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1 Introduction

In classical operator theory, many operators of interest have a relatively “thin” spec-
trum. For finite dimensional vector spaces H, the spectrum σ(T ) of an operator
T : H → H consists of finitely many points and the corresponding normal form of T is
the Jordan form. For infinite dimensions there are for instance the compact operators,
for which σ(T )\{0} is a countable discrete set. The normal compact operators T can
be written as a (possibly infinite) sum

T =
∑

λ∈σ(T )\{0}

λPker(T−λ).

Other examples of operators with a thin spectrum include self-adjoint and unitary
operators, for which the spectrum is contained in R and ∂D1(0), respectively. For all
the operators mentioned above, the spectrum is a zero set with respect to the Lebesgue
measure on C and those classes of operators are understood very well.
However, there are some operators, like the left shift L on l2(N) defined by

L(x0, x1, x2, . . .) = (x1, x2, x3, . . .) for (xi)i∈N ∈ l2(N),

which have a much richer spectrum. For this particular example there is even a
nonempty open set Ω ⊂ C with

Ω ⊂ σp(L) = {ω ∈ C; L− ω not injective}.

In fact σp(L) = D1(0) and ker(L − ω) = 〈(1, ω, ω2, ω3, . . .)〉 for all ω ∈ D1(0). So in
this case, the dimension of ker(L− ω) is constant and equal to one on D1(0).
Operators of this type were studied more closely by Cowen and Douglas in [CD78] and
they are called operators of Cowen-Douglas class or simply Cowen-Douglas operators.
The formal definition is as follows.

Definition. Let H be a Hilbert space, Ω ⊂ C an open set and n a positive integer. Then
we define the Cowen-Douglas class Bn(Ω) as the set of all bounded linear operators T
on H such that

1. Ran(T − ω) = H for ω ∈ Ω,

2. dim ker(T − ω) = n for ω ∈ Ω,

3. LH(
⋃
ω∈Ω ker(T − ω)) = H.

Cowen and Douglas used complex geometry to classify the operators in Bn(Ω). To
illustrate this, we note that the operator L defined above is an element of B1(D1(0)).
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The map
γ : D1(0)→ l2(N), ω 7→ (1, ω, ω2, ω3, . . .). (1.1)

is holomorphic (for the exact definition see Definition 2.10) and ker(L− ω) = 〈γ(ω)〉.
This can be used to show that the map ω 7→ ker(L−ω) induces a hermitian holomorphic
vector bundle ET over Ω = D1(0). In fact, this is true for arbitrary Cowen-Douglas
operators T and the properties of this bundle translate into properties of T . For
instance it was shown in [CD78] that, for Ω a domain and T ∈ B1(Ω), the curvature
of the bundle ET is a complete unitary invariant for T .
In the following thesis we will consider a related approach first presented by Kehe
Zhu in [Zhu00]. For a bounded linear operator T on H with T ∈ Bn(Ω), Kehe Zhu
defines the notion of a spanning holomorphic cross-section. This is a holomorphic map
γ : Ω→ H such that γ(ω) ∈ ker(T − ω) for all ω ∈ Ω and

LH({γ(ω); ω ∈ Ω}) ⊂ H is dense. (1.2)

The map γ defined in (1.1) is an example. For n = 1, we see that condition (1.2)
automatically follows from the Definition of Cowen-Douglas operators, at least when
γ has no zero. For n ≥ 2, this is no longer clear and in fact it is easy to provide
counterexamples. However, Zhu was able to show that there always exists a spanning
holomorphic cross-section γ if Ω is a domain. This made it possible to simplify the
proofs of some of the results obtained in the Cowen-Douglas theory.
Additional to the classical Cowen-Douglas theory, we also consider a generalization
first proposed by Cowen and Douglas in [CD83] and later expanded upon for instance
in [CS84]. Here instead of single operators, entire tuples of d operators on a common
Hilbert space are considered. Thus Ω is no longer a subset of C, but rather of Cd. In
this thesis it is proven that virtually all results from [Zhu00] for the case d = 1 can be
generalized to arbitrary d if the set Ω meets certain reasonable conditions. The crucial
point in the chain of proofs is the existence of suitable uniqueness sets for Banach
spaces of holomorphic functions.
We now give an outline of the following thesis.
In Chapter 2 we provide basic notation and introduce some mathematical concepts
used later, like functional Hilbert spaces and vector bundles.
In Chapter 3 we prove the existence of discrete uniqueness sets for Banach spaces of
holomorphic functions with continuous point evaluations.
Chapter 4 deals with the vector bundle associated with an operator T ∈ Bn(Ω) and
the existence of global holomorphic frames is proven.
These preparations are used in Chapter 5 to prove the existence of spanning holomor-
phic cross-sections.
Finally in Chapters 6-8 this existence theorem is used to classify operators which
are unitary equivalent to Cowen-Douglas operators. Furthermore, we determine the
similarity orbit and the commutant of a Cowen-Douglas operator tuple.
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2 Basic definitions and results

In the following chapter some notation is introduced and some definitions and first
elementary results are presented. Presumably many of those will be known to the
reader and this section has rather the purpose of giving a reference, if a statement
in the latter sections is not obvious right away. The proofs given here are standard
and can be found in any textbook dealing with the respective subjects. Some special
propositions are taken from [Zhu00] and the proofs below follow the ones in this paper.
Finally note that we will closely follow the notation used in [Zhu00].

2.1 Cowen-Douglas operators

In the following thesis we consider a generalization of the definition of Cowen-Douglas
operators, which we gave in the introduction. This generalization was already exam-
ined more closely in [CS84]. The fact that this new definition contains the classical
definition as a special case is established in Remark 5.8.

Definition 2.1. Let H be a Hilbert space, d ∈ N∗ and let T1, . . . , Td ∈ B(H) operators.
For n ∈ N∗, Ω ⊂ Cd open, an element T = (T1, . . . , Td) ∈ B(H)d is called a Cowen-
Douglas operator tuple of degree n on Ω if the following conditions hold for the map
Tω : H → Hd, x 7→ ((Ti − ωi)x)di=1:

1. Tω has closed range for all ω ∈ Ω,

2. dim ker(Tω) = n for all ω ∈ Ω,

3. LH(
⋃

(ker(Tω);ω ∈ Ω)) = H.

We denote by Bn(Ω) the class of such operator tuples.

Remark 2.2. Note that for T a Cowen-Douglas operator tuple as above, the operators
T1, . . . , Td commute: For ω ∈ Ω, x ∈ ker(Tω) and i, j ∈ Nd we see

TiTjx = Tiωjx = ωiωjx = ωiTjx = TjTix.

Thus T1, . . . , Td commute on
⋃

(ker(Tω);ω ∈ Ω) and hence by Condition 3 in Definition
2.1 these operators commute on all of H.

7



2.2 Linear Algebra

Proposition 2.3. Let H be a complex vector space with inner product 〈·, ·〉 and let
v1, . . . , vn ∈ H be linearly independent. Then the matrix

A = (〈vi, vj〉)ni,j=1

is invertible.

Proof. Assume that there is a linear combination 0 =
∑n
i=1 αi(〈vi, vj〉)nj=1 of the row

vectors of A with α1, . . . , αn ∈ C. Then

n∑
i=1

αi〈vi, vj〉 = 〈
n∑
i=1

αivi, vj〉 = 0 for j ∈ Nn.

This implies
n∑
j=1

αj

n∑
i=1

αi〈vi, vj〉 = 〈
n∑
i=1

αivi,

n∑
j=1

αjvj〉 = 0.

Thus
∑n
i=1 αivi = 0, and as the vectors vi are linearly independent, we have α1 = . . . =

αn = 0. Hence the row vectors of A are linearly independent and A is invertible.

Lemma 2.4. Let k be a field, V,W be vector spaces over k, M ⊂ V a subset and
f : M → W a map. Then there exists a linear map F : LH(M) → W extending f if
and only if for all n ∈ N∗, c1, . . . , cn ∈ k and v1, . . . , vn ∈M we have

n∑
i=1

civi = 0 =⇒
n∑
i=1

cif(vi) = 0. (2.1)

In this case, F is uniquely determined by f .

Proof. The given condition is certainly necessary, because for
∑n
i=1 civi = 0 with

notation as above, we see that

n∑
i=1

cif(vi) =

n∑
i=1

ciF (vi) = F (

n∑
i=1

civi) = F (0) = 0,

if F is a linear expansion of f .
Now we show that the condition (2.1) is also sufficient. If an element of LH(M) has
two representations

n∑
k=1

ckvk =

n′∑
k=1

c′kv
′
k,
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then

n∑
k=1

ckvk +

n′∑
k=1

(−c′k)v′k = 0

and applying condition (2.1) we see that

0 =

n∑
k=1

ckf(vk) +

n′∑
k=1

(−c′k)f(v′k).

Hence we may define F : LH(M)→W by

F (

n∑
i=1

civi) =

n∑
i=1

cif(vi)

for n ∈ N∗, c1, . . . , cn ∈ k and v1, . . . , vn ∈ M . It is obvious from the definition that
F is linear and extends f . The uniqueness of F follows from its linearity.

Corollary 2.5. Let k be a field, V,W be vector spaces over k, M a set and let γ1 :
M → V , γ2 : M → W be arbitrary maps. Then if, for all n ∈ N∗, c1, . . . , cn ∈ k and
z1, . . . , zn ∈M , we have

n∑
i=1

ciγ1(zi) = 0 =⇒
n∑
i=1

ciγ2(zi) = 0 (2.2)

then there is a unique linear map A : LH(γ1(M)) → W with Aγ1(z) = γ2(z) for all
z ∈M .

Proof. The map f : γ1(M) → W, γ1(z) 7→ γ2(z) is well-defined: Let z1, z2 ∈ M with
γ1(z1) = γ1(z2). Then γ1(z1)− γ1(z2) = 0 and thus by (2.2) we have γ2(z1) = γ2(z2).
Applying Lemma 2.4 to f yields the desired linear map A.

2.3 Function theory

Definition 2.6. Let d ∈ N∗ and let Ω ⊂ Cd be an open set. Then Ω is called a domain
of holomorphy if there exist no non-empty open sets U ⊂ Ω and V ⊂ Cd with V
connected, V 6⊂ Ω and U ⊂ Ω∩ V such that for every f ∈ O(Ω) there exists g ∈ O(V )
with f |U = g|U .

Remark 2.7. Without proof we give the following examples of open subsets Ω ⊂ Cd
which are domains of holomorphy:

1. For d = 1 every open set Ω ⊂ C is a domain of holomorphy.

2. Ω = Cd, Br(a), Pr(a) for a ∈ Cd, r > 0.
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3. More generally: Ω a convex set.

For more details see for instance [Hör90].

Proposition 2.8. Let d ∈ N∗ and let f ∈ O(Ω) be an analytic function on an open
set Ω ⊂ Cd. Then the function

f̃ : Ω∗ → C, z 7→ f(z)

is holomorphic again.

Proof. For j ∈ Nd, z ∈ Ω∗, we compute the limit

lim
h→0

f̃(z + hej)− f̃(z)

h
= lim
h→0

f(z + hej)− f(z)

h
= lim
h→0

(
f(z + hej)− f(z)

h

)
=

∂

∂zj
f(z).

As this limit exists everywhere, the function f̃ is holomorphic.

Theorem 2.9. Let f ∈ O(Ω) be an analytic function on an open set Ω ⊂ Cd and let
K ⊂ Ω be a given compact set. Then the continuous function

|f | : Ω→ R, z 7→ |f(z)|

achieves its maximum m on the compact set K on the boundary ∂K of K.

Proof. If Int(K) = ∅, then ∂K = K and the statement is trivial. So first assume we
have ω0 ∈ Int(K) with |f(ω0)| = m, then let D ⊂ Cd be the connected component of Ω
containing ω0. Then obviously |f(ω)| ≤ |f(ω0)| for all ω ∈ Int(K). By Theorem 4 on
page 6 in [Gun90] we have f |D = f(ω0) is constant on D. We claim that (∂K)∩D 6= ∅.
Otherwise the equality D = (D ∩ Int(K)) ∪ (D ∩Kc) would imply that D ⊂ Int(K)
and hence that ∂D ⊂ ∂Ω ∩K = ∅. Thus D = Cd and therefore (∂K) ∩D = ∂K 6= ∅.
So the function |f | achieves its maximum m on K in every point of D, so especially
in a point of ∂K ∩D ⊂ ∂K.
If on the other hand, for all ω0 ∈ Int(K), we have |f(ω0)| < m, choose a point ω ∈ K
with |f(ω)| = m (this is always possible as |f | is continuous and K is compact). Then
ω /∈ Int(K) and thus ω ∈ ∂K = K\Int(K). This completes the proof.

2.4 Banach space valued holomorphic functions

In order to use results from complex geometry and from function theory in the study of
Cowen-Douglas operators, we need to extend the concept of holomorphy to functions
with values in Banach spaces.
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Definition 2.10. Let Ω ⊂ Cd be open and let V be a complex Banach space. Then
f : Ω→ V is called holomorphic (or analytic) if it is continuous and the limit

∂

∂zj
f(z) = lim

h→0

f(z + hej)− f(z)

h

exists in V for all z ∈ Ω and j ∈ Nd.

It is easy to see from this definition that scalar multiples and sums of holomorphic
functions remain holomorphic. We now verify that our new concept of holomorphy
behaves well under other standard operations like bounded linear mappings, multipli-
cation with scalar holomorphic functions and scalar products.

Proposition 2.11. Let V,W be complex Banach spaces and let A ∈ B(V,W ) be a
bounded linear operator. If f : Ω→ V is an analytic function on an open set Ω ⊂ Cd,
then the function

Af : Ω→W, z 7→ Af(z)

is holomorphic.

Proof. For j ∈ Nd, z ∈ Ω we calculate the limit

lim
h→0

Af(z + hej)−Af(z)

h
= A lim

h→0

f(z + hej)− f(z)

h
= A

∂

∂zj
f(z).

This limit exists everywhere and so Af is holomorphic.

Lemma 2.12. Let V be a Banach space and let f ∈ O(Ω), γ : Ω→ V be holomorphic
functions on an open set Ω ⊂ Cd. Then the function

fγ : Ω→ V, z 7→ f(z)γ(z)

is holomorphic on Ω.

Proof. For j ∈ Nd, z ∈ Ω we calculate the limit

lim
h→0

(fγ)(z + hej)− (fγ)(z)

h

= lim
h→0

f(z + hej)γ(z + hej)− f(z + hej)γ(z) + f(z + hej)γ(z)− f(z)γ(z)

h

= lim
h→0

f(z + hej) lim
h→0

γ(z + hej)− γ(z)

h
+ lim
h→0

f(z + hej)− f(z)

h
γ(z)

=f(z)
∂

∂zj
γ(z) + (

∂

∂zj
f(z))γ(z).

This limit exists everywhere and thus fγ is holomorphic.
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Proposition 2.13. Let H be a Hilbert space and let γ : Ω → H be a holomorphic
function on an open set Ω ⊂ Cd. Then for all x ∈ H the function

f : Ω→ C, z 7→ 〈γ(z), x〉

is holomorphic.

Proof. This follows from Proposition 2.11 by choosing A = 〈·, x〉.

Before the next Corollary we recall that a function f : Ω→ C on an open set Ω ⊂ Cd
is called anti-holomorphic, if the function

f : Ω→ C, z 7→ f(z)

is holomorphic.

Corollary 2.14. Let H be a Hilbert space and let γ : Ω→ H be a holomorphic function
on an open set Ω ⊂ Cd. Then the function

K : Ω× Ω→ C, (z, w) 7→ 〈γ(z), γ(w)〉

is holomorphic in z and anti-holomorphic in w.

Proof. K is holomorphic in z by Proposition 2.13. The function K satisfies K(z, w) =
〈γ(w), γ(z)〉 and thus is holomorphic in w. Hence K is anti-holomorphic in w.

Lemma 2.15. Let E be a Banach space and let f : Ω → E be a map on an open set
Ω ⊂ Cd. Then f is holomorphic if and only if it is continuous and for every u ∈ E′
the function u ◦ f : Ω→ C is holomorphic.

Proof. This is Theorem 9.12 in [Cha85]

Lemma 2.16. Let E,F be Banach spaces and let f : Ω → B(E,F ) be a map on an
open set Ω ⊂ Cd. Then f is holomorphic if and only if for every x ∈ E the function

fx : Ω→ F, z 7→ f(z)x

is holomorphic.

Proof. This follows for instance from Theorems 9.13 and 14.5 in [Cha85].

Proposition 2.17. Let E,F,G be Banach spaces and let f : Ω → B(E,F ), g : Ω →
B(F,G) be holomorphic maps on an open set Ω ⊂ Cd. Then the map

gf : Ω→ B(E,G), z 7→ g(z)f(z)

is holomorphic.
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Proof. For j ∈ Nd, z ∈ Ω we calculate the limit

lim
h→0

(gf)(z + hej)− (gf)(z)

h

= lim
h→0

g(z + hej)f(z + hej)− g(z + hej)f(z) + g(z + hej)f(z)− g(z)f(z)

h

= lim
h→0

g(z + hej) lim
h→0

f(z + hej)− f(z)

h
+ lim
h→0

g(z + hej)− g(z)

h
f(z)

=g(z)
∂

∂zj
f(z) + (

∂

∂zj
g(z))f(z).

This limit exists everywhere and thus gf is holomorphic.

Proposition 2.18. Let V be a Banach space and let (fn : Ω → V )n∈N be a sequence
of holomorphic functions on an open set Ω ⊂ Cd. Assume that there is a function
f : Ω → V such that (fn)n∈N converges uniformly towards f on all compact subsets
C ⊂ Ω. That is, for all C ⊂ Ω compact, ε > 0 there exists N ∈ N such that

‖f(z)− fn(z)‖ < ε for z ∈ C, n ≥ N.

Then f is holomorphic.

Proof. The compact convergence obviously implies that f is continuous. Let u ∈ V ′
be a bounded linear form on V and let C ⊂ Ω be compact. Then for all z ∈ C, n ∈ N
we have

|u(f(z))− u(fn(z))| ≤ ‖u‖‖f(z)− fn(z)‖.

Thus the sequence of holomorphic functions (u ◦ fn)n∈N converges uniformly towards
u ◦ f on all compact sets C ⊂ Ω. Hence by the theorem of Weierstrass, the function
u ◦ f is holomorphic for all u ∈ V ′ and so by Lemma 2.15, f is holomorphic.

Theorem 2.19. Let B be a complex Banach algebra with unit and let f : Ω → B
be a holomorphic function on an open set Ω ⊂ Cd such that f(Ω) ⊂ B−1 = {b ∈
B; b is invertible}. Then the function

g : Ω→ B, ω 7→ f(ω)−1

is holomorphic.

Proof. As the map B−1 → B−1, a 7→ a−1, is continuous, the function g is continuous.
Let z0 ∈ Ω and choose r > 0 such that Dr(z0) ⊂ Ω and

‖f(z0)−1(f(z)− f(z0))‖ < 1

2
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for all z ∈ Dr(z0). Then using the Neumann series we have

f(z)−1 = [f(z0)(1 + f(z0)−1(f(z)− f(z0)))]−1

= (

∞∑
k=0

(f(z0)−1(f(z0)− f(z))k)f(z0)−1

for z ∈ Dr(z0) and the Neumann series converges uniformly onDr(z0). All partial sums
are holomorphic functions in z by Propositions 2.11 and 2.17 and thus by Proposition
2.18 the Neumann series is holomorphic in z. Again with Proposition 2.11 the result
follows.

2.5 Functional Hilbert spaces and reproducing kernels

Definition 2.20. Let Ω be an arbitrary set. A linear subspace H of the complex vector
space CΩ equipped with the structure of a Hilbert space is called a functional Hilbert
space if all point evaluations

δz : H −→ C, f 7→ f(z) (z ∈ Ω)

are continuous.

It is clear that the maps δλ are also linear. So by the Riesz representation theorem,
any δz can be expressed as the scalar product with some unique vector Kz ∈ H, that
is,

δz(f) = 〈f,Kz〉 for f ∈ H.

Since Kz is a function from Ω to C, we obtain a complex-valued function on Ω× Ω.

Definition 2.21. Let H ⊂ CΩ be a functional Hilbert space. The unique function
K : Ω× Ω→ C satisfying

1. K(·, w) ∈ H for w ∈ Ω,

2. 〈f,K(·, w)〉 = f(w) for f ∈ H, w ∈ Ω

is called the reproducing kernel of H.

While this definition of a reproducing kernel strongly depends on the structure of a
corresponding functional Hilbert spaceH, it is also possible to give an intrinsic criterion
characterising functions K : Ω × Ω → C which are reproducing kernels of functional
Hilbert spaces on Ω. The following result first appeared in in a paper of Aronszajn
(see [Aro50]) although he attributed it to earlier work of Moore (see [MB35]).

Theorem 2.22 (Moore-Aronsajn). Let Ω be a set. A map K : Ω × Ω → C is the
reproducing kernel of a functional Hilbert space if and only if

n∑
i=1

n∑
j=1

cicjK(zj , zi) ≥ 0 (2.3)

14



for all n ∈ N∗, c1, . . . , cn ∈ C, z1, . . . , zn ∈ Ω.

In general, a function K : Ω×Ω→ C satisfying (2.3) is called positive definite. We
will now collect some simple properties of positive definite functions, that will be of
use later on.

Proposition 2.23. Let Ω be a set and let K : Ω× Ω→ C be an arbitrary map.
(a) K is positive definite if and only if for all n ∈ N∗, z1, . . . , zn ∈ Ω the matrix

(K(zi, zj))
n
i,j=1 ∈M(n× n,C)

is positive semi-definite.
(b) If K is positive definite, then

K(w, z) = K(z, w) for all z, w ∈ Ω (2.4)

Proof. (a) For all n ∈ N∗, z1, . . . , zn ∈ Ω, c1, . . . , cn ∈ C we have

n∑
i=1

n∑
j=1

cicjK(zj , zi) =

〈
(K(zi, zj))

n
i,j=1

 c1
...
cn

 ,

 c1
...
cn

〉
Cn

.

Thus the definition of a positive definite map is just a reformulation of the positivity
of all n× n-matrices (K(zi, zj))

n
i,j=1.

(b) This is clear from the fact that, for all z, w ∈ Ω, the 2× 2-matrix(
K(z, z) K(z, w)
K(w, z) K(w,w)

)
is positive semi-definite, hence hermitian and so K(w, z) = K(z, w).

Proposition 2.24. Let Ω be a set and let K : Ω×Ω→ C be the reproducing kernel of
a functional Hilbert space H. Then H0 = LH(K(·, µ);µ ∈ Ω) ⊂ H is a dense subspace.

Proof. Let f ∈ H with x ⊥ H0. Then we obtain

f(µ) = 〈f,K(·, µ)〉 = 0 for all µ ∈ Ω.

Thus f = 0 and so H0 = H.

We now want to look at a special type of reproducing kernels which are fundamental
for the understanding of Cowen-Douglas operators. These kernels induce functional
Hilbert spaces of holomorphic functions.

Proposition 2.25. Let H be a Hilbert space and let γ : Ω → H be a holomorphic
function on an open set Ω ⊂ Cd. Then the function

Kγ : Ω× Ω→ C, (z, w) 7→ 〈γ(z), γ(w)〉
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is the reproducing kernel of a Hilbert space of holomorphic functions in Ω.

Proof. We first show that Kγ is positive definite. For all n ∈ N∗, c1, . . . , cn ∈ C,
ω1, . . . , ωn ∈ Ω, we have

n∑
i=1

n∑
j=1

cicjKγ(ωj , ωi) =

n∑
i=1

n∑
j=1

cicj〈γ(ωj), γ(ωi)〉 = 〈
n∑
j=1

cjγ(ωj),

n∑
i=1

ciγ(ωi)〉 ≥ 0.

So by Theorem 2.22, Kγ is the reproducing kernel of a a functional Hilbert space V
on CΩ. It remains to show that V consists of holomorphic functions. By Proposition
2.13 we see that for all w ∈ Ω the function Kγ(·, w) ∈ V is holomorphic. So the
linear subspace V0 = LH({Kγ(·, w);w ∈ Ω}) ⊂ V consists of holomorphic functions.
By Proposition 2.24 we have that V0 is a dense subspace of V . Let now f ∈ V be
arbitrary and let (fn)n∈N be an approximating sequence in V0. It suffices to show that
(fn)n∈N is a Cauchy sequence uniformly on all compact subsets of Ω, or explicitly, that
for all C ⊂ Ω compact, ε > 0 there is N ∈ N such that

‖fn − fm‖∞,C < ε for all n,m ≥ N.

This implies that (fn)n∈N converges uniformly on all compact sets C ⊂ Ω to a function
f̃ and by the theorem of Weierstrass the function f̃ is holomorphic. Since convergence
in V implies pointwise convergence and the pointwise limit of (fn)n∈N is unique, we
have that f = f̃ is holomorphic.

So let C ⊂ Ω be compact. Then for all z ∈ C and n,m ∈ N, we have

|fn(z)− fm(z)|2 = |〈fn,Kγ(·, z)〉 − 〈fm,Kγ(·, z)〉|2

= |〈fn − fm,Kγ(·, z)〉|2

≤ ‖fn − fm‖ · sup
w∈C
‖Kγ(·, w)‖

It remains to show that supw∈C ‖Kγ(·, w)‖ is finite. But this follows from

sup
w∈C
‖Kγ(·, w)‖2 = sup

w∈C
〈Kγ(·, w),Kγ(·, w)〉 = sup

w∈C
Kγ(w,w) = sup

w∈C
‖γ(w)‖2 <∞,

since γ is holomorphic and hence continuous. Thus the proof is complete.

Now, returning to the general theory, we will define a relation on the set of all
reproducing kernels on a given set Ω. This relation will be crucial for identifying
Cowen-Douglas operators, which are similar.

Definition 2.26. Let K1,K2 : Ω×Ω→ C reproducing kernels on am arbitrary set Ω.
Then we write K1 ≺ K2 if there is a constant C > 0 such that CK2−K1 is a positive
definite.
For Hilbert spaces H1, H2, Ω ⊂ Cd open and holomorphic maps γ1 : Ω → H1, γ2 :
Ω→ H2, we write γ1 ≺ γ2 if Kγ1 ≺ Kγ2 with Kγi defined as in Proposition 2.25.
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Remark 2.27. From Proposition 2.23 it is clear that if we have a constant C > 0 as
in Definition 2.26, then for all n ∈ N∗ and z1, . . . , zn ∈ Ω, we have

(K1(zi, zj))
n
i,j=1 ≤ C(K2(zi, zj))

n
i,j=1

as an inequality between complex n× n-matrices.

Definition 2.28. Let Ω be a set and let K1,K2 : Ω × Ω → C be reproducing kernels
on Ω. Then we write K1 ∼ K2 if K1 ≺ K2 and K2 ≺ K1.
For Hilbert spaces H1, H2, Ω ⊂ Cd open and holomorphic maps γ1 : Ω → H1, γ2 :
Ω→ H2 we write γ1 ∼ γ2 if γ1 ≺ γ2 and γ2 ≺ γ1.

Remark 2.29. It is easy to show that ≺ defines a reflexive, transitive relation on the
set of all reproducing kernels on a given set Ω and ∼ defines an equivalence relation
on this set.

We will now prove a property of these relations which will be useful in the classifi-
cation of the similarity classes of Cowen-Douglas operators.

Proposition 2.30. Let H be a Hilbert space and let γ : Ω → H be a holomorphic
function on an open set Ω ⊂ Cd. Let P ∈ B(H) be a bounded positive operator on H.
Define

K1 : Ω× Ω→ C, (z, w) 7→ 〈γ(z), γ(w)〉
K2 : Ω× Ω→ C, (z, w) 7→ 〈Pγ(z), γ(w)〉.

Then K1,K2 are reproducing kernels and K2 ≺ K1. If P is invertible, then K1 ∼ K2.

Proof. By Proposition 2.25 the function K1 is a reproducing kernel. To see that K2 is
also a reproducing kernel, let n ∈ N∗, c1, . . . , cn ∈ C and z1, . . . , zn ∈ Ω. Then we see

n∑
i=1

n∑
j=1

cicjK2(zi, zj) =

〈
P

n∑
i=1

ciγ(zi),

n∑
j=1

cjγ(zj)

〉
≥ 0.

So K2 is positive definite and hence a reproducing kernel by Theorem 2.22. To see
that K2 ≺ K1 we observe that the operator Q1 = ‖P‖I − P is positive because its
spectrum is contained in R0

+. Therefore the map K : Ω× Ω→ C with

K(z, w) = ‖P‖K1(z, w)−K2(z, w) = ‖P‖〈γ(z), γ(w)〉 − 〈Pγ(z), γ(w)〉
= 〈(‖P‖I − P )γ(z), γ(w)〉 = 〈Q1γ(z), γ(w)〉 for z, w ∈ Ω

is a reproducing kernel as we have seen in the proof above. Thus we get K2 ≺ K1.
Assume now that P is also invertible. Then 0 ∈ σ(P )c and, as this set is open, there is
r > 0 such that Dr(0) ⊂ σ(P )c. Then for C = 1

r the operator Q2 = CP − I is positive
due to the spectral mapping theorem. This implies that the map K ′ : Ω×Ω→ C with

K ′(z, w) = 〈Q2γ(z), γ(w)〉 = CK2(z, w)−K1(z, w) for z, w ∈ Ω
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is a reproducing kernel. Therefore K1 ≺ K2 and hence K1 ∼ K2.

2.6 Multipliers

We now introduce the concept of multipliers and multiplication operators. The latter
are maps between functional Hilbert spaces on the same set Ω, which are induced by
pointwise multiplication with a complex function on Ω:

Definition 2.31. Let Ω be a set and let H1,H2 ⊂ CΩ be two functional Hilbert spaces.
For functions f, g : Ω → C the product fg : Ω → C is defined in the natural way:
(fg)(z) = f(z)g(z) for all z ∈ Ω. The elements of

M(H1,H2) := {φ : Ω→ C;φH1 ⊂ H2}

are called multipliers from H1 to H2.
For φ ∈M(H1,H2), we call

Mφ : H1 → H2, f 7→ φf

the multiplication operator with symbol φ.

Lemma 2.32. Let Ω be a set and let H1,H2 ⊂ CΩ be two functional Hilbert spaces
with reproducing kernels K1 and K2, respectively. Then for φ ∈M(H1,H2), we have
(a) Mφ : H1 → H2 is bounded and linear.

(b) M∗φK2(·, w) = φ(w)K1(·, w) for all w ∈ Ω

Proof. (a) The linearity of Mφ is clear. We show the continuity with the closed graph
theorem. Take a convergent sequence (fn)n∈N → f in H1 with Mφfn → g in H2. Then
because convergence in H1 implies pointwise convergence:

(Mφfn)(z) = φ(z)fn(z)→ φ(z)f(z) = (Mφf)(z) as n→∞.

On the other hand, we get

(Mφfn)(z)→ g(z) as n→∞.

As limits in C are unique, we have (Mφf)(z) = g(z) for all z ∈ Ω. Thus Mφ is
continuous by the closed graph theorem.
(b) Let f ∈ H1, w ∈ Ω be arbitrary. Then

〈f,M∗φK2(·, w)〉 = 〈Mφf,K2(·, w)〉 = (Mφf)(w) = φ(w)f(w)

= φ(w)〈f,K1(·, w)〉 = 〈f, φ(w)K1(·, w)〉.

Because f was arbitrary, we have proven that M∗φK2(·, w) = φ(w)K1(·, w).

As with reproducing kernels, we can find a convenient criterion characterising the
functions which are multipliers.
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Theorem 2.33. Let Ω be a set and let H1,H2 ⊂ CΩ be two functional Hilbert spaces
with reproducing kernels K1,K2. Then for φ : Ω→ C, the following are equivalent:
(i) φ ∈M(H1,H2),
(ii) There is a constant c > 0 such that the map

γc : Ω× Ω→ C, (z, w) 7→ c2K2(z, w)− φ(z)K1(z, w)φ(w)

is positive definite (or equivalently, φ(z)K1(z, w)φ(w) ≺ K2(z, w)).

Proof. (i) =⇒ (ii): For n ∈ N∗, c1, . . . , cn ∈ C, z1, . . . , zn ∈ Ω and c ≥ ‖M∗φ‖ = ‖Mφ‖,
we have by Lemma 2.32:

n∑
i=1

n∑
j=1

cicjγc(zj , zi)

=c2
n∑
i=1

n∑
j=1

cicjK2(zj , zi)−
n∑
i=1

n∑
j=1

cicjφ(zj)K1(zj , zi)φ(zi)

=c2
n∑
i=1

n∑
j=1

cicj〈K2(·, zi),K2(·, zj)〉 −
n∑
i=1

n∑
j=1

cicjφ(zj)〈K1(·, zi),K1(·, zj)〉φ(zi)

=c2〈
n∑
i=1

ciK2(·, zi),
n∑
j=1

cjK2(·, zj)〉 − 〈
n∑
i=1

ciφ(zi)K1(·, zi),
n∑
j=1

cjφ(zj)K1(·, zj)〉

=c2‖
n∑
i=1

ciK2(·, zi)‖2 − ‖
n∑
i=1

ciφ(zi)K1(·, zi)‖2

=c2‖
n∑
i=1

ciK2(·, zi)‖2 − ‖M∗φ
n∑
i=1

ciK1(·, zi)‖2 ≥ 0. (2.5)

So γc is positive definite for c ≥ ‖Mφ‖.
(ii) =⇒ (i): Let c > 0 be a positive real number such that γc is positive definite. Sup-
pose now we have n ∈ N∗, c1, . . . , cn ∈ C, z1, . . . , zn ∈ Ω such that

∑n
i=1 ciK2(·, zi) = 0.

Then (2.5) implies

‖
n∑
i=1

ciφ(zi)K1(·, zi)‖2 ≤ c2‖
n∑
i=1

ciK2(·, zi)‖2 = 0

Hence Corollary 2.5 shows that there is a unique linear map

T0 : LH({K2(·, z); z ∈ Ω})→ LH({K1(·, z); z ∈ Ω})

with T0K2(·, z) = φ(z)K1(·, z). Inequality (2.5) also shows that T0 is bounded. There-
fore it can be extended to a bounded linear map T ∈ B(H2,H1). Then we find for
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f ∈ H1, z ∈ Ω:

(T ∗f)(z) = 〈T ∗f,K2(·, z)〉 = 〈f, TK2(·, z)〉 = 〈f, φ(z)K1(·, z)〉 = 〈φ(z)f,K1(·, z)〉
= φ(z)f(z) = (φf)(z).

Thus φf = T ∗f ∈ H2 for all f ∈ H1, so φ is a multiplier from H1 to H2.

2.7 Vector bundles

In the study of Cowen-Douglas operators, complex vector bundles arise in a natural
way. In [Zhu00] Zhu uses a result from differential geometry to simplify the representa-
tion of Cowen-Douglas operators found in [CD78]. We will recall the basic definitions
(restricting ourselves to complex vector bundles) and present the result used by Zhu.
The following paragraph is mostly a translation of parts of Chapter 29 in [For77], but
adapted to our purposes.

Definition 2.34. Let n ∈ N∗ and let π : E → X be a continuous map between
topological spaces E and X. Let every fiber Ex := π−1({x}) for x ∈ X be equipped
with the structure of an n-dimensional complex vector space. Then π : E → X (or
short: E) is called a vector bundle of rank n over X if the following condition is
satisfied:
For every a ∈ X, there exist an open neighbourhood U ⊂ X and a homeomorphism h
from EU = π−1(U) to U × Cn (equipped with the product topology) satisfying:

1. pr1 ◦ h = π,

2. for every x ∈ U , the map h|Ex
is a vector space isomorphism from Ex to {x} ×

Cn ∼= Cn.

In this case E is called the total space and X is called the base space of the vector
bundle. The map h : EU → U × Cn is called a linear chart of E over U .
If (Ui)i∈I is a family of open sets Ui ⊂ X covering X and hi : EUi

→ Ui × Cn are
linear charts, then A = (hi)i∈I is called an atlas of E.

Definition 2.35. A vector bundle of rank n is called trivial if (with notation as above)
there exists a global linear chart h : E → X × Cn.

Definition 2.36. Let πi : Ei → X, i = 1, 2 be two vector bundles over the same base
space. A vector bundle morphism from E1 to E2 is a continuos map f : E1 → E2 such
that

1. π1 = π2 ◦ f

2. for every x ∈ X1, the map f |π−1
1 ({x}) : π−1

1 ({x})→ π−1
2 ({x}) is linear.

The vector bundles which we will use in the study of Cowen-Douglas operators will
have an additional structure. In order to define it, we cite the following theorem
from [For77] without proof.
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Theorem 2.37. Let π : E → X a vector bundle of rank n and let (hi)i∈I be an
atlas consisting of functions hi : EUi

→ Ui × Cn for i ∈ I. Then there are uniquely
determined continuous maps

gij : Ui ∩ Uj → GL(n,C)

such that

(hi ◦ h−1
j )(x, t) = (x, gij(x)t) for all (x, t) ∈ (Ui ∩ Uj)× Cn.

Definition 2.38. The functions gij in Theorem 2.37 are called transition functions
for the atlas (hi)i∈I .

Now we can define the notion of holomorphic vector bundles. In [For77] the base
space of the vector bundle is a Riemann surface. We use an open subset of Cd instead.

Definition 2.39. Let X ⊂ Cd be an open set equipped with the relative topology of Cd
and let π : E → X a vector bundle of rank n over X. Furthermore, let

A = (hi : EUi
→ Ui × Cn; i ∈ I)

be an atlas of E. Then A is called holomorphic if the corresponding transition functions
gij : Ui ∩ Uj → GL(n,C) are holomorphic for all i, j ∈ I with Ui ∩ Uj 6= ∅.
Two holomorphic atlases A,A′ of E are called holomorphically equivalent, if A∪A′ is
a holomorphic atlas of E. It is easy to prove that this defines an equivalence relation on
the set of all holomorphic atlases of E. The equivalence classes are called holomorphic
linear structures.
A holomorphic vector bundle is a vector bundle π : E → X together with a holomorphic
linear structure.
A holomorphic vector bundle π : E → X is called holomorphically (or analytically)
trivial if its holomorphic linear structure contains an atlas consisting of a single linear
chart h : E → X × Cn .

Definition 2.40. Let πi : Ei → X be holomorphic vector bundles of rank ni ∈ N∗,
i = 1, 2. Then a map F : E1 → E2 is called a holomorphic bundle map if it is a vector
bundle morphism and if, for all linear charts hi : π−1

i (Ui) → Ui × Cni contained in
atlases representing the holomorphic linear structure of Ei for i = 1, 2 with U1∩U2 6= ∅,
we have h2 ◦ F ◦ h−1

1 : (U1 ∩ U2)× Cn1 → (U1 ∩ U2)× Cn2 is a holomorphic map.

Definition 2.41. Let n ∈ N∗, π : E → X a vector bundle of rank n and U ⊂ X open.
Then a section (or cross-section) in E over U is a continuous function f : U → E
such that π ◦ f = idU . If hi : EUi

→ Ui × Cn is a linear chart with Ui ∩ U 6= ∅, then
the map fi : Ui ∩U → Cn with fi = pr2 ◦ hi ◦ f is called the representation of f in the
chart hi.

Note that the above map fi is continuous and satisfies

hi(f(x)) = (x, fi(x)) ∀x ∈ Ui ∩ U.
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Definition 2.42. Let π : E → X be a holomorphic vector bundle of rank n and let
U ⊂ X be open. Let (hi : EUi

→ Ui × Cn; i ∈ I) be an atlas representing the
holomorphic linear structure of E. Then a section f : U → E in E over U is called
holomorphic if its representation fi : Ui ∩ U → Cn in the chart hi is a holomorphic
function for all i ∈ I with Ui ∩ U 6= ∅.

Remark 2.43. It is easy to show that the above definition does not depend on the
choice of the atlas (hi; i ∈ I) in the holomorphic linear structure of E.

Definition 2.44. Let n ∈ N∗, π : E → X a holomorphic vector bundle of rank n
and U ⊂ X open. Then holomorphic sections f1, . . . , fn : U → E are called a local
holomorphic frame in E over U if π−1(x) = LH({f1(x), . . . , fn(x)}) with respect to the
vector space structure of π−1(x) for all x ∈ U . For U = X, sections with this property
f1, . . . , fn are called a global holomorphic frame.

Lemma 2.45. Let πi : Ei → X be a holomorphic vector bundle of rank ni for i = 1, 2
and let f1 : U → E1 be a holomorphic section on an open set U ⊂ X. If F : E1 → E2

is a holomorphic bundle map, then f2 = F ◦ f : U → E2 is a holomorphic section.

Proof. The function f2 is continuous as the composition of continuous functions and
π2 ◦ f2 = π2 ◦ F ◦ f1 = π1 ◦ f1 = idU as F is a vector bundle morphisms and f1 a
section. Thus f2 is a section.
Let now (hji : EUj

i
→ U ji × Cn; i ∈ Ij) be atlases representing the holomorphic linear

structure of Ej for j = 1, 2. Let i ∈ I2 such that U ∩ U2
i 6= ∅. We have to show

that the representation f i2 : U2
i ∩ U → Cn2 of f2 in the chart h2

i is holomorphic.
Let ω0 ∈ U2

i ∩ U and j ∈ I1 be given such that ω0 ∈ U1
j . Then the representation

f j1 : U1
j ∩U → Cn1 of f1 in h1

j is holomorphic and as F is a holomorphic bundle map,

the function h2
i ◦F ◦ (h1

j )
−1 : (U1

j ∩U2
i )×Cn1 → (U1

j ∩U2
i )×Cn2 is holomorphic. Then

in the open neighbourhood Ũ = U ∩U1
j ∩U2

i of ω0 the function f i2 can be described as

f i2 = pr2 ◦ h2
i ◦ f2 = pr2 ◦ h2

i ◦ F ◦ f1

= pr2︸︷︷︸
holomorphic

◦h2
i ◦ F ◦ (h1

j )
−1︸ ︷︷ ︸

holomorphic

◦ h1
j ◦ f1︸ ︷︷ ︸

=idŨ×f
j
1 :holomorphic

.

Thus f i2 is holomorphic, which completes the proof.

Definition 2.46. Let π : E → X be a holomorphic vector bundle with representing
atlas (hi : EUi

→ Ui × Cn; i ∈ I). Then E is called a hermitian holomorphic vector
bundle if each fibre Ex = π−1({x}) (x ∈ X) is equipped with a scalar product (·, ·)Ex

:
Ex × Ex → C in such a way that the unique matrix-valued functions mi : Ui →
M(n× n,C) with

(h−1
i (x, c), h−1

i (x, d))Ex
= 〈mi(x)c, d〉Cn (x ∈ Ui, c, d ∈ Cn)

are C∞-functions for every i ∈ I.
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Remark 2.47. (a) In the above setting the matrices mi(x) ∈M(n×n,C) are positive
and invertible.
(b) The definition does not depend on the choice of the representing atlas. More pre-
cisely, if hi : EUi → Ui × Cn and hj : EUj → Uj × Cn (i, j ∈ I) are two charts in a
representing atlas with U = Ui ∩ Uj 6= ∅ and if gij : U → GL(n,C) is the associated
transition function, that is,

hi ◦ h−1
j (x, c) = (x, gij(x)c) for (x, c) ∈ U × Cn,

then by definition

〈mi(x)gij(x)c, gij(x)d〉Cn = (h−1
i (x, gij(x)c), h−1

i (x, gij(x)d))Ex

= (h−1
j (x, c), h−1

j (x, d))Ex
= 〈mj(x)c, d〉Cn

for x ∈ U , c, d ∈ Cn. Therefore the relation

gij(x)∗mi(x)gi,j(x) = mj(x)

holds for all x ∈ U . As the function gij is holomorphic and thus C∞, the map mi is
C∞ on U if and only if the map mj is C∞ on U .

Definition 2.48. Two hermitian holomorphic vector bundles πi : Ei → X, i = 1, 2
are called equivalent if there is a holomorphic bundle map F : E1 → E2 such that

F |π−1
1 ({x}) : π−1

1 ({x})→ π−1
2 ({x})

defines a unitary map for all x ∈ X.
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3 Uniqueness sets

In order to be able to prove the existence of spanning holomorphic cross-sections, we
need to construct uniqueness sets for Banach spaces of holomorphic functions. We
recall the definition of a uniqueness set.

Definition 3.1. Let Ω be a set, X ⊂ CΩ a set of functions on Ω. A subset A ⊂ Ω is
called a uniqueness set for X if, for all f ∈ X, we have that f |A = 0 already implies
f = 0.

As a first step we will construct a uniqueness set for a special situation and then
conclude that we actually covered a very broad range of spaces.

Theorem 3.2. Let Ω ⊂ Cd be open and let γ : Ω→ X ′ be a holomorphic function into
the topological dual of a Banach space X. Consider the set Xγ = {x̂;x ∈ X} where
x̂ : Ω→ C is defined by

x̂(z) := 〈x, γ(z)〉.

for x ∈ X. Then there exists a countable subset A ⊂ Ω such that

1. A has no accumulation point in Ω,

2. A is a uniqueness set for Xγ .

Proof. Let K ⊂ Ω be compact. Then the function γ|K : K → X ′ is uniformly
continuous due to the Heine-Cantor theorem. Now consider an exhaustion by compact
sets (Kn)n∈N of Ω, i.e., for all n ∈ N the set Kn ⊂ Ω is compact, Kn ⊂ Int(Kn+1) and⋃
n∈NKn = Ω. We formally define K−1 = ∅. Then we choose a sequence (ln)n∈N in

N∗ and elements (ain)lni=1 in Ω as follows:
Let n ∈ N, then K ′n = Kn\Int(Kn−1) is compact and thus there exists δn > 0 such
that

‖γ(z1)− γ(z2)‖ < 1

n
for all z1, z2 ∈ K ′n with |z1 − z2| < δn. (3.1)

We have an open covering K ′n ⊂
⋃
z∈K′n

Bδn(z) of the compact set K ′n. So there exist

ln ∈ N∗, a1
n, . . . , a

ln
n ∈ K ′n such that K ′n ⊂

⋃ln
i=1Bδn(ain) is a finite subcovering.

We claim that the set A = {ain;n ∈ N, i ∈ Nln} has the properties we required.
(1) Let z ∈ Ω be arbitrary. Then there exists n ∈ N with z ∈ Kn−1 ⊂ Int(Kn).
Then for all m > n, i ∈ Nlm the point aim ∈ Km\Int(Km−1) ⊂ Km\Int(Kn) does
not lie in Int(Kn). So of all the elements of A at most the finitely many points
{aik; k ∈ Nn, i ∈ Nlk} can belong to the open neighbourhood Int(Kn) of z. Hence z is
not an accumulation point of A.
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(2) Assume we have f ∈ Xγ with f(a) = 0 for all a ∈ A, but f 6= 0. Then there is
x ∈ X, x 6= 0, with f(z) = 〈x, γ(z)〉 for all z ∈ Ω. We now show that

|f(z)| < ‖x‖
n

for n ∈ N∗, z ∈ K ′n.

Let n ∈ N∗, z ∈ K ′n be given. Then there exists i ∈ Nln such that |z − ain| < δn. By
(3.1) we obtain that ‖γ(z)− γ(ain)‖ < 1

n . Then we conclude

|f(z)| = |f(z)− f(ain)| = |〈x, γ(z)〉 − 〈x, γ(ain)〉|

= |〈x, γ(z)− γ(ain)〉| ≤ ‖γ(z)− γ(ain)‖ · ‖x‖ < ‖x‖
n
.

Now by the version of the maximum principle formulated in Theorem 2.9, for n ∈ N,
the continuous function |f | achieves its maximum on the compact set Kn on the
boundary ∂Kn ⊂ Kn\Int(Kn) ⊂ Kn\Int(Kn−1) = K ′n. But this implies

|f(z)| < ‖x‖
n

for z ∈ Kn.

Let z ∈ Ω be arbitary. Then there exists n ∈ N with z ∈ Km for all m ≥ n. But then
by the inequality above, |f(z)| must be arbitarily small, so f(z) = 0. Thus f = 0, a
contradiction.

Proposition 3.3. Let Ω ⊂ Cd be open and let X be a Banach space of holomorphic
functions on Ω with continuous point evaluations

δz : X → C, f 7→ f(z)

for z ∈ Ω. Then the map
δ : Ω→ X ′, z 7→ δz

is analytic.

Proof. Let g ∈ X be a function. Then g(z) = δz(g) for all z ∈ Ω. Thus δz(g) defines
a holomorphic function and so by Lemma 2.16 the function δ is holomorphic.

Corollary 3.4. Let Ω ⊂ Cd be open and let X be a Banach space of holomorphic
functions on Ω with continuous point evaluations δz for z ∈ Ω. Then there exists a
countable subset A ⊂ Ω such that

1. A has no accumulation point in Ω and

2. A is a uniqueness set for Xγ .

Proof. By Proposition 3.3 the function δ : Ω → X ′, z 7→ δz, is holomorphic. With
notation as in Theorem 3.2 we have with γ = δ:

f̂(z) = 〈f, δz〉 = f(z) for f ∈ X, z ∈ Ω.
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Therefore Xδ = X as subsets of CΩ. Now choose a uniqueness set A for Xδ without
accumulation point in Ω as in Theorem 3.2. Let f ∈ X with f(a) = 0 for all a ∈ A.

Then f̂ ∈ Xδ and f̂(a) = f(a) = 0 for all a ∈ A. But this implies f(z) = f̂(z) = 0 for
all z ∈ Ω, so f = 0. Thus A is also a uniqueness set for X and has no accumulation
point in Ω as required.

The proof of the above corollary shows that every Banach space X of holomorphic
functions with continuous point evaluations can be identified with Xδ as constructed
above. Lemma 3.6 below shows that also the converse is true, that is Xγ can be
equipped with the structure of a Banach space in a natural way.
We recall now a basic result which will be used in the proof.

Proposition 3.5. Let X be a complex Banach space and let M ⊂ X ′ be a weak∗-closed
subspace. Then for u ∈M , the function û : X/⊥M → C, û([x]) = u(x) is well-defined,
linear and bounded and the map

M → (X/⊥M)′, u 7→ û

is an isometric isomorphism between Banach spaces.

Lemma 3.6. Let Ω ⊂ Cd be open and let γ : Ω→ X ′ be a holomorphic function into
the topological dual of a Banach space X. For every x ∈ X, define a holomorphic
function x̂ : Ω→ C by

x̂(z) = 〈x, γ(z)〉 ∀z ∈ Ω.

Then the set Xγ = {x̂;x ∈ X} can be equipped with the structure of a Banach space
such that, for all K ⊂ Ω compact, there exists C > 0 with

|x̂(z)| ≤ C‖x̂‖ for x ∈ X and z ∈ K.

Proof. The functions x̂ are holomorphic by Lemma 2.16. The set Xγ is a linear sub-
space of CΩ and the map φ0 : X → Xγ , x 7→ x̂, is linear, because

αx̂+ βŷ = α〈x, γ(·)〉+ β〈y, γ(·)〉 = 〈αx+ βy, γ(·)〉 = ̂αx+ βy for α, β ∈ C, x, y,∈ X.

By definition, φ0 is surjective. We determine the kernel of φ0:

ker(φ0) = {x ∈ X; 〈x, γ(z)〉 = 0 for every z ∈ Ω}

= ⊥{γ(z); z ∈ Ω} = ⊥LH({γ(z); z ∈ Ω})
w∗
.

So with the definition
X∗0 = LH({γ(z); z ∈ Ω})

w∗
⊂ X ′

we see that ker(φ0) = ⊥X∗0 . But then

φ : X0 = X/⊥X∗0 → Xγ , [x] 7→ φ0(x) = x̂

is an isomorphism of vector spaces. We now define a norm on Xγ by ‖x̂‖ = ‖[x]‖X0
.
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As ⊥X∗0 ⊂ X is a closed subspace and X is a Banach space, also X0 and Xγ are
Banach spaces.
Let K ⊂ Ω be compact. Then for all x ∈ X0, z ∈ K we have that

|x̂(z)| = |〈x, γ(z)〉| = |〈[x], γ̂(z)〉| ≤ ‖[x]‖‖γ̂(z)‖ = ‖x̂‖‖γ(z)‖,

where we have used Proposition 3.5. As γ is holomorphic, it is continuous and so
‖γ(z)‖ is bounded on the compact set K. This completes the proof.
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4 Vector bundles associated with
Cowen-Douglas operators

In the following section we will show that every Cowen-Douglas operator tuple in
Bn(Ω) gives rise to a canonical hermitian holomorphic vector bundle of rank n over Ω.
This was already shown in [CD78] for single Cowen-Douglas operators (i.e. Ω ⊂ C).

Proposition 4.1. Let H1, H2 be Hilbert spaces, let T ∈ B(H1, H2) be an operator
with closed range and let P ∈ B(H1) be the orthogonal projection on kerT . Then there
exists an operator S ∈ B(H2, H1) such that ST = I − P .

Proof. The linear mapping

T̃ : ker(T )⊥ → Ran(T ), x 7→ Tx

is a bijection between Banach spaces and hence the inverse operator S̃ : Ran(T ) →
ker(T )⊥ is continuous. Now choose any operator S ∈ B(H2, H1) extending S̃, for
instance by defining S|Ran(T )⊥ = 0. Then ST = I −P is the orthogonal projection on

ker(T )⊥

Theorem 4.2. Let T = (Ti)
d
i=1 ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas tuple with

notation as in Definition 2.1. Then for each ω0 ∈ Ω, there exist an open neighbourhood
V ⊂ Ω and holomorphic functions γ1, . . . , γn : V → H such that

LH({γ1(ω), . . . , γn(ω)}) = kerTω =

d⋂
i=1

ker(Ti − ωi) for ω ∈ V.

Proof. Without loss of generality we may assume ω0 = 0 (otherwise replace Ω by
Ω−ω0 and T by T −ω0 = (T1−ω0,1, . . . , Td−ω0,d)). Then for T0 ∈ B(H,Hd), choose
S ∈ B(Hd, H) as in Proposition 4.1 such that ST0 = I−P , where P is the orthogonal

projection on kerT0 =
⋂d
i=1 ker(Ti). Now we decompose S in the following way: for

k ∈ Nd we define
Sk : H → H, x 7→ Sik(x),

where ik : H → Hd is the inclusion in the k-th component of Hd. Then we have

S(y1, . . . , yd) = S1y1 + . . .+ Sdyd for y1, . . . , yd ∈ H.

Now for M = dmaxi=1,...,d ‖Si‖, we define R = M−1 for M > 0 and R = ∞ for
M=0 and set V = PR(0) ∩ Ω. Then with the Neumann series, the operator B(ω) =

28



I −ω1S1− . . .−ωdSd has a continuous inverse A(ω) for ω ∈ V , because for M > 0 we
have

‖ω1S1 + . . .+ ωdSd‖ ≤ |ω1|‖S1‖+ . . .+ |ωd|‖Sd‖ < dM−1 max
i=1,...,d

‖Si‖ = 1

and for M = 0 it follows that S1 = . . . = Sd = 0, hence the statement is trivial.
Consider the functions Q : V → B(Hd, H), P : V → B(H) defined by

Q(ω) = A(ω)S,

P (ω) = A(ω)P

for ω ∈ V . As dim ker T0 = n and A(ω) is an isomorphism, dim Ran(P (ω)) = n. For
ω ∈ V , we show that Q(ω)Tω = I − P (ω): Let x ∈ H be arbitrary. Then

(I − P (ω))x = A(ω)((I − P )− ω1S1 − . . .− ωdSd)x
= A(ω)(ST0 − ω1S1 − . . .− ωdSd)x
= A(ω)(S(T1x, . . . , Tdx)− ω1S1x− . . .− ωdSdx)

= A(ω)(S1(T1 − ω1)x+ . . .+ Sd(Td − ωd)x)

= A(ω)S((T1 − ω1)x, . . . , (Td − ωd)x)

= Q(ω)Tωx.

Now we conclude that

kerTω ⊂ ker(Q(ω)Tω) = ker(I − P (ω)) ⊂ RanP (ω),

where we used that x = P (ω)x ∈ RanP (ω) for all x ∈ ker(I − P (ω)). As

n = dim kerTω = dim RanP (ω),

we must have kerTω = RanP (ω). We define functions γ1, . . . , γn : V → H by γi(ω) =
P (ω)ei ∈ kerTω for i = 1, . . . , n, where (ei)

n
i=1 is a basis of kerT0. For each ω ∈ V ,

the vectors γ1(ω), . . . , γn(ω) are linearly independent as A(ω) is an isomorphism. It
remains to show that they are holomorphic functions. For this it suffices to show that
A(ω) is holomorphic by Lemma 2.16. It is obvious that the map

B : V → B(H), ω 7→ I − ω1S1 − . . .− ωdSd

is continuous and partially holomorphic and thus holomorphic. By construction, B(ω)
is invertible for all ω ∈ V with inverse A(ω). Therefore by Theorem 2.19, A is holo-
morphic, which finishes the proof.

Let T = (Ti)
d
i=1 ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas operator tuple on an open

set Ω ⊂ Cd. We equip the set

ET = {(ω, x) ∈ Ω×H;x ∈ ker Tω}
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with the relative topology of the product toplology of Ω×H. Then the map

π : ET → Ω, (ω, x) 7→ ω.

is continuous. For ω ∈ Ω, the fiber π−1({ω}) = {ω} × ker Tω can be identified with
ker Tω and thus becomes an n-dimensional complex vector space.
By Theorem 4.2, for every point ω0 ∈ Ω we can choose an open neighbourhood Vω0

⊂
Ω of ω0 and holomorphic functions γω0

1 , . . . , γω0
n : Vω0

→ H such that the vectors
γω0

1 (ω), . . . , γω0
n (ω) form a basis of ker Tω for every point ω ∈ Vω0

. Thus we can define
bijective maps hω0 : π−1(Vω0)→ Vω0 × Cn by setting

hω0
(ω, x) = (ω, (αi)

n
i=1) if x =

n∑
i=1

αiγ
ω0
i (ω).

Obviously the maps (hω0
)ω0∈Ω depend on the choices of Vω0

and γω0
1 , . . . , γω0

n . For
brevity of notation, we will suppress these additional parameters.

Theorem 4.3. Let T = (Ti)
d
i=1 ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas tuple on an

open set Ω ⊂ Cd. Then π : ET → Ω defines a vector bundle of rank n over Ω. Any
family (hω0

)ω0∈Ω chosen as explained above is a holomorphic atlas of ET .

Proof. For every ω0 ∈ Ω, the map hω0
is a linear chart:

It is obvious that pr1 ◦hω0
= π|π−1(Vω0

). For every ω ∈ Vω0
, the map hω0

|(ET )ω defines
an isomorphism

π−1({ω}) = {ω} × ker Tω0 → {ω} × Cn.

So we have to show that hω0
is a homeomorphism. First, it is bijective with inverse

given by

h−1
ω0

: Vω0
× Cn → π−1(Vω0

),

(ω, (αi)
n
i=1) 7→ (ω,

n∑
i=1

αiγ
ω0
i (ω)).

It is clear that this map is continuous as γω0
1 , . . . , γω0

n are continuous. Now we show
that hω0 is continuous. Let (ω, x) ∈ π−1(Vω0). Then we want to determine α(ω, x) =
(αi(ω, x))ni=1 ∈ Cn with

∑n
i=1 αi(ω, x)γω0

i (ω) = x. For this we apply the linear forms
〈·, γω0

j (ω)〉 to both sides of this equation for j = 1, . . . , n. This yields the following
system of linear equations:

(〈γω0
i (ω), γω0

j (ω)〉)nj,i=1α(ω, x) = (〈x, γω0
j (ω)〉)nj=1.

As γω0
1 (ω), . . . , γω0

n (ω) are linearly independent, the matrix

A(ω) = (〈γω0
i (ω), γω0

j (ω)〉)nj,i=1
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is invertible by Proposition 2.3. Thus the equation above determines α(ω, x) uniquely:

α(ω, x) = A(ω)−1(〈x, γω0
j (ω)〉)nj=1.

As the map A : Vω0
→ Cn×n, ω 7→ A(ω), is continuous, Ran(A) ⊂ GL(n,C) and

the map GL(n,C)→ GL(n,C), M 7→ M−1, is continuous by Cramer’s rule, the map
α : π−1(Vω0) → Cn, (ω, x) 7→ α(ω, x), is continuous. But this implies that hω0 is
continuous as hω0(ω, x) = (ω, α(ω, x)) for all (ω, x) ∈ π−1(Vω0).
Now we show that the family h = (hω0

)ω0∈Ω is a holomorphic atlas of ET . It is clear
that the hω0

are linear charts on ET by the above argument and that (Vω0
)ω0∈Ω is an

open cover of Ω. Thus h is an atlas of ET . So let ω1, ω2 ∈ Ω with Vω1
∩Vω2

6= ∅. Then
we have to show that the transition function g : Vω1 ∩ Vω2 → GL(n,C) with

(hω1
◦ h−1

ω2
)(ω, α) = (ω, g(ω)α) for ω ∈ Vω1

∩ Vω2
, α ∈ Cn

is holomorphic.
Let ω0, ω ∈ Vω1

∩ Vω2
, α ∈ Cn be arbitrary. Then we have

(hω1
◦ h−1

ω2
)(ω, α) = hω1

(ω,

n∑
i=1

αiγ
ω2
i (ω)) = (ω, β(ω, α)),

where β(ω, α) ∈ Cn is a vector such that
∑n
i=1 βi(ω, α)γω1

i (ω) =
∑n
i=1 αiγ

ω2
i (ω). Now

applying the linear forms 〈·, γω1
j (ω0)〉, for j = 1, . . . , n, to this equation gives the

following system of linear equations for β(ω, α):

(〈γω1
i (ω), γω1

j (ω0)〉)nj,i=1β(ω, α) = (〈γω2
i (ω), γω1

j (ω0)〉)nj,i=1α. (4.1)

We consider the function

A : Vω1
∩ Vω2

→ Cn×n, ω 7→ (〈γω1
i (ω), γω1

j (ω0)〉)nj,i=1.

Again with Proposition 2.3, the matrix A(ω0) is regular, so det(A(ω0)) 6= 0. As
the function det(A(·)) is continuous, there is an open neighbourhood V of ω0 with
V ⊂ Vω1 ∩ Vω2 such that A(ω) is a regular matrix for all ω ∈ V . By Proposition
2.13 the function A|V is a holomorphic map, as all its components are holomorphic
functions, with A(V ) ⊂ GL(n,C). Thus by Theorem 2.19 the map A(·)−1 : V →
Cn×n, ω → A(ω)−1, is holomorphic. So Equation 4.1 yields

β(ω, α) = A(ω)−1(〈γω2
i (ω), γω1

j (ω0)〉)nj,i=1︸ ︷︷ ︸
g(ω)

α for ω ∈ V.

A function V → Cn×n is holomorphic if and only if its components are holomorphic
functions. Thus by calculating the matrix multiplication above it is clear that the
components of g(ω) are holomorphic as sums of products of holomorphic functions.
Thus g is holomorphic around ω0 and as ω0 ∈ Vω1

∩Vω2
was arbitrary, g is holomorphic
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on Vω1
∩ Vω2

. This completes the proof.

Remark 4.4. The final part of the proof above also shows that, if we choose different
sets Ṽω0 and maps γ̃ω0

1 , . . . , γ̃ω0
n for every ω0 ∈ Ω as described above Theorem 4.3,

the resulting holomorphic atlas (h̃ω0
)ω0∈Ω is equivalent to (hω0

)ω0∈Ω. Therefore the
following definition makes sense.

Definition 4.5. Let T = (Ti)
d
i=1 ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas tuple on an

open set Ω ⊂ Cd. Then the holomorphic vector bundle π : ET → Ω together with the
equivalence class of an atlas (hω0

)ω0∈Ω is called the vector bundle associated with T .

Remark 4.6. Note that the the vector bundle associated with an operator T ∈ Bn(Ω)
is also canonically a hermitian vector bundle. For ω ∈ Ω, we define the scalar product
〈·, ·〉ω on {ω} × kerTω ∼= kerTω ⊂ H as the restriction of the scalar product on H.
To see that this turns ET into a hermitian holomorphic vector bundle, it suffices to
observe that, with the notation from the proof of Theorem 4.3, the identities

〈h−1
ω0

(ω, (αi)
n
i=1), h−1

ω0
(ω, (βj)

n
j=1)〉 = 〈

n∑
i=1

αiγ
ω0
i (ω),

n∑
j=1

βjγ
ω0
j (ω)〉

=

n∑
i,j=1

〈γω0
i (ω), γω0

j (ω)〉αiβj =
〈
(〈γω0

i (ω), γω0
j (ω)〉)nj,i=1(αi)

n
i=1, (βj)

n
j=1

〉
Cn

hold.

The following Lemma shows that the holomorphic structure of the vector bundle ET
is compatible with the notion of holomorphic maps into Banach spaces in Definition
2.10.

Lemma 4.7. Let T = (Ti)
d
i=1 ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas tuple and let

π : ET → Ω be the vector bundle associated with T . Then for U ⊂ Ω open, a map
f : U → H with f(ω) ∈ kerTω for all ω ∈ U induces a holomorphic section

f̃ : U → ET , ω 7→ (ω, f(ω))

in ET over U if and only if it is holomorphic in the sense of Definition 2.10.

Proof. First assume that f̃ : U → ET is a holomorphic section in ET over U and let
ω0 ∈ U be arbitary. By definition the representation f̃ω0 : Vω0 ∩ U → Cn of f̃ is
holomorphic and satisfies hω0

(f̃(ω)) = (ω, f̃ω0
(ω)) for ω ∈ Vω0

∩ U . Applying h−1
ω0

we obtain that

f̃(ω) = (ω,

n∑
i=1

f̃ω0(ω)iγ
ω0
i (ω)).

Thus the function f satisfies

f(ω) =

n∑
i=1

f̃ω0
(ω)iγ

ω0
i (ω)
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and hence it is holomorphic by Proposition 2.12 and due to the fact that the compo-
nents of fω0

are holomorphic functions.
Now let f : U → H be holomorphic with f(ω) ∈ kerTω for all ω ∈ U . As f is
continuous, the function f̃ it is obviously a section. Let (hω0)ω0∈Ω be a holomorphic
atlas of ET as in the proof of Theorem 4.3. Fix a point ω0 ∈ Ω with U ∩ Vω0 6= ∅.
Let hω0

: π−1(Vω0
) → Vω0

× Cn be a linear chart in the atlas chosen above such that
U ∩ Vω0

6= ∅. Choose ω1 ∈ U ∩ Vω0
. Then as in the proof of Theorem 4.3 we see that

there is a neighbourhood V ⊂ U ∩ Vω0
of ω1 such that the representation f̃ω0

of f̃ in
hω0 has the form

f̃ω0
(ω) = [(〈γω0

i (ω), γω0
j (ω1)〉)nj,i=1]−1(〈f(ω), γω0

j (ω1)〉)nj=1

for ω ∈ V . With the same arguments as above, this function is holomorphic in ω,
which completes the proof.

Definition 4.8. Let Ω ⊂ Cd be open and let γ1, . . . γn : Ω → H be holomorphic
functions with values in a Hilbert space H. We say that γ1, . . . , γn span H if

H = LH({γk(z); k ∈ Nn, z ∈ Ω}).

Definition 4.9. Let Ω ⊂ Cd be open and let T ∈ Bn(Ω) ⊂ B(H)d be a Cowen-
Douglas tuple. Then a spanning holomorphic cross-section in ET is a holomorphic
function γ : Ω→ H spanning H such that γ(ω) ∈ ker(Tω) for all ω ∈ Ω.

In our construction of spanning holomorphic cross-sections, we will use the existence
of a global holomorphic frame for the vector bundle ET . The following definition
characterises the sets Ω ⊂ Cd which assure this condition for operator tuples T ∈
Bn(Ω).

Definition 4.10. Let d ∈ N∗, then we call an open subset Ω ⊂ Cd admissible if every
holomorphic vector bundle over Ω is analytically trivial.

Now we can use a result from complex geometry found by Grauert, which states that
a large class of open subsets of Cd is admissible. The following results are Theorem 6
and 7 in [Gra58a] respectively.

Theorem 4.11. Let Ω be a contractible, holomorphically complete complex space.
Then every holomorphic fibre bundle π : ET → Ω is holomorphically trival.

Theorem 4.12. Let Ω be a non-compact Riemann surface and π : ET → Ω a holo-
morphic fibre bundle. If the structure group of ET is a connected, complex Lie-group
then ET is holomorphically trival.

We now have to adapt these abstract theorems to our specific situation. In order to
do this in detail, it would be necessary to introduce many concepts from differential
and complex geometry. This would be out of place in this Bachelor thesis and therefore
we refer the interested reader to the classical literature on these subjects. All we need
to know at this point is that
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1. Holomorphic vector bundles of rank n ∈ N∗ are holomorphic fibre bundles, where
the fibre is the vector space Cn and the structure group is the group GL(n,C) ;
the fibre bundle is analytically trivial if and only if it is analytically trivial as a
holomorphic vector bundle.

2. An open connected subset Ω ⊂ Cd is a holomorphically complete space if and
only if it is a domain of holomorphy (cf. [Gra58b], Section 2.1).

3. Every nonempty open subset Ω ⊂ C is a non-compact Riemann surface in a
canonical way.

4. The group GL(n,C) is a connected Lie-group.

Corollary 4.13. Let Ω ⊂ Cd open. Then for d = 1 (i.e., Ω ⊂ C) or Ω a contractible
domain of holomorphy we have that Ω is admissible.

Corollary 4.14. Let Ω ⊂ Cd be an admissible open set and let T ∈ Bn(Ω) ⊂ B(H)d be
a Cowen-Douglas tuple of degree n. Then there exist holomorphic functions γ1, . . . , γn :
Ω→ H such that ker(Tω) = LH({γ1(ω), . . . , γn(ω)}) for all ω ∈ Ω.

Proof. By Theorem 4.11 the vector bundle ET is trival. Let h : ET → Ω × Cn be
a linear chart in an atlas representing the holomorphic linear structure of ET . For
i ∈ Nn, we define

γ̃i : Ω→ ET , ω 7→ h−1(ω, ei),

γi : Ω→ H, ω 7→ pr2 ◦ γ̃i.

The representation of γ̃i in the chart h is obviously just the constant function ei, which
is holomorphic. Hence γ̃i is a holomorphic section and by Lemma 4.7 the map γi is a
holomorphic function from Ω to H for i ∈ Nn. As (e1, . . . , en) form a basis of Cn and
h(ω, ·) is an isomorphism of vector spaces, the vectors (γ1(ω), . . . , γn(ω)) form a basis
of π−1({ω}) = ker(Tω) as required.
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5 Spanning holomorphic cross-sections

Given a Hilbert space H spanned by holomorphic functions γ1, . . . , γn : Ω → H,
we now want to construct a holomorphic function γ : Ω → H spanning H with
γ(z) ∈ LH({γ1(z), . . . , γn(z)}) for all z ∈ Ω. By applying this result to a global
holomorphic frame for the vector bundle associated with a Cowen-Douglas operator
tuple one obtains a spanning holomorphic cross-section. We will inductively reduce
the number of necessary functions to span H. Before we begin, we have to take care
of a technical detail, which will allow us to use the results about uniqueness sets found
in Section 3.

Proposition 5.1. Let Ω ⊂ Cd be open, and let γ : Ω→ H be a holomorphic function
into a Hilbert space H. Then the function

γ̃ : Ω∗ → H ′, z 7→ 〈·, γ(z)〉

is holomorphic.

Proof. By Lemma 2.16 it suffices to show that for all x ∈ H the function

gx : Ω∗ → C, z 7→ γ̃(z)(x) = 〈x, γ(z)〉

is holomorphic. By Proposition 2.13 the function

fx : Ω→ C, z 7→ 〈γ(z), x〉

is holomorphic and gx(z) = 〈x, γ(z)〉 = 〈γ(z), x〉 = fx(z) for all z ∈ Ω. So by Proposi-
tion 2.8, the function gx is holomorphic.

Lemma 5.2. Let Ω ⊂ Cd be a domain of holomorphy and A ⊂ Ω a set without accu-
mulation point in Ω. Then there exists a nonzero holomorphic function f ∈ O(Ω)\{0}
such that f vanishes on A.

Proof. In this proof we will use several notions and a result from complex geometry,
which can be found in [FG02]. Since we can define the function f seperately on all
connected components of Ω, it suffices to prove the statement for Ω connected. As Ω
is a domain of holomorphy, it is a Stein manifold. Choose an arbitrary point p ∈ Ω\A
and define A′ = A ∪ {p}. Then A′ ⊂ Ω is an analytic set. Indeed, for z ∈ Ω, there
is a constant r > 0 such that the sets U = Br(z) ∩ Ω and A′\{z} have no common
points, because A′ still has no accumulation point in Ω. For z /∈ A′, the set U ∩ A′
is empty and thus the zero set of the constant function 1. For z ∈ A′, we have that
U ∩ A = {z} = {w ∈ U ;w1 − z1 = 0, . . . , wd − zd = 0} is the common zero set of d
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holomorphic functions on U .
Now consider the function

f0 : A′ → C, z 7→
{

0 z 6= p
1 z = p

.

This function is holomorphic as it is locally constant. By Theorem V.1.9 in [FG02],
there exists a holomorphic function f ∈ O(Ω) with f |A′ = f0. But then clearly f 6= 0
and f |A = 0.

We will try to define γ as a sum γ(z) = φ1(z)γ1(z) + . . . + φn(z)γn(z) with holo-
morphic functions φ1, . . . , φn. As we will need this in a later proof, we want to choose
the functions φi simultaneously for different Hilbert spaces Hi spanned by γi1, . . . , γ

i
n.

Lemma 5.3. Let Ω ⊂ Cd be a domain of holomorphy and let H1, . . . ,Hm be Hilbert
spaces. If γi1, γ

i
2 : Ω→ Hi are two holomorphic functions spanning Hi for i ∈ Nm, then

there exists a holomorphic function φ ∈ O(Ω) such that the functions γi = φγi1 + γi2
also span Hi for i ∈ Nm.

Proof. We will define φ as a product φ =
∏m
i=1 φi, with φi ∈ O(Ω) constructed as

follows:
Let i ∈ Nm. If γi2 = 0, we set φi = 1 and define the set Ai = ∅ ⊂ Ω, which is the zero
set of φi. If γi2 6= 0, consider the space

(Hi)γ̃i
2

= {x̂;x ∈ Hi}

defined as in Lemma 3.6. Here γ̃i2 : Ω∗ → H ′ is the holomorphic function associated
with γi2 as described in Proposition 5.1. We recall that for x ∈ Hi we defined

x̂ : Ω∗ → C, z 7→ 〈x, γi2(z)〉.

Then by Theorem 3.2, there exists a uniqueness set Bi ⊂ Ω∗ for (Hi)γ̃i
2

without accu-
mulation point in Ω∗. We define the set Ai = B∗i which in turn has no accumulation
point in Ω. By Lemma 5.2, there exists a holomorphic function φi ∈ O(Ω)\{0} such
that φi vanishes on Ai.
We show that φ = φ1 · . . . ·φm has the desired property. Let i ∈ Nm and x ∈ Hi, which
is orthogonal to γi(z) = φ(z)γi1(z) + γi2(z) for all z ∈ Ω. Then we see

φ(z)〈γi1(z), x〉+ 〈γi2(z), x〉 = 0 for z ∈ Ω.

If γi2 = 0, we have φ(z)〈γi1(z), x〉 = 0 for all z ∈ Ω. Otherwise for z ∈ Ai by definition
φ(z) = 0 and so 〈γi2(z), x〉 = 0. This implies 〈x, γi2(z)〉 = 0 for all z ∈ A∗i = Bi. As Bi
was a uniqueness set for (Hi)γ̃i

2
, already 〈γi2(z), x〉 = 0 for all z ∈ Ω. In any case, we

get the equation
φ(z)〈γi1(z), x〉 = 0 for z ∈ Ω.

This implies that the function h ∈ O(Ω) defined by h(z) = 〈γi1(z), x〉 vanishes on
Ω\Z(φ), where Z(φ) is the zero set of φ. But this set is dense in Ω by the identity

36



theorem. Hence h(z) = 0 for all z ∈ Ω and thus we conclude 〈γij(z), x〉 = 0 for

j ∈ {1, 2}, z ∈ Ω. As γi1, γ
i
2 span Hi, we get x = 0 and so γi spans Hi.

Theorem 5.4. Let Ω ⊂ Cd be a domain of holomorphy and let H1, . . . ,Hm be Hilbert
spaces. If γi1, . . . , γ

i
n : Ω→ Hi are holomorphic functions spanning Hi for i ∈ Nm, then

there exist holomorphic functions φ1, . . . , φn ∈ O(Ω) such that γi = φ1γ
i
1 + . . .+ φnγ

i
n

also span Hi for i ∈ Nm. If for every i ∈ Nm, z ∈ Ω, the vectors γi1(z), . . . , γin(z) are
linearly independent, it is possible to assure γi(z) 6= 0 for all z ∈ Ω.

Proof. The proof will be an induction on n. For n = 1, choose φj = 1 for j ∈ Nn. The
condition γi1(z) linearly independent for all z ∈ Ω means that γi(z) = γi1(z) 6= 0 for all
z ∈ Ω. Now let the statement be true for n ≥ 1. For i ∈ Nm, let γi1, . . . , γ

i
n+1 : Ω→ Hi

be holomorphic functions spanning Hi. Define

H ′i = LH({γin(z); z ∈ Ω} ∪ {γin+1(z); z ∈ Ω}).

By Lemma 5.3 there is a function h ∈ O(Ω) such that hγin+γin+1 spans H ′i for i ∈ Nm.
This implies that Hi is spanned by the n functions

γi1, . . . , γ
i
n−1, hγ

i
n + γin+1.

If γi1(z), . . . , γin+1(z) are linearly independent for all z ∈ Ω, so are γi1(z), . . . , γin−1(z),
h(z)γin(z) + γin+1(z). By the induction hypothesis there exist holomorphic functions
φ′1, . . . , φ

′
n ∈ O(Ω) such that the functions

γi = φ′1γ
i
1 + . . .+ φ′n−1γ

i
n−1 + φ′n(hγin + γin+1)

also span Hi for i ∈ Nm and if γi1(z), . . . , γin+1(z) are linearly independent, one can
achieve that γi(z) 6= 0 for all z ∈ Ω. Thus the holomorphic functions

φ1 = φ′1, . . . , φn−1 = φ′n−1, φn = φ′nh, φn+1 = φ′n

satisfy the conditions of the theorem.

Corollary 5.5. Let H a Hilbert space, Ω ⊂ Cd an admissible domain of holomorphy
and T ∈ Bn(Ω) ⊂ B(H)d. Then there exists a spanning holomorphic cross-section
γ : Ω→ H in ET such that γ(ω) 6= 0 for all ω ∈ Ω.

Proof. By Corollary 4.14 there exist holomorphic functions γ1, . . . , γn : Ω → H such
that ker(Tω) = LH({γ1(ω), . . . , γn(ω)}) for all ω ∈ Ω. As ker(Tω) is of dimension n
this implies that γ1(ω), . . . , γn(ω) are linearly independent for all ω ∈ Ω. By Condition
3 in the definition of Cowen-Douglas operator tuples the functions γ1, . . . , γn span H.
Now by Theorem 5.4 we can choose holomorphic functions φ1, . . . , φn ∈ O(Ω) such
that γ = φ1γ1 + . . . + φnγn also spans H and such that γ(ω) 6= 0 for all ω ∈ Ω. The
function γ is holomorphic by Lemma 2.12 and for all ω ∈ Ω we have

γ(ω) = φ1(ω)γ1(ω) + . . .+ φn(ω)γn(ω) ∈ LH({γ1(ω), . . . , γn(ω)}) = ker(Tω).
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Thus γ is a spanning holomorphic cross-section vanishing nowhere as desired.

As a first consequence of the above result, we get the following corollary.

Corollary 5.6. Let Ω ⊂ Cd be an admissible domain of holomorphy and H a Hilbert
space. Then if Bn(Ω) ⊂ B(H)d is not empty, H must be a seperable Hilbert space of
infinite dimension.

Proof. Let T ∈ Bn(Ω). It is clear that dimH = ∞ because T1 has infinitely many
distinct eigenvalues. Now let γ : Ω → H be a spanning holomorphic cross-section in
ET . Choose a countable dense subset {zk; k ∈ N} ⊂ Ω and define a countable set
M ⊂ H by ⋃

N∈N
{
N∑
k=0

αkγ(zk); αk ∈ Q + iQ for k = 0, . . . , N}.

Then M is dense in H because γ spans H.

Proposition 5.7. Let Ω ⊂ Cd be open, H a Hilbert space, T = (T1, . . . , Td) ∈ B(H)d

an element of Bn(Ω). If ∅ 6= Ω0 ⊂ Ω is open and for every connected component D of
Ω we have D∩Ω0 6= ∅, then Bn(Ω) ⊂ Bn(Ω0). If γ : Ω→ H is a spanning holomorphic
cross-section in ET , then γ|Ω0 is a spanning holomorphic cross-section for ET |Ω0 .

Proof. To show that T ∈ Bn(Ω0) it suffices to verify the third condition of Definition
2.1 for Bn(Ω0): With V ⊂ H defined by

V = LH(
⋃
ω∈Ω0

ker(Tω))

we must show V = H. Let x ∈ H be orthogonal to V , D a connected component of
Ω, ω0 ∈ D ∩ Ω0 a point and let ω1 ∈ D be arbitrary. As D is open and connected, it
is also path-connected. Let p : [0, 1] → D be a path from ω0 to ω1, i.e., a continuous
map with p(0) = ω0 and p(1) = ω1. Now for every t ∈ [0, 1] choose a connected open
set Vt ⊂ D containing p(t) and holomorphic functions γt1, . . . , γ

t
n : Vt → H such that

LH({γt1(ω), . . . , γtn(ω)}) = kerTω for ω ∈ Vt

according to Theorem 4.2. Then p([0, 1]) ⊂
⋃
t∈[0,1] Vt is an open cover of the compact

set p([0, 1]). Thus there is a finite subcover p([0, 1]) ⊂
⋃m
i=1 Vti with t1, . . . , tm ∈ [0, 1].

We will now show that the elements of the following family of statements are correct:

S(i) = “x ⊥ kerTω ∀ω ∈ V ′′ti , i = 1, . . . ,m.

Let k ∈ Nm such that ω0 = p(0) ∈ Vtk . Then Ω0 ∩ Vtk 3 ω0 is a nonempty open set
and x ⊥ γtk1 (ω), . . . , x ⊥ γtkn (ω) for all ω ∈ Ω0 ∩ Vtk by assumption. This means that
the functions

f tkj : Vtk → C, ω 7→ 〈γtkj (ω), x〉 (j = 1, . . . , n), (5.1)
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which are holomorphic by 2.13, vanish on Ω0 ∩ Vtk and thus identically. This implies
S(k) is true. Now consider I = {i ∈ Nm; S(i) is true}. We have k ∈ I and claim that
I = Nm. Now assume that this is not the case. Then there must be l ∈ Nm\I with
Vtl ∩

⋃
i∈I Vti 6= ∅, because otherwise we have the two disjoint open sets

O =
⋃
i∈I

Vti , P =
⋃

i∈Nm\I

Vti

covering the connected set p([0, 1]) and obviously p(tk) ∈ O ∩ p([0, 1]), p(tr) ∈ P ∩
p([0, 1]) for any r ∈ Nm\I. Thus there are l ∈ Nm\I, i ∈ I with Vtl ∩ Vti 6= ∅. Then
the functions f tij , defined as in (5.1), vanish on Vtl ∩ Vti , as S(i) is true, and thus
identically on Vtl . So S(l) is true, a contradiction to l /∈ I. Hence S(l) is true for all
l ∈ Nm. Now choose s ∈ Nm with ω1 = p(1) ∈ Vts . Then as S(s) is true, we have
x ⊥ kerTω1 . Since D was an arbitrary connected component of Ω and ω1 ∈ D was
arbitary, we see that x = 0 as LH(

⋃
ω1∈Ω ker(Tω1

)) ⊂ H is dense. But this implies
V = H as required.
Now if γ : Ω→ H is a spanning holomorphic cross-section in ET and x ∈ H is a vector
with x ⊥ γ(ω) for all ω ∈ Ω0, consider the function

f : Ω→ C, ω 7→ 〈γ(ω), x〉,

which is holomorphic by Proposition 2.13. As f |Ω0
= 0, we already have f = 0 because

Ω0 is open and every connected component of Ω has a nonempty intersection with Ω0.
But then x = 0 as γ (defined on Ω) is a spanning holomorphic cross-section for T .
This implies the desired statement.

Remark 5.8. We note that the definition of Cowen-Douglas operators given in the
introduction is the special case of Definition 2.1 for d = 1. Here Tω = T − ω ∈ B(H)
for all ω ∈ Ω. It only remains to show that the first conditions of both definitions
are equivalent in the case d = 1. But if T − ω is surjective, it certainly has closed
range. On the other hand, assume T − ω has closed range. By Proposition 5.7 we see
T ∈ Bn(Ω\{0}), thus V = LH(

⋃
ω∈Ω\{0} ker(T − ω)) ⊂ H is a dense linear subspace.

But for ω ∈ Ω\{0} and x ∈ ker(T −ω) we have T ( 1
ωx) = x and so x ∈ Ran(T ). Hence

V ⊂ Ran(T ) and as Ran(T ) is closed, we see that T is surjective.

Remark 5.9. For Ω ⊂ Cd open and connected and T ∈ Bn(Ω) ⊂ B(H)d in general it
is not clear that there is a spanning holomorphic cross-section γ : Ω → H. However,
with Ω0 ⊂ Ω an admissible domain of holomorphy we can consider T as an element of
Bn(Ω0) by Proposition 5.7 and on Ω0 we have a spanning holomorphic cross-section.
In this way, many of the results in the following sections can be applied for general
open connected sets Ω.

The following theorem gives us a representation for Cowen-Douglas tuples as mul-
tiplication operators on a functional Hilbert space of holomorphic functions.

Theorem 5.10. Let Ω ⊂ Cd be an admissible domain of holomorphy, H be a Hilbert
space and let T ∈ Bn(Ω) ⊂ B(H)d be a Cowen-Douglas tuple. Then there is a
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functional Hilbert space Ĥ of holomorphic functions on Ω∗ and a unitary operator
U : H → Ĥ such that UTiU

∗ = M∗zi for i = 1, . . . , d, where

Mzi : Ĥ → Ĥ, f 7→ zif

is the multiplication by the i-th coordinate function on Ĥ.

Proof. Let γ : Ω → H be a spanning holomorphic cross-section for the vector bundle
ET associated with T . We now consider again Lemma 3.6 together with its proof,
where we choose X = H, γ̃ : Ω∗ → H ′ as in Proposition 5.1. With notation as in the
proof of Lemma 3.6 we have

H∗0 = LH({γ̃(z); z ∈ Ω∗}).

Let x ∈ ⊥H∗0 . Then 〈x, γ(z)〉 = 0 for all z ∈ Ω and thus x = 0 as γ spans H. As in
the cited proof we see that the space

Ĥ = Hγ̃ = {x̂;x ∈ H}

is isometrically isomorphic to H0 = H/⊥H∗0 = H via the map

U : H → Ĥ, U(x)(z) = 〈x, γ(z)〉 = x̂(z),

if the norm on Ĥ is defined by ‖x̂‖ = ‖x‖ for x ∈ H. Then by Lemma 3.6, the space

Ĥ is a functional Hilbert space.
Now let i ∈ Nd, Si = UTiU

∗. We show that S∗i is the operator of multiplication with

zi on Ĥ. For x ∈ H, z ∈ Ω∗ we have

(S∗i Ux)(z) = (UT ∗i U
∗Ux)(z) = (UT ∗i x)(z)

= 〈T ∗i x, γ(z)〉 = 〈x, Tiγ(z)〉
= 〈x, ziγ(z)〉 = zi〈x, γ(z)〉 = zi(Ux)(z).

Hence, the operator Ti is unitarily equivalent to the adjoint of the operator Mzi on Ĥ
via the unitary operator U .

Remark 5.11. It is easy to see that in the setting of Theorem 5.10 the reproducing
kernel of the functional Hilbert space Ĥ is the map

K : Ω∗ × Ω∗ → H, (z, w) 7→ 〈γ(w), γ(z)〉.

Indeed we have K(·, w) = γ̂(w) ∈ Ĥ and, for all x̂ ∈ Ĥ, w ∈ Ω∗, we see that

〈x̂,K(·, w)〉Ĥ = 〈x̂, γ̂(w)〉Ĥ = 〈x, γ(w)〉H = x̂(w).
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6 Unitary equivalence

In the following section we prove a generalization of a fundamental result shown
in [CD78]. This particular proof was given in the one-dimensional case by K. Zhu
in [Zhu00] and it is based on the existence of a spanning holomorphic cross-section.
The result characterises Cowen-Douglas operator tuples which are unitarily equivalent.
Recall that for Hilbert spaces H1, H2 two operator tuples S ∈ B(H1)d, T ∈ B(H2)d

are called unitarily equivalent if there exists a unitary map U : H1 → H2 such that
USi = TiU for i = 1, . . . , d.

Theorem 6.1. Let Ω ⊂ Cd be an admissible, connected domain of holomorphy, let
H1, H2 be Hilbert spaces and let S ∈ B(H1)d, T ∈ B(H2)d be two operator tuples in
Bn(Ω). Then the following are equivalent:

1. S and T are unitarily equivalent.

2. The hermitian holomorphic bundles ES and ET are equivalent.

3. There exist spanning holomorphic cross-sections γS in ES and γT in ET such
that ‖γS(z)‖ = ‖γT (z)‖ for all z ∈ Ω.

Proof. (1) =⇒ (2): Let U : H1 → H2 be a unitary operator such that USi = TiU for
all i ∈ Nd. For i ∈ Nd, z ∈ Ω and x ∈ ker(Sz), we get

Ti(Ux) = U(Six) = zi(Ux),

so Ux ∈ ker(Tz). This shows that the map f = (idΩ×U)|ES
: ES → ET is well-defined

and it obviously defines a vector bundle morphism. For every z ∈ Ω, the function f
restricted to the fibre ker(Sz) ⊂ ES is just the map

id{z} × U |ker(Sz) : {z} × ker(Sz)→ {z} × ker(Tz).

This map is isometric and hence surjective as the domain of definition and the tar-
get space have the same dimension (equipping both with the natural structure of
n-dimensional normed complex vector spaces), hence it is unitary.
We will now show that f is a holomorphic bundle map. For this let hzi : π−1(Vzi)→
Vzi×Cn be linear charts contained in atlases representing the holomorphic linear struc-
ture of ES and ET respectively for i = 1, 2 with Vz1 ∩Vz2 6= ∅. Let γz11 , . . . , γz1n : Vz1 →
H1 be the corresponding local frame for hz1 . Then the maps Uγz11 , . . . , Uγz1n : Vz1 →
H2 are holomorphic by Proposition 2.11 and Uγz1j (z) ∈ ker(Tz) for all z ∈ Vz1 ∩ Vz2 ,
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j ∈ Nn. Thus by Lemma 4.7 they induce holomorphic sections

gj : Vz1 ∩ Vz2 → ET , z 7→ (z, Uγz1j (z)) (j ∈ Nn),

and their representations gj,z2 = pr2 ◦ hz2 ◦ gj are holomorphic functions. We must
show that the map

hz2 ◦ f ◦ h−1
z1 : (Vz1 ∩ Vz2)× Cn → (Vz1 ∩ Vz2)× Cn

is holomorphic. But this follows from the following factorization

(z, α)
h−1
z1−−→ (z,

n∑
j=1

αjγ
z1
j (z))

f−→ (z,

n∑
j=1

αjUγ
z1
j (z))

hz2−−→ (z,

n∑
j=1

αjgj,z2(z)).

Thus the hermitian holomorphic vector bundles ES and ET are equivalent.
(2) =⇒ (3): Let ES and ET be equivalent as hermitian holomorphic vector bundles.
Then there exists a holomorphic bundle map f : ES → ET which maps {z} × ker(Sz)
unitarily onto {z}× ker(Tz) for all z ∈ Ω. We denote by Fz the corresponding unitary
map

Fz : ker(Sz)→ ker(Tz), x 7→ pr2(f(z, x)).

Now choose a global holomorphic frame of functions γ1, . . . , γn : Ω→ H1 for ES . Then
for z ∈ Ω, the vectors Fzγ1(z), . . . , Fzγn(z) form a basis of ker(Tz). The functions

γ̃i : Ω→ H2, z 7→ Fzγi(z) (i = 1, . . . , n)

induce holomorphic sections by Lemma 2.45 and thus are holomorphic by Lemma 4.7.
Hence they are a global holomorphic frame for ET . Now choose functions φ1, . . . , φn ∈
O(Ω) according to Theorem 5.4 such that

γ : Ω→ H1, z 7→ φ1(z)γ1(z) + . . .+ φn(z)γn(z)

γ̃ : Ω→ H2, z 7→ φ1(z)Fzγ1(z) + . . .+ φn(z)Fzγn(z)

are spanning holomorphic cross-sections for ES and ET , respectively. But then for all
z ∈ Ω, we have γ̃(z) = Fzγ(z) as Fz is linear. But Fz is also unitary and therefore
‖γ̃(z)‖ = ‖γ(z)‖. So γ and γ̃ are spanning holomorphic cross-sections as required in
Condition 3.
(3) =⇒ (1): Now assume that there exist spanning holomorphic cross-sections γS in
ES and γT in ET such that ‖γS(z)‖ = ‖γT (z)‖ for all z ∈ Ω. Then we define maps

KS : Ω× Ω→ C, (z, w) 7→ 〈γS(z), γS(w)〉,
KT : Ω× Ω→ C, (z, w) 7→ 〈γT (z), γT (w)〉.

By Proposition 2.14 the functions KS and KT are holomorphic in the first argument
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and anti-holomorphic in the second argument. Moreover we have for z ∈ Ω:

KS(z, z) = ‖γS(z)‖2 = ‖γT (z)‖2 = KT (z, z).

Then by applying a theorem from the theory of functions of several complex variables
(see [Kra82], Exercise 3 on page 326), we have KS = KT . It follows that, for n ∈ N∗,
c1, . . . , cn ∈ C and z1, . . . , zk ∈ Ω, we have

‖
n∑
k=1

ckγS(zk)‖2 =

〈
n∑
k=1

ckγS(zk),

n∑
l=1

clγS(zl)

〉

=

n∑
k=1

n∑
l=1

ckcl〈γS(zk), γS(zl)〉 =

n∑
k=1

n∑
l=1

ckclKS(zk, zl)

=

n∑
k=1

n∑
l=1

ckclKT (zk, zl) = . . . = ‖
n∑
k=1

ckγT (zk)‖2.

This implies that
n∑
k=1

ckγS(zk) = 0 =⇒
n∑
k=1

ckγT (zk) = 0

and so by Corollary 2.5 there is a unique linear map U0 : LH({γS(z); z ∈ Ω}) → H2

such that U0γS(z) = γT (z) for all z ∈ Ω. The above calculation also shows that U0 is
isometric. Obviously Ran(U0) = LH({γT (z); z ∈ Ω}) is dense in H2. We now extend
U0 continuously on H1 = LH({γS(z); z ∈ Ω}) and the resulting map U : H1 → H2

is still isometric. Thus its image is closed and as Ran(U0) ⊂ Ran(U), the map U is
surjective and hence unitary. Since γS spans H and since for all i ∈ Nd and z ∈ Ω we
have

TiUγS(z) = TiγT (z) = ziγT (z) = UziγS(z) = USiγS(z),

it follows that TiU = USi as required. This finishes the proof.

As a refinement of the above result, we will derive a weaker condition for unitary
equivalence. This condition was shown for n = 1 in [CD78] (cf. Theorem 1.17, page
195). First we give a proposition needed for the proof.

Proposition 6.2. Let Ω ⊂ Cd be an open and connected set, H a Hilbert space,
T ∈ Bn(Ω) a Cowen-Douglas tuple and let γ : Ω → H be a spanning holomorphic
cross-section for ET . If φ ∈ O(Ω) is a holomorphic function and φ 6= 0 then γ̃ = φγ
is also a spanning holomorphic cross-section for ET .

Proof. The function γ̃ is holomorphic by Proposition 2.12. Assume that we have
x ∈ H with 〈φ(z)γ(z), x〉 = 0 for all z ∈ Ω. The set Ω0 = φ−1(C\{0}) ⊂ Ω is open
and nonempty by assumption and the holomorphic function

f : Ω→ C, z 7→ 〈γ(z), x〉
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vanishes on Ω0. Hence it vanishes identically on Ω and so x = 0. Thus γ̃ spans H,
which concludes the proof.

Theorem 6.3. Let n ∈ N∗, Ω ⊂ C be a domain, H1, H2 Hilbert spaces and let S ∈
B(H1), T ∈ B(H2) be two operators in Bn(Ω). Then if there are spanning holomorphic
cross-sections γS : Ω→ H1 and γT : Ω→ H2 which satisfy γS(z) 6= 0, γT (z) 6= 0 and

∂∂ log ‖γS(z)‖ = ∂∂ log ‖γT (z)‖

for all z ∈ Ω, then S and T are unitarily equivalent.

Proof. First we observe that

∂∂(log ‖γS(z)‖ − log ‖γT (z)‖) = 0

implies that the function h̃ : Ω→ R defined by

h̃(z) = log ‖γS(z)‖ − log ‖γT (z)‖

is harmonic. Applying the exponential function, we get the equation

‖γS(z)‖ = eh̃(z)‖γT (z)‖ = |eh̃(z)|‖γT (z)‖. (6.1)

Let a ∈ Ω and r > 0 be such that D = Dr(a) ⊂ Ω. Then as D is simply connected,
the function h = h̃|D admits a harmonic conjugate ∗h : D → R and so f = h +

i∗h ∈ O(D). But |eh̃(z)| = |eh(z)+i∗h(z)| = |ef(z)| for z ∈ D and the function ef(z) is
holomorphic on D. So with (6.1) we see:

‖γS(z)‖ = |ef(z)|‖γT (z)‖ = ‖ef(z)γT (z)‖.

Applying Proposition 5.7 we find that S, T ∈ Bn(D) and that γS |D, γT |D are spanning
holomorphic cross-sections. By Proposition 6.2 the function

γ̃T (z) : D → H, z 7→ ef(z)γT (z)

is also a spanning holomorphic cross-section for ET . Finally by Theorem 6.1, the
operators S and T are unitarily equivalent.

Remark 6.4. It is clear from Corollary 5.5 that we can always find spanning holo-
morphic cross-sections γS : Ω→ H1 and γT : Ω→ H2 vanishing nowhere. In this case
the function Ki : Ω× Ω→ C defined by Ki(z, w) = 〈γi(z), γi(w)〉 is holomorphic in z
and anti-holomorphic in w by Corollary 2.14. In particular, it is C∞ considered as a
function R4 ⊃ Ω× Ω→ C ∼= R2. Thus for z = x+ iy ∈ Ω with x, y ∈ R we have

∂∂ log ‖γi(z)‖ =
1

8
(
∂

∂x
+ i

∂

∂y
)(
∂

∂x
− i ∂

∂y
) logK(x+ iy, x+ iy)

exists everywhere.
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Remark 6.5. For T ∈ B1(Ω) and γ : Ω → H a spanning holomorphic cross-section
for ET vanishing nowhere, the function −∂∂ log(‖γ(z)‖2) is just the curvature of the
vector bundle ET (see [CD78], §2).
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7 Commutants

In this section we generalize a result from [Zhu00] which characterises the commutant
of an operator from a Cowen-Douglas class in terms of a spanning holomorphic cross-
section of this operator. We recall the basic definition.

Definition 7.1. Let H be a normed vector space and T ∈ B(H). Then we define the
commutant (T )′ of T by

(T )′ = {S ∈ B(H);TS = ST}.

Theorem 7.2. Let Ω ⊂ Cd be open, let H1, H2 be Hilbert spaces and let S ∈ B(H1)d,
T ∈ B(H2)d be two operator tuples in Bn(Ω). Moreover let γS : Ω→ H1 be a spanning
holomorphic cross-section in ES. Then an operator A ∈ B(H1, H2) intertwines Si and
Ti, i.e., ASi = TiA for all i ∈ Nd, if and only if the function γT = AγS : Ω→ H2 is a
holomorphic cross-section in ET . In this case γT satisfies γT ≺ γS.
On the other hand, for all holomorphic cross-sections γT in ET with γT ≺ γS, there
exists a unique operator A ∈ B(H1, H2) such that γT (z) = AγS(z) and ASi = TiA for
all i ∈ Nd.

Proof. First suppose that there is A ∈ B(H1, H2) intertwining Si and Ti for all i ∈ Nd.
By Proposition 2.11 the function γT = AγS is holomorphic and for z ∈ Ω we have
Ti(AγS(z)) = ASiγS(z) = zi(AγS(z)). Thus γT (z) ∈ ker(Tz) for all z ∈ Ω. This shows
that γT is a holomorphic cross-section in ET . Furthermore, for z, w ∈ Ω, we have

〈γT (z), γT (w)〉 = 〈A∗AγS(z), γS(w)〉

and A∗A is positive. Thus by Proposition 2.30 we have γT ≺ γS .
Now let A ∈ B(H1, H2) such that γT = AγS is a holomorphic cross-section in ET .
Then for all z ∈ Ω, i ∈ Nd, we have

ASiγS(z) = ziAγS(z) = ziγT (z) = TiγT (z) = TiAγS(z).

As LH(γS(Ω)) ⊂ H1 is dense, we have ASi = TiA.
Suppose now that γT : Ω → H2 is a holomorphic cross-section in ET with γT ≺ γS .
Then there exists C > 0 such that

‖
m∑
k=1

ckγT (zk)‖ ≤ C‖
m∑
k=1

ckγS(zk)‖ (7.1)

for all m ∈ N∗, c1, . . . , cm ∈ C, z1, . . . , zm ∈ Ω. Then by Corollary 2.5 there is a
unique linear map A0 : LH(γS(Ω)) → H2 with A0γS(z) = γT (z) for all z ∈ Ω. This
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operator is bounded by (7.1). Thus it extends continuously to a bounded linear map
A ∈ B(H1, H2) still satisfying γT = AγS . Thus we are done by the first part of the
proof.

Theorem 7.3. Let Ω ⊂ Cd be open, let T ∈ Bn(Ω) ⊂ B(H)d be an operator tuple on
a Hilbert space H and let γ0 : Ω→ H be a spanning holomorphic cross-section in ET .
Then the set

CT = {γ : Ω→ H; γ holomorphic cross-section in ET , γ ≺ γ0}

is in canonical bijection to
⋂d
i=1(Ti)

′ via the map

d⋂
i=1

(Ti)
′ → CT , A 7→ Aγ0.

Proof. Applying Theorem 7.2 to H1 = H2 = H and S = T we see that an operator
A ∈ B(H) satisfies ATi = TiA for all i ∈ Nd if and only if the function Aγ0 : Ω → H
is a holomorphic cross-section in ET with Aγ0 ≺ γ0. Thus it suffices to show that all
γ ∈ CT are of the form γ = Aγ0 with a suitable operator A ∈ B(H). But this follows
from the second part of Theorem 7.2.
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8 Similarity

In this section we want to characterise similar operators in the same Cowen-Douglas
class. First we recall the basic definitions.

Definition 8.1. Let H1, H2 be Hilbert spaces and let S ∈ B(H1)d, T ∈ B(H2)d be two
operator tuples.
Then S and T are called similar if there exists a bounded invertible operator A ∈
B(H1, H2) such that ASi = TiA for i = 1, . . . , d.
S and T are called quasi-similar if there exist bounded linear operators A ∈ B(H1, H2)
and B ∈ B(H2, H1) which are injective with dense range such that ASi = TiA and
SiB = BTi for i = 1, . . . , d.

Theorem 8.2. Let Ω ⊂ Cd be an admissible domain of holomorphy, let H1, H2 be
Hilbert spaces and let S ∈ B(H1)d, T ∈ B(H2)d be two operator tuples in Bn(Ω). Then
S and T are similar if and only if there exist spanning holomorphic cross-sections γS
in ES and γT in ET such that γS ∼ γT .

Proof. First suppose that A ∈ B(H1, H2) is invertible such that ASi = TiA for all
i ∈ Nd. Let γS be a spanning holomorphic cross-section in ES . Then γT = AγS is a
holomorphic cross-section in ET by Theorem 7.2. Since A is onto, γT spans H2:

LH(γT (Ω)) = LH(AγS(Ω)) ⊃ A LH(γS(Ω)) = AH1 = H2.

Thus γT is a spanning holomorphic cross-section for ET . Since

〈γT (z), γT (w)〉 = 〈A∗AγS(z), γS(w)〉 for z, w ∈ Ω

and since A∗A is positive and invertible, we have γS ∼ γT by Proposition 2.30.
Now let γS in ES and γT in ET be spanning holomorphic cross-sections such that γS ∼
γT . Then applying Theorem 7.2 in both directions we find operators A ∈ B(H1, H2),
B ∈ B(H2, H1) with γT = AγS and γS = BγT and ASi = TiA for all i ∈ Nd. But as
γS spans H1, γT spans H2 and we have γT = ABγT and γS = BAγT , it is clear that
AB = 1H2

and BA = 1H1
. Thus A is invertible as required.

Theorem 8.3. Let Ω ⊂ Cd be an admissible domain of holomorphy, let H1, H2 be
Hilbert spaces and S ∈ B(H1)d, T ∈ B(H2)d be two operator tuples in Bn(Ω). Then
there exists a bounded linear operator A ∈ B(H1, H2) with dense range such that
ASi = TiA for all i ∈ Nd if and only if there exist spanning holomorphic cross-sections
γS in ES and γT in ET such that γT ≺ γS.

Proof. First suppose that A ∈ B(H1, H2) has dense range such that ASi = TiA for
all i ∈ Nd. Let γS be a spanning holomorphic cross-section in ES . Then γT = AγS
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is a holomorphic cross-section in ET satisfying γT ≺ γS by Theorem 7.2. Since A has
dense range, γT spans H2:

LH(γT (Ω)) = LH(AγS(Ω)) ⊃ A LH(γS(Ω)) = AH1 = H2.

Thus γT is a spanning holomorphic cross-section for ET .
Now let γS in ES and γT in ET be spanning holomorphic cross-sections such that
γT ≺ γS . Then by Theorem 7.2 there exists a unique operator A ∈ B(H1, H2) such
that AγS = γT which also satisfies ASi = TiA for all i ∈ Nd. Finally A has dense
range, since obviously LH(γT (Ω)) ⊂ Ran(A).

Theorem 8.4. Let Ω ⊂ Cd be an admissible domain of holomorphy, let H1, H2 be
Hilbert spaces and S ∈ B(H1)d, T ∈ B(H2)d be two operator tuples in Bn(Ω). Then
there exist bounded linear operators A ∈ B(H1, H2) and B ∈ B(H2, H1) with dense
range such that ASi = TiA and SiB = BTi for all i ∈ Nd if and only if there exist
spanning holomorphic cross-sections γS , γ

′
S in ES and γT , γ

′
T in ET such that γS ≺ γT

and γ′T ≺ γ′S.

Proof. The theorem clearly follows by applying Theorem 8.3 in both directions.

Remark 8.5. In [Zhu00] it is stated that in the situation of Theorem 8.4 for d = 1,
we already have that S and T are quasi-similar. For this we would have to show that
we can choose A and B to be injective. Unfortunately the author of this thesis was not
able to verify this claim.
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Conventions

N = {0, 1, 2, 3, . . .}, the natural numbers
N∗ = {1, 2, 3, 4, . . .}, the natural numbers without zero
Nn = {1, 2, 3, . . . n}, the first n positive natural numbers
AB = {f : B → A}, the set of functions from B to A for sets A,B
pri : A1 × A2 × . . . An → Ai, (a1, . . . , an) 7→ ai, the projection on the i-th component
M(n×m,R), the ring of n×m-matrices with entries in the ring R
GL(n, k), the ring of invertible n× n-matrices with entries in the field k
Ω ⊂ C is called a domain if Ω 6= ∅ is open and connected.
Dr(a) = {z ∈ C; |z − a| < r}, the open disc of radius r ∈ [0,∞] around a ∈ C
Br(a) = {z ∈ Cd;

∑d
i=1 |zi − ai|2 < r2}, the open ball of radius r ∈ [0,∞] around

a ∈ Cd
Pr(a) = {z ∈ Cd; |zi − ai| < r ∀i ∈ Nd}, the polydisc of polyradius r ∈ [0,∞] around
a ∈ Cd
For ω = (ω1, . . . , ωd) ∈ Cd we define ω = (ω1, . . . , ωd).
For Ω ⊂ Cd we define Ω∗ = {ω; ω ∈ Ω}.
Let V,W be two normed vector spaces over C.
B(V,W ) = {T : V → W ;T bounded linear}, the bounded linear operators from V to
W
B(V ) = B(V, V ), the bounded linear operators on V
V ′ = B(V,C), the bounded linear forms on V
〈x, u〉 = u(x) for x ∈ V , u ∈ V ′
O(Ω) = {f : Ω → C; f holomorphic}, the space of holomorphic functions on an open
set Ω ⊂ Cd
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