

for all A € C™.
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Proof. Suppose A € C",a > 0 and p > 0. We obtain

I
S— 5—

=(2) L (G [t
(N [ 2Re((Lun
“(2) e (gl e
[\ P P
o

where we have used the transformation u = y/az and Proposition with
h=1.

Furthermore, we have

Pf(A) = (Pf,Kx) = (f,Ky) = . f(2)Kx(2)dp(z)

and therefore

o
(2m)"

where we have used the first identity with p = a = 1. O

PO < ]l [E (=) e 25 dm(z) = || es ™Y,

Lemma 2.14. For a nonnegative measurable function H on C" x C™ with

(z,2) .
H(w,z) < Be s for a constant B and all z,w € C", there exists a constant
Cn,B such that

- H(w, 7—(2)) | Kw(2)] Kz(Z)%du(z)

<Coput ([ 1 )

for allw e C™.
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Proof. Let H be as described and w € C™. With the change of variables

formula, we obtain

. u() [Ku(2) | Ke(2)2dp2)

= H(w, 7—(2)) exp (; Re((z, w)) + - (2, 2) — 1 <z,z>) dm(z)

e 2 27"
= /. H(w,u)exp <; Re((u + w,w)) — i (u+w,u + w>> O};’;(;:L)
= . H(w,u)exp <i |w|2 _ i |u2) (1727”;()?
= Kw(w)% - H(w,u)e*wiu) (271T)ndm(u)’

where we have used the substitution z = 7,,(u). The Holder inequality and

Lemma (with @ = } and p = 0) yields that

(wuwy 1
H(w,u)e” = dm(u)
cr (2m)"

3 1
= H(w,u e elwt) gmiglun) =
el )

1 3
: 1 1 (wuwy 1 4
< H(w,u b= Fluw)_~_qm(u ) </ e” 12 ——dm(u >
< ([, e <2w>n @) Je® ™ ot
4

1
< <B2 [ Hw, u)Qe*U —dm(u )) 61"

\—/1\3

=CnB < H(w,z) 2du
(Cn
with Cy, 5 = 61" B,
Lemma 2.15. For z € C", we have

[ 1P 0 ) 1K) Kuw) () < 227 ] K (2)*

and

10 = Y o mad e K] Kl ta) < 2070 ] Koe)

Proof. Let z € C". As in Lemma [2.7] it suffices to show the first inequality

and the same calculation (with e = 1) shows that
L 1P 0 Rl )] o) bl
<1l [ 18 ([ 1Rt Kutw) ante)) duto
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Hence Lemma (with @ = 1 and p = 1) yields that

[ 1P o)) 1K) Koul) 2w
<Uflle [ 10| 2K ()
=22 | £l K. (2).

O]

With these estimates the proof of the following thoerom is similiar to the
proof of Theorem [2.10}

Theorem 2.16. Let Q be either P or I — P. The following statements are
equivalent:

(i) Q@My|r2(, is compact.

(ii) [|QMysky|ly — 0 as |A| — oo.

(i) 1Q(f o ma)lly = 0 as [A] = oo,
Proof. In Section we proved already that (i) implies (ii) and that (ii)
implies (iii).
Suppose that (iii) holds. By Schauder’s theorem it suffices to show that
(QMjf|r2(,)" is compact. Furthermore, we only need to prove that we can

approximate (QM;y[r2(,))* by compact operators in the operator norm. For
g € L*(p), we have (QMj|12(,))*g € Lz (1) and

(@Ml 12() 9) (w) = ((QMflr2(,))* 9 Kuw) = (9, QMK )
= (9, (Q(f o Tw) 0 T—w) Ku)

- /Q 9(2) QT 0 ) (7w (2) K (2)d1(2),

where we have used Proposition We will show that, for R € (0, 00),
the operator

Sr: L*(p) — L*(u), 9~ Sy,

with

(Srg)(w) = XRBn(w)/ 9(2)Q(f o Tw) (T-w(2)) Kuw(2)du(2),

n
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is compact. With Proposition [1.26| we obtain

/n </Cn XEB, (W) ’Q(fOTw)(T_w(Z))Kw(Z)’2dM(Z)> dp(w)
- / e () Ko (1) [Q(f 0 70) I3 dpa(uw)
- [ Kaw Qs ol date)

<Kr(R)|IfII% <

i.e., XrB, (W)Q(f o Tw)(T_w(2))Kw(z) € L2(C" x C*, u @ u) (Tonelli) and
therefore Sg is a Hilbert-Schmidt operator by Lemma [I.39 By Proposition
Sk is compact. If we set

F:C"xC" = C, (w,2) = Xer s, (0)Q( 0 ) (Tu () Ku (2),

we obtain
(QM¢|r2(w)” — Sr)g)(w) = /n F(w, z)g(z)du(2)

for all g € L?() and w € C". To complete the proof, we verify that
dim Sk = (@M 1z)"|| = 0.

Therefore, for w, z € C", we define

(i) B =2|fllw

(iil) H(w,z2) = xcr\grB, (0) |Q(f ° 7w)(2)],
(iv) &= Cppsup {HQ(f or)lZ: Aecrm\ RIB%H},

(v) B=22""fll
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By Lemma and we have, for w € C",
[ 1F ) hdue)
= [ Xoms, (210U 0 )l Hul2)| K (2) )

= [ Hw 7 () [Kul2) () du)

<Cpn Ky( % ( H(w, 2)*du(z )>
Cn

-

K ( — >|@<fom><z>2du<z>)

<Ch Ko (1w)? sup {H@(f o)
=ah(w)

1
3 /\EC"\RBH}

as well as, for z € C",

[ 1F @) hw)due)
= [ Xems, ()@ © ) ()] )] Kow) bl

<22+ || £l KL(2)3
=Bh(z)

by Lemma Thus the conditions of the Schur test (Proposition are
satisfied and by hypothesis
a—0

as R — oo. Thus
1(QyMylr2)* = Skl < ap — 0
as R — oo. B

The following lemma together with Lemma will be used to proof
Proposition [2.22]

Lemma 2.17. For g € L>(u), there is a constant Cy p, such that

1
lgomy — P(goma)lly < Cyn (I —P)(gomn)ls

for all A € C™.
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Proof. Suppose g € L>®(p) and A € C". With Lemma and Remark
[1.33] we obtain

G(w) — (Pg)(w)| < [§(w)| + |(Pg)(w)
1
< N9lloo + llglloo €5
< 2|gll €5,

On the other hand, the function (Pg)K,, lies in L2(u) for all w € C", since
each factor is holomorphic and

/ (Pg)(2)[* [ Kuw(2)]” dus(z) < Hgﬂio/ e 1) |Ky(2)[* dpa(2)
Cn Ccn

gl [ 1Ko e )

w,w)

= |lg|%, 2" < oo

for all w € C", where we have used Lemma twice. Hence

(Pg)(w)ez @) = (Pg)(w) K, (w)
= ((Pg)Kun Kw>

= [P Kul2) P antz).

The definition of the Berezin transform yields that

F(w) — (Pg)(w)| < e~ 3w) / 19(2) — (Pg) ()] [ Ku2)[? dia(2).

n

If we combine the two inequalities, we obtain, using Fubini’s theorem and

Lemma that

- 2
lg — Pyl

= [ 3w - (P) )P e dm(w)

2l [ lo) - P (3) eFeance
A4\" _3 1
=2(3) ol [ lo2) - (P L)
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The Holder inequality yields that

= [ et lg(a) - (Po)(a) D dm)

= </Cn 6_218&72)(2;()?)2 (/n 9(2) — (Pg)(2)| e~ 1(=2) ?;()2) 1

1 1 3
=22¢y [|9/|% lg — Pgll3
3

with ¢, = <an e as(zz) 1 dm(z)) *. Hence

@)

4 n 1 1 1
5 - ng2<2() 9l 25 9l 19 — Poll3

A, 3
=28 (2] e gl g — Pyll3 -

The result follows now by Proposition|1.34with Cy , = 21 (%) 3 et gll&s. O

2.4 Corollaries

We now present some useful corollaries of the main theorem. Mainly the
connection between the compactness of Toeplitz and Hankel operators and
the Berezin transform of its symbol will be established.

Corollary 2.18. The operator Mf‘L?L(p) is compact if and only if

[FF(N) =0
as A — A, or equiwvalently, if Ty and Hy are both compact.
Proof. For A € G, we have with My|r2,) =Ty + Hy

IFIP(N) = <|f|2 k)\akA> = (fkx, [kx)
= | Mskll3 = | Tekalls + | Hpkall3 -
For the if-part, we observe

[Tykally = 0, [[Hrkall, =0 (A= A)
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since | f|*(A\) — 0 as A = A. By Theorem the operators Ty and Hy are
compact so that M| 12(p) = Ty + Hy is also compact.
For the only if-part, we see

[FI(N) = (1M kx|l =0
as A — A, where we have used Proposition and Remark 2.2 O

Corollary 2.19. If f vanishes outside a compact set, then Ty and Hy are
both compact.

Proof. By Corollary [2.18]it suffices to show that |f|*(A\) — 0 as A — A. To
this end, we observe

PO = g [ R KA dn(2)

1
<70 L HOP L )

1 2 2
< s 1 [ G

with D = supp(f).
(i) Bergman space: By Proposition we have
2
| s0e] e < ch, [ KOEzv ),

Since D is compact, the right side is bounded by a constant C' > 0.
Therefore we have

C

PO < 20

1£12, =0

as A — 0f.

(ii) Fock space: By the Cauchy-Schwarz inequality we obtain
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O

Notation 2.20. Let Hy, Hy be Hilbert spaces and £(Hp, H2) be the Banach
space of all linear bounded operators from H; to Hy. Furthermore, we denote
by R(H1, Hy) C £(Hy, Hs) the closed subspace of linear compact operators
from H; to He. If H = H; = Hj, we use £(H) for the Banach algebra
£(H, H) and R(H) for the closed ideal R(H, H).

We write

AQ(p) = {1 € L*(p); Hy € RLZ(p). L2(p)") }

Proposition 2.21. The set AQ(p) is a closed subalgebra of L*(p).
Proof. Consider the map

H: L®(p) = £(L3(p), Li(p)™), > Hy,
which is linear and a contraction since

IH (N = [[Hg | < (0= P)My || < |[Mf]] < [Iflloe  (F € LZ(p))-
Therefore
AQ(p) = H™H(R(LZ(p), Lz (p) ™))
is a closed subspace of L*>(p). The identity
Hyg(h) = (1= P)Mj,(h)
— (L= P)My(1 = P)My(h) + (1 — P)M;PM,(h)
(1= P)MgHy(h) + HyTy(h)

for all f,g € L>=(p) and h € L2(p), shows that AQ(p) is an algebra. O
Proposition 2.22. If Hy is compact, i.e., f € AQ(p), then

(i) Tfff s compact,

(ii) f € AQ(p).
Proof. Let f € AQ(p).

(i) We want to show that

HP(f oy~ fo m)H2 =0

as A\ — A. Then Theorem [2.3|shows that T; fis compact. Since P is
continuous, it is enough to prove that

HfotiA—fO/@\HQ—)O
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as A = A. With the triangle inequality, we have

|£orn=Fom|, <||Fomn—P(fonn|, +IP(forn) = Forls,,

where the last term tends to 0 as A — A by Theorem
For the Bergman space, we observe that by Lemma [2.12] it suffices to

show that g = f oy — Py(fopy) with g = fopy — P,(f opy). But
this follows immediately by Remark [I.33 and Proposition [I.34]

For the Fock space, Lemma and Theorem again gives us the
result.

(ii) By Theorem and by part (i) and its proof, we obtain
o= o, < [Foma- it + o~ Fom],
—0
as A = A.

O

For later use we state the following result which was established in the
proof of Proposition [2.22

Corollary 2.23. We have
lgorx—gokally =0
as X\ = A, for all g € AQ(p).

The next two results help us to strengthen the statement in Corollary
[2:27 in the Fock space case.

Proposition 2.24. For a bounded Lipschitz continuous function g with Lip-
schitz constant L, there is a constant ¢, > 0 such that |[Hgy|| < ¢, - L.

Proof. Let g be a bounded Lipschitz continuous function with Lipschitz con-
stant L and z € C". For w € C", we define

(i) F(w,2) = (9(2) = g(w)) K(w),

(il) h(w) = Kyu(w)?,

1

(iif) cn = fen |ul e~ alww (2;)71 dm(u),

(iv) a =8 = ¢, L.
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Then with the transformation v = z — w we obtain
1
[ 162) = gl )] Ko ()
L[ 1 =l )| K)o
Cnrn

:L/ Iz — | efi«w,wwme«w,z»)Ldm(w)

etz ~tay L
Lex /n lu| e 1 (QW)ndm(u)

—cu LK, (2)2.

Thus the conditions of the Schur test (Proposition are satisfied, i.e.,
together with Remark [T.28] the result follows. O

Notation 2.25. We define inductively

fO=yf FE =G0 (=0,
Corollary 2.26. We have H Fom) H — 0 asm — 0.
Proof. Let z,w € C" and k € N*. By |1, Lemma 2| we have

[F9() = T w)| < 22m) 7 17l k7312 — wl,

i.e., f®) is Lipschitz continuous with Lipschitz constant 2(2%)_% I fllo k72
Proposition [2.24] yields that

| F70m | < 2en@m) 2 1l 2 = 0

as m — oQ. ]
Corollary 2.27. The following statements are equivalent:

(i) Hy and Hy are compact;
(i) Hf o Ky — f(A)H2 S0 as A — A

(111) \f| ‘f ‘ —0as A — A.

For the Fock space, these conditions are also equivalent to

(iv) Hy or Hy is compact.
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Proof. (i) implies (ii): With Propositions we obtain

forn=FO|, < IFom - P(fom)llerHP(fom)—f(/\)HQ
= Ilf o fx = P(f o )l + |[P(f o kx = P(F o )|,
< Ifomn = P(fom)ly + IPIl|[£oma— P(Fora)|,
<|Iforx—=P(for)ly+ ||forr—P(forr)|,
—0

as A = A, since Hy and Hy are COIEpaCt and Theorem
fomA—wiL—+OasA—>A.ByRmnmleB

(ii) implies (i): Suppose

we first obtain

[forn—P(for)ly <

o= 0]+ [ om0~ 0],

Fory— fAH +HPfomA e H

< lroms=Foa], =Wl oma -,
—0
as A = A and secondly
?OKA—?(A)HQZ 7°HA—?()\>H2
= fOHA—f(A)HQ

—0

as A — A. Thus by Theorem [2.3 . 3| Hy and Hy are both compact.

(ii) and (iii) are equivalent: Since

fOHA—f)\H
= [ |7 o matw) = F] antw

~ 2
/|fon)\ —2Re fom,\( ) ‘f ’ (w)

1P~ 2Re (FO [ romtwiantu)) + o]
—ffT() 2Re (FOFN) + [ 70|
=120 - [
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the equivalence of (ii) and (iii) is obvious.

That (i) implies (iv) is clear.

(iv) implies (i): Without loss of generality suppose Hy is compact. We see
with the same calculation as in Proposition and Remark (ii) that

- 7o -Fo < [ron-Fon,=[som - o], o

as |A| = oo and hence by Theorem H, is compact. Furthermore

m—1 m—1
Hy_fon = 3 Hpo_goen = Hy_p+ > Higoon_foy
i=0 i=1

for all m € N. Thus H, Fom) is compact, since every summand is compact
by using Proposition @ iterative. Thus

HHf _H

o) = [[H70m | =0

as m — oo by Corollary and therefore H; can be approximated in the
operator norm by a sequence of compact operators. Hence H; is compact.
O
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Chapter 3

Hankel operators with Berezin
symbol

In this chapter we deal with the question when the Hankel operator H 7 of a
symbol f € L*(p) is compact. This will help us in the next chapter to take
a closer look at the essential spectrum of Toeplitz operators with symbols in

AQ(p).

The following lemma is a standard result in measure theory.

Lemma 3.1. Let T be a metric space, (X,%,v) be a measure space and
g: T x X — C with

(i) for allt € T, we have g(t,-) € L}(X),

(i) for v-almost all x € X, the function g(-,x): T — C is continuous in
toe T,

(1i1) there exist a neighborhood U of ty and a nonnegative integrable function
h such that, for allt € U,

’g(t? )‘ S h
holds v-a.e.

Then, the function
G:T—C, tl—>/ g(t, z)dv(x)
X

18 continuous in tg € T.

Proof. Let (t;)ren be a sequence in U with limg_,o tx, = to. Define g =
g(tg,-) for all k € N. By (iii) we can use the dominated convergence theorem

47
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which yields that

klirgloG(tk) hm g(tg, x)dv(z)

*}OOX

:/ lim g(tg, z)dv(x)
Xk:—)oo

- / g(to, x)dv(z)
X
:G(to),

since g(-,x) is continuous in ¢y € T for v-almost all z € X by (ii). O
To formulate and prove our main result in this chapter, a closer look at

the properties of the Berezin transform is necessary.

Notation 3.2. We denote by Cj,(G) the algebra of all complex valued bounded
continuous functions on G.

Proposition 3.3. If f € L>(p), then fe Cy(@).

Proof. Suppose f € L*(p). Remark shows f € L®(@G). 1t is left to
show that f is continuous.

(i) Bergman space: Since

/ fw )‘ AV, (w) (A€ 9),

we define )
)
g:OxQ—=C, (\w)— flw)———

and want to apply the last lemma.
Obviously, g(\,-) € L®(V,) C LY(V;) is integrable for all A € Q). For
all Ag € 2 and w € 2, the function

2
K w)

Q—-C, A\— o)
K\ (N

is continuous in Ao and therefore g(-,w) is continuous in Ag.
Let A € Q. Then there exists a neighborhood U of A\ such that cl(U) C
Q) is compact. Since the function

Q—C, A K0
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is continuous, we obtain

M = K9 .
Agg%)( D) <o

Therefore we define the nonnegative integrable function
h: Q= Q, wes || fll Ca,M.

It follows
lg(x w)| < (| flloe C&., M,

for all A € U and w € €2, where we have used Proposition [I.12
Now we can apply the last lemma, which ends the proof.

Fock space: Since the function
C" — Lg(u)a A= K

is conjugate holomorphic and has no zeros (cf. [4, Proposition 1.4]),
the functions

C" — La(p), X — gk

and
cC" — (C, A= <gk‘>\, k>\>

are C°.

O]

Notation 3.4. By 8(G) we denote the Stone-Cech compactification of G. Via

the identification

B =18
G

we endow B(G)¢ with the product topology.

Remark 3.5. Every f € Cy(G) has a unique continuous extension f# to B(G).
Notation 3.6. Let (A\y)q be a net in G. We use

Aa — A

as a shortcut for the statements

(i)
(i)

The net (A\q)q converges to a point in 9 (Bergman space),

The net (|]Aa|)a converges to oo (Fock space).
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Definition 3.7. (i) We define

® = {p € B(Q)%; there is a net (\y)q such that Ay — 9
and @), — ¢ in B(2)"}.

and

T = {r € B(C™")T"; there is a net (Ay)q such that [Ay| = oo
and 7y, — 7 in B(C™)"}.

To shorten the notation, we write ¥ for ® or T'.
Furthermore, we call the images of the elements in W the W-parts of

p(G).

(ii) Moreover, we write
AOT = {f € Cy(G); fPor e H®(G) for all k € U}
(analytic on V-parts) and
COU = {f € Cy(G); [P0k is constant for all k € U}

(constant on V-parts).

Remark 3.8. Since O(D) N O(D) = C for each domain D C C", it follows
that
COV¥ = AOY N AOV.

By Liouville’s theorem the sets AOT and COT coincide.

Lemma 3.9. (i) The space (B(G))€ is compact. Thus, for every net
(Aa)a with Ay — A, the net (ky, )a in (3(G))C has a convergent subnet
which converges in (B(G))¢ to a k € V.

(i) The sets AOV and COV (together with the usual addition and multi-
plication) are algebras.

Proof. (i) This follows immediately by Tychonoff’s theorem.

(ii) Let f,g € AOV. Since (f +g)® = £ + ¢ and (fg)® = fP¢” (the ex-
tensions are unique), the result follows by the observation that H*(Q)
and C are algebras.

O

Notation 3.10 (Bergman metric). By b we denote the Bergman metric on €.

The following properties of the Bergman metric can be found in |2, Sec-
tion 1 & 2].
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Remark 3.11. (i) The Bergman metric is M&bius invariant and induces
the natural topology on €.

(ii) Every function f € L*°(V,) has bounded mean oscillation, i.e., f €
BMO(Q).

Lemma 3.12. If f € L>(V,,), then

f(2) = Fw)| < Cpb(z,w),
for all z,w € Q.

Lemma 3.13. Let f € L*™(p) and (wa)a be a net in G with wa — A such
that Ky, — K iné’(G)G. Then (f oKy, )a converges uniformly on all compact
subsets of G to f% o k. N

In particular, we have f5 o k € Cy(G).

Proof. Suppose that f € L>(p) and that (wa) is a net in G with wy, — A
such that s, — & in S(G)Y. It is clear that (f ok, )o converges pointwise
to fﬂ o k, so that by the Arzela—Ascoli theorem it suffices to show that
(f © Kuw, )a 18 equicontinuous on G.

(i) Bergman space: By Lemma we have

(F o 00a)(2) = (F o pu) ()| < Crbl(pun (=), fu (w))
- Cfb(z7 w)a
for all z,w € Q, since Remark holds.

(ii) Fock space: By [1, Lemma 2|, we have

(Fom)(@ - (For)(w)| < (i) oa(2) = T ()

Therefore (f o Ky, )a is equicontinuous. O

Corollary 3.14. Let f € L*(p) and (wa)a be a net in G with wa — A such
that k,, — r in B(G)E. Then (f o Ky, )a converges in L?(p) to f5 o k.
Proof. For every compact set C' C G, we obtain
~ ~ 2
|70 bes = o],
2

S/C‘fo/fwa—fﬁomrdp-i-p(c;\c) “foﬁwa _fﬂOHHG\C

s/c\fomwa—fﬁonfdp+p<a\0>4r\f\\io-
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Let € > 0. By Lemma there exists a «q such that
r3 Y 2 2 2
[|Foru - Forf apzet [ apze
C C

for all & > «g. Since p is regular, we can choose the compact set C' in such
way that p(G\ Cp) < e. Thus for all o > «y

~ ~ 2
|Forun = FPok|| < +acifll.
O

The question formulated at the beginning of this chapter is answered by
the following theorem.

Theorem 3.15. Let f € L>(p). Then we have
(1) Hy is compact if and only if f € AOV,
(i1) Hj and H? are both compact if and only if f € COW.

Proof. Let k € ¥ and let (wq)a be a net in G with w, — A and Kk, — K in
B(G)E. The chain of inequalities

|

<[ o [P onpt ] [ en - Fon)

.
,

<2 Hfo Ry — fPo HHQ + Hfﬁ oK — P(f'g o K,)H2

<ol o [en - Fome

, + Hfo Kuwe — P(fo Kuwg)

’2

=0
2

7ol

<4 Hfo Kuwe — o K,Hz + Hfo Ky — P(]?o Kuwg,)
shows in view of Corollary that

’fo Ry — P(fo Ry )

lim
if and only if _ B
fPor=P(fPor).

Using Theorem and the compactness of 3(G)%, one easily deduces part
(). Part (ii) follows from part (i) together with Remark O

A result about the connection between the compactness of a Toeplitz
operator and the Berezin transform of its symbol is the following theorem
which was proven by Raimondo in |7] (2 = B,,) and by Mitkowski and Wick
in [5] (2 =D").

Theorem 3.16. Let f € L>(V,). Then Ty is compact if and only if f()\) —
0 as A — 0N.
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Essential spectrum of Toeplitz
operators

We first recall some definitions.

Definition 4.1. (i) We call
C(H) = £(H)/R(H)
the Calkin algebra.

(ii) For an operator T' € £(H), we define the essential spectrum of T' by
0e(T) = ocu)(T + R(H)).

Remark 4.2. Since the Hilbert space will always be L2(p), we omit the un-
derlying Hilbert space and write C and R for C(H) and K(H ), respectively.

From now on, we consider f to be in AQ(p).
We are interested in the properties of the essential spectrums of Toeplitz
operators with symbols in AQ(p). Hence we state the following lemma.

Lemma 4.3. The condition |f(w)| > 0, for some 6 > 0 and all w € G, is
sufficient for % to lie in AQ(p).

Proof. Let f € AQ(p) with |f(w)| > § for some § > 0 and almost all w € G.
If we set H = %, it suffices to show |[(I — P)(H o ky)|l, — 0 as A — A,
since Theorem holds. Let (Am)men be a sequence in G with A\, — A as
m — oo. Corollary gives us

Hfo,k;)\m —fo&AmHQ —0

as m — oo. Hence, by passing to a subsequence (A, )ren of (Am)men we
can achieve that

fokx,, —fo K, — 0

53
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almost everywhere on G as k — oo. Let (Ay)o be a subnet of (A, )ken
with Ky, — & in B(G)¢ for some k € ¥. By Proposition i) we
have f € AQ(p) and therefore h = f% o k € H®(G) by Theorem [3.15| (i).
Furthermore

||f ORXNg — h”g < Hf oK), — ]?o Kg

+ Hfo Kxa — hH = 0,
2 2
where the second term tends to 0 by Corollary [3.14 Hence
[h(w)] = 1f 0 ki, = | F o kg (w) = f 0 hin, ()| = |77 0 k(w) = Fo in, (w)
> 6= | Fora, (w) = f o r, (w)| = [ 77 0 w(w) = Forir, (w)
%6,

for almost every w € G, and since h € H*(G), we conclude that |h| > ¢ on
G. Thus € H*®(G) and we obtain

1 1
Hony, — 1| = H h— fon.
H h 2 (fOK})\a)h,( ) 2
1
< 52 1f o kx, —Rlly = 0.
as well as
1 a
HP(HO Kx,) — —|| — 0.
hly
Hence
1 1
|H oky, — P(Hoky,)|ly <||Hokr, ——|| +||[P(Hokr,)— ~
Rl bl
0.
This finishes the proof. O

Notation 4.4. Let R be (0,1) for the Bergman space and (0, co) for the Fock
space. For r € R, we write

G — rB,, G=B,orG=C",
"D, G=D".

The property we are interested in is the connectedness of the essential
spectrum. The following theorem gives us an explicit representation of the
essential spectrum from which the connectedness will follow at once.

Theorem 4.5. We have
oo(Ty) = () A(f(G\Gy)).

reR
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Proof. (i) We first show that o.(Tf) C (),cpcl(f(G\ Gr)).

(iii)

Suppose therefore ¢ ¢ cl(f(G \ G,)) for some r € R. Define

(f(z)_g)_lv ZEG\GTa

g:G—=C, z+—
1, z € Gy.

Then g € L>(p) and

9(f = =xaa +(f—Oxa =xc+ (f—(—1xa,-
With Proposition we obtain that

ToTy—¢ = Ty(p—¢) — HgHy—
=1+ T(y—¢-1)xe, — HgHy-

XGr

Since (f — ¢ —1)xa, € L*(p) vanishes outside of a compact subset in
G, we have by Corollary [2.19 that Hy, Ty ¢ 1)y, € R, so that Ty is
the left inverse of Tr_ modulo &. Furthermore (observe HZ* =0)

Ty—cTy =1+ T(s—¢c1)xq, — HpHy.

If we set F' = (f — ()xa\a, + XG,, we see that F'=1/g. Since

Hy = Hp-¢ = H—oxava, T Hi1-0xa,
is compact, it follows from Corollary that Hiy_¢)y G and hence
also Hp = H(f*C)XG\GT + Hy,, is compact. By the assumptions on ¢
there also exists a § > 0 such that |[F(w)| > ¢ for all w € G. With

Lemma we conclude that H, € & and therefore Ty_ is also right-
invertible in C. Hence

Tf —C-{-ﬁ:Tf_C + R
is invertible in C, i.e., ( ¢ 0c(Ty). So we obtain the desired result.

By Proposition the operators Tf—f~ and H]; are compact, i.e.,

oe(Ty) = O'e(T]';). With (i) we see that

oc(Ty) C A(f(G\Gr))
for all r € R.

To complete the proof we fix a point ¢ € (),czcl(f(G\ G;)). So we
can find a net (\)q in G with f(Aa) = ¢, Ao — A and ky, = & in
(B(@))E for some k € ¥. Obviously we obtain

¢ fa) = Forn,(0) = f7or(0),
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ie., fPor(0) = ¢ Since fPor € H®(G) by Theorem (i),
Proposition [I.35 gives us

P(F or)=P(7or) = P(7Por) = [P on(0) =

=f —
so that P(f ok — () = 0. As in the proof of the implication (ii) =
(iii) of Theorem [2.3| we have

T= _k =||P 7 ¢

=8 . _

= ||P(f orrx, =C—(f °or—())
2
=B =B
S| ok —f ok
2
=0,
where we have used Corollary . Hence T?—Z + R is not invertible

in C and therefore Tf~_ + R is also not invertible in K. So we conclude

that ( € Ue(TJ?) =o0.(TYy).
O

Corollary 4.6. The essential spectrum oc(Ty) is connected.

Proof. By Proposition the function fvis bounded and continuous on G,
hence cl(f(G\G,)) is closed, bounded and connected for all » € R. Therefore

Nrer l(f(G\ G,)) is compact and connected and so is 0.(T) by Theorem
O



Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

C. A. Berger and L. A. Coburn, Toeplitz Operators on the Segal-
Bargmann Space, Trans. Amer. Math. Soc. 301 (1987), no. 2, 813-829.

D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the
Bergman metric on bounded symmetric domains, J. Funct. Anal. 93
(1990), no. 2, 310 —350.

P.R. Halmos and V.S. Sunder, Bounded Integral Operators on L? Spaces,
Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 96, Springer-
Verlag, Berlin, 1978.

Svante Janson, Jaak Peetre, and Richard Rochberg, Hankel forms and
the Fock space, Revista Matematica Iberoamericana 3 (1987), no. 1, 61—
138.

Mishko Mitkovski and Brett D. Wick, The Essential Norm of Operators
on AP(D™) (2013), available at arXiv:1208.5819.

V. Peller, Hankel operators and their applications, Springer Monographs
in Mathematics, Springer, New York, 2003.

Roberto Raimondo, Toeplitz operators on the Bergman space of the unit
ball, Bull. Austral. Math. Soc. 62 (2000), no. 2, 273-285.

Walter Rudin, Function theory in the unit ball of C™, Springer, Berlin,
1980.

Karel Stroethoff, Compact Hankel operators on the Bergman spaces on
the unit ball and polydisk in C™, Journal of Operator Theory 23 (1990),
no. 1, 153-170.

, Hankel and Toeplitz operators on the Fock space., The Michigan
Mathematical Journal 39 (1992), no. 1, 3-16.

, Compact Toeplitz operators on Bergman spaces, Mathematical
Proceedings of the Cambridge Philosophical Society 24 (1998), 151-160.

o7


arXiv:1208.5819

58 Bibliography
[12] Karel Stroethoff and Dechao Zheng, Toeplitz and Hankel Operators on

Bergman Spaces, Trans. Amer. Math. Soc. 329 (1992), no. 2, 773-794.

[13] Kehe Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate
Texts in Mathematics, vol. 226, Springer, New York, 2005.



	Introduction
	Preliminaries
	Möbius transformations
	Bergman spaces
	Fock space
	Toeplitz and Hankel operators
	Berezin transform
	Hilbert-Schmidt operators

	Compactness of Toeplitz and Hankel operators
	The main result
	Bergman space
	Fock space
	Corollaries

	Hankel operators with Berezin symbol
	Essential spectrum of Toeplitz operators
	Bibliography

