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1 Introduction

In classical operator theory, many operators of interest have a relatively “thin” spec-
trum. For finite dimensional vector spaces H, the spectrum o(T') of an operator
T : H — H consists of finitely many points and the corresponding normal form of T is
the Jordan form. For infinite dimensions there are for instance the compact operators,
for which o(T)\{0} is a countable discrete set. The normal compact operators 7' can
be written as a (possibly infinite) sum

T = Z APer(T-2)-
A€o (T)\{0}

Other examples of operators with a thin spectrum include self-adjoint and unitary
operators, for which the spectrum is contained in R and 9D;(0), respectively. For all
the operators mentioned above, the spectrum is a zero set with respect to the Lebesgue
measure on C and those classes of operators are understood very well.

However, there are some operators, like the left shift L on (?(N) defined by

L(zo,21,T2,...) = (1, 29,23,...) for (x;)ien € 1*(N),

which have a much richer spectrum. For this particular example there is even a
nonempty open set Q2 C C with

QN Cop(L) ={w € C; L —w not injective}.

In fact 0,(L) = D1(0) and ker(L — w) = ((1,w,w? w3,...)) for all w € D1(0). So in
this case, the dimension of ker(L — w) is constant and equal to one on D;(0).
Operators of this type were studied more closely by Cowen and Douglas in [CD78] and
they are called operators of Cowen-Douglas class or simply Cowen-Douglas operators.
The formal definition is as follows.

Definition. Let H be a Hilbert space, 2 C C an open set and n a positive integer. Then
we define the Cowen-Douglas class B, (S)) as the set of all bounded linear operators T
on H such that

1. Ran(T —w) =H forw € Q,
2. dimker(T —w) =n forwe€ Q,

8. LH(U,eq ker(T' —w)) = H.

Cowen and Douglas used complex geometry to classify the operators in B, (Q2). To
illustrate this, we note that the operator L defined above is an element of B;(D1(0)).



The map
7 :D1(0) = A(N), we (1w,w?, w?,...). (1.1)

is holomorphic (for the exact definition see Definition 2.10) and ker(L — w) = (y(w)).
This can be used to show that the map w — ker(L—w) induces a hermitian holomorphic
vector bundle Er over Q = D;(0). In fact, this is true for arbitrary Cowen-Douglas
operators 1" and the properties of this bundle translate into properties of T. For
instance it was shown in [CD78] that, for Q a domain and T € B;(2), the curvature
of the bundle Er is a complete unitary invariant for 7.

In the following thesis we will consider a related approach first presented by Kehe
Zhu in [Zhu00]. For a bounded linear operator T on H with T' € B, (92), Kehe Zhu
defines the notion of a spanning holomorphic cross-section. This is a holomorphic map
~v:Q — H such that v(w) € ker(T — w) for all w € 2 and

LH({y(w); w € Q}) C H is dense. (1.2)

The map ~ defined in (1.1) is an example. For n = 1, we see that condition (1.2)
automatically follows from the Definition of Cowen-Douglas operators, at least when
~v has no zero. For n > 2, this is no longer clear and in fact it is easy to provide
counterexamples. However, Zhu was able to show that there always exists a spanning
holomorphic cross-section v if 2 is a domain. This made it possible to simplify the
proofs of some of the results obtained in the Cowen-Douglas theory.

Additional to the classical Cowen-Douglas theory, we also consider a generalization
first proposed by Cowen and Douglas in [CD83] and later expanded upon for instance
in [CS84]. Here instead of single operators, entire tuples of d operators on a common
Hilbert space are considered. Thus €2 is no longer a subset of C, but rather of C¢. In
this thesis it is proven that virtually all results from [Zhu00] for the case d = 1 can be
generalized to arbitrary d if the set {2 meets certain reasonable conditions. The crucial
point in the chain of proofs is the existence of suitable uniqueness sets for Banach
spaces of holomorphic functions.

We now give an outline of the following thesis.

In Chapter 2 we provide basic notation and introduce some mathematical concepts
used later, like functional Hilbert spaces and vector bundles.

In Chapter 3 we prove the existence of discrete uniqueness sets for Banach spaces of
holomorphic functions with continuous point evaluations.

Chapter 4 deals with the vector bundle associated with an operator T € B, (Q2) and
the existence of global holomorphic frames is proven.

These preparations are used in Chapter 5 to prove the existence of spanning holomor-
phic cross-sections.

Finally in Chapters 6-8 this existence theorem is used to classify operators which
are unitary equivalent to Cowen-Douglas operators. Furthermore, we determine the
similarity orbit and the commutant of a Cowen-Douglas operator tuple.



2 Basic definitions and results

In the following chapter some notation is introduced and some definitions and first
elementary results are presented. Presumably many of those will be known to the
reader and this section has rather the purpose of giving a reference, if a statement
in the latter sections is not obvious right away. The proofs given here are standard
and can be found in any textbook dealing with the respective subjects. Some special
propositions are taken from [Zhu00] and the proofs below follow the ones in this paper.
Finally note that we will closely follow the notation used in [Zhu00].

2.1 Cowen-Douglas operators

In the following thesis we consider a generalization of the definition of Cowen-Douglas
operators, which we gave in the introduction. This generalization was already exam-
ined more closely in [CS84]. The fact that this new definition contains the classical
definition as a special case is established in Remark 5.8.

Definition 2.1. Let H be a Hilbert space, d € N* and let T, ...,T4 € B(H) operators.
Forn € N*, Q C C? open, an element T = (Ty,...,Ty) € B(H)? is called a Cowen-
Douglas operator tuple of degree n on Q if the following conditions hold for the map
T,:H— HY x— (T; — wi)x)dy:

1. T, has closed range for all w € €O,
2. dim ker(T,,) =n for allw € Q,

3. LH(U(ker(T,);w € Q)) = H.
We denote by B, () the class of such operator tuples.

Remark 2.2. Note that for T a Cowen-Douglas operator tuple as above, the operators
T1,..., Ty commute: For w € Q, x € ker(T,,) and i,j € Ng we see

TiTjx = Tiwjx = wiwjr = wTjox = T;Tix.

Thus Th, . .., Ty commute on | J(ker(T,);w € Q) and hence by Condition 3 in Definition
2.1 these operators commute on all of H.



2.2 Linear Algebra

Proposition 2.3. Let H be a complex vector space with inner product {-,-) and let
V1,...,0, € H be linearly independent. Then the matriz

A = ({vs, Uj))?,j:l
1s invertible.

Proof. Assume that there is a linear combination 0 = Y77 | a;({vi, v;))j—; of the row
vectors of A with ay,...,a, € C. Then

Zai<vi,vj> = (Z a;v;,v;) =0 for j € N,.
i=1

i=1

This implies

n n

n n
Z@Zm(vi,vﬁ = <Z V5, ZOL]"U]‘> = O
j=1 i=1 i=1 j=1

Thus E?:l a;v; = 0, and as the vectors v; are linearly independent, we have a; = ... =
a, = 0. Hence the row vectors of A are linearly independent and A is invertible. [

Lemma 2.4. Let k be a field, V,W be vector spaces over k, M C V a subset and
f:M — W amap. Then there exists a linear map F : LH(M) — W extending f if
and only if for alln € N* ¢1,...,¢, €k and vy,...,v, € M we have

=1 =1

In this case, F is uniquely determined by f.
Proof. The given condition is certainly necessary, because for Y ., ¢;v; = 0 with
notation as above, we see that

n

D cif(i) =Y ciF(v) =F()_ cwi) = F(0) =0,
=1 =1

=1

if F'is a linear expansion of f.
Now we show that the condition (2.1) is also sufficient. If an element of LH(M) has
two representations

n n’

2 : _z : /o
CLUE = CrUp,

k=1 k=1



then

n ’I’LI
Z crvg + Z(—cﬁc)vfC =0
k=1 k=1

and applying condition (2.1) we see that

’
n

0=">"crf(on) + Y _(—ci) F(v})-
k=1

k=1

Hence we may define F': LH(M) — W by

F(Z civ;) = Z cif (vi)

forn € N*  ¢1,...,¢cp € k and vy,...,v, € M. It is obvious from the definition that
F is linear and extends f. The uniqueness of F' follows from its linearity. O

Corollary 2.5. Let k be a field, V,W be vector spaces over k, M a set and let v :
M —V,~v: M — W be arbitrary maps. Then if, for alln € N*, ¢1,...,¢, € k and
Z1,.--52n € M, we have

D oem(z) =0 = > cinal(z) =0 (2.2)
i=1 i=1
then there is a unique linear map A : LH(y1(M)) — W with Avy1(2) = y2(2) for all

zeM.

Proof. The map f : y1(M) = W, v1(2) = v2(z) is well-defined: Let 21,22 € M with
v1(21) = 11(22). Then 1 (21) — v1(22) = 0 and thus by (2.2) we have v2(z1) = v2(22).
Applying Lemma 2.4 to f yields the desired linear map A. O

2.3 Function theory

Definition 2.6. Let d € N* and let Q@ C C? be an open set. Then Q is called a domain
of holomorphy if there exist no non-empty open sets U C Q and V C C?* with V
connected, V ¢ Q and U C QNV such that for every f € O(Q) there exists g € O(V)
with flu = glu.

Remark 2.7. Without proof we give the following examples of open subsets Q C C¢
which are domains of holomorphy:

1. For d =1 every open set Q) C C is a domain of holomorphy.
2. Q=C4 B.(a), P.(a) foraeC% r>0.



3. More generally: Q) a conver set.
For more details see for instance [Hor90].

Proposition 2.8. Let d € N* and let f € O(Q) be an analytic function on an open
set Q C C%. Then the function

f: 0 5C, 2 f(2)

18 holomorphic again.

Proof. For j € Ny, z € Q*, we compute the limit

f(z+hey) = f(2)

lim = lim f(z+hej) = [(2) — lim f(z—l—hei-)—f(z)
h—0 h h—0 h h—0 h
9,
As this limit exists everywhere, the function f is holomorphic. O

Theorem 2.9. Let f € O(Q) be an analytic function on an open set Q C C? and let
K C Q be a given compact set. Then the continuous function

IF1: =R, 20 |f(2)]

achieves its mazimum m on the compact set K on the boundary 0K of K.

Proof. If Int(K') = 0, then 9K = K and the statement is trivial. So first assume we
have wy € Int(K) with | f(wp)| = m, then let D C C? be the connected component of
containing wg. Then obviously |f(w)| < |f(wp)] for all w € Int(K). By Theorem 4 on
page 6 in [Gun90] we have f|p = f(wo) is constant on D. We claim that (0K)ND # 0.
Otherwise the equality D = (D NInt(K)) U (D N K¢) would imply that D C Int(K)
and hence that 9D C 90N K = (). Thus D = C? and therefore (OK) N D = K # ().
So the function |f] achieves its maximum m on K in every point of D, so especially
in a point of 0K N D C 0K.

If on the other hand, for all wy € Int(K), we have |f(wo)| < m, choose a point w € K
with |f(w)| = m (this is always possible as |f| is continuous and K is compact). Then
w ¢ Int(K) and thus w € 9K = K\Int(K). This completes the proof. O

2.4 Banach space valued holomorphic functions
In order to use results from complex geometry and from function theory in the study of

Cowen-Douglas operators, we need to extend the concept of holomorphy to functions
with values in Banach spaces.

10



Definition 2.10. Let Q C C? be open and let V be a complex Banach space. Then
f:Q =V is called holomorphic (or analytic) if it is continuous and the limit
0 f(z+ hej) = f(2)

9,7 = Jimy n

exists in 'V for all z € Q0 and j € Ng.

It is easy to see from this definition that scalar multiples and sums of holomorphic
functions remain holomorphic. We now verify that our new concept of holomorphy
behaves well under other standard operations like bounded linear mappings, multipli-
cation with scalar holomorphic functions and scalar products.

Proposition 2.11. Let V,W be complex Banach spaces and let A € B(V,W) be a
bounded linear operator. If f : @ — V is an analytic function on an open set  C C¢,

then the function
Af:Q—=>W, 2z Af(2)

18 holomorphic.

Proof. For j € Ny, z € Q2 we calculate the limit

Af(z + hej) — Af(2) f(z + hej) — f(z) 0

) h = A Jim h = A5, 1G)
This limit exists everywhere and so Af is holomorphic. O

Lemma 2.12. Let V be a Banach space and let f € O(Q), v: Q — V be holomorphic
functions on an open set Q C C. Then the function

friQ=V, 20 f(2)v(2)
s holomorphic on ).

Proof. For j € Ny, z € 2 we calculate the limit

([N (= + hej) — (f1)(2)

lim
h—0 h
o TG B heg) = S5+ hep)y() + £z + hesr(2) = £(2)
h—0 h
Y N Yzt he) —v(2) | flz+hey) = f(2)
B R L T
0 0
=) g1 + (g fEING),
This limit exists everywhere and thus f~ is holomorphic. O

11



Proposition 2.13. Let H be a Hilbert space and let v : Q@ — H be a holomorphic
function on an open set Q C C?. Then for all x € H the function

f:Q=C, z— (v(2),x)
s holomorphic.

Proof. This follows from Proposition 2.11 by choosing A = (-, z). O

Before the next Corollary we recall that a function f : @ — C on an open set Q2 ¢ C?
is called anti-holomorphic, if the function

f:Q—=C, 2z f(2)
is holomorphic.

Corollary 2.14. Let H be a Hilbert space and lety : 2 — H be a holomorphic function
on an open set  C CL. Then the function

K:QxQ—=C, (z,w)~ (v(2),7(w))
18 holomorphic in z and anti-holomorphic in w.

Proof. K is holomorphic in z by Proposition 2.13. The function K satisfies K(z,w) =
(v(w),v(2)) and thus is holomorphic in w. Hence K is anti-holomorphic in w. O

Lemma 2.15. Let E be a Banach space and let f : Q@ — E be a map on an open set
Q C C. Then f is holomorphic if and only if it is continuous and for every v € E'
the function uo f : Q — C is holomorphic.

Proof. This is Theorem 9.12 in [Cha85] O

Lemma 2.16. Let E, F be Banach spaces and let f : Q — B(E,F) be a map on an
open set Q C C. Then f is holomorphic if and only if for every x € E the function

fo: Q= F, z— f(2)x
18 holomorphic.
Proof. This follows for instance from Theorems 9.13 and 14.5 in [Cha85). O

Proposition 2.17. Let E, F,G be Banach spaces and let f : Q — B(E,F), g: Q —
B(F,G) be holomorphic maps on an open set Q C C?. Then the map

9f : Q= B(E,G), z—g(2)f(2)

s holomorphic.

12



Proof. For j € Ny, z € Q2 we calculate the limit

(9f)(z + hej) = (9f)(2)

lim
h—0 h

i 9G he) (o he) — gzt hes)f(2) 4+ gz + he;) () — ()] (2)
h—0 h

f(z+ hej) = f(2)

B R e L
0 0
=005 )+ (oGNS ).
This limit exists everywhere and thus ¢ f is holomorphic. O

Proposition 2.18. Let V' be a Banach space and let (f, : Q@ = V)pen be a sequence
of holomorphic functions on an open set Q C C. Assume that there is a function
f:Q =V such that (fn)nen converges uniformly towards f on all compact subsets
C C Q. That is, for all C C Q compact, € > 0 there exists N € N such that

I (z) = fn(2)|| < e€for z € C,n > N.

Then f is holomorphic.

Proof. The compact convergence obviously implies that f is continuous. Let u € V'
be a bounded linear form on V and let C' C 2 be compact. Then for all z € C, n € N
we have

[u(f(2)) = u(fa(2))] < lullllf(2) = fu(2)]I

Thus the sequence of holomorphic functions (u o f,,)n,en converges uniformly towards
wo f on all compact sets C' C 2. Hence by the theorem of Weierstrass, the function
wo f is holomorphic for all u € V’ and so by Lemma 2.15, f is holomorphic. O

Theorem 2.19. Let B be a complex Banach algebra with unit and let f : Q@ — B
be a holomorphic function on an open set Q C C?% such that f(Q) ¢ B~' = {b €
B; b is invertible}. Then the function

g: Q= B, wr f(w)!
s holomorphic.

Proof. As the map B! — B!, a+ a™!, is continuous, the function g is continuous.
Let zp € © and choose 7 > 0 such that D,(z9) C 2 and

1F (20) "1 (f () = fzo)l < %

13



for all z € D,(zp). Then using the Neumann series we have
F)7h = [f(20) (1 + f(20) 7 (f(2) = f(20)))] 7
= (D _(f(z0) 7 (f(20) = £(2))*) f(20) "
k=0

for z € D, (zp) and the Neumann series converges uniformly on D,.(zp). All partial sums
are holomorphic functions in z by Propositions 2.11 and 2.17 and thus by Proposition
2.18 the Neumann series is holomorphic in z. Again with Proposition 2.11 the result
follows. O

2.5 Functional Hilbert spaces and reproducing kernels

Definition 2.20. Let Q be an arbitrary set. A linear subspace H of the complex vector
space C equipped with the structure of a Hilbert space is called a functional Hilbert
space if all point evaluations

0,:H—C, frf(z) (2€Q)

are continuous.

It is clear that the maps ) are also linear. So by the Riesz representation theorem,
any J, can be expressed as the scalar product with some unique vector K, € H, that

is,

6.(f) = (f, K) for f € H.
Since K, is a function from ) to C, we obtain a complex-valued function on 2 x .

Definition 2.21. Let H C C* be a functional Hilbert space. The unique function
K : Q x Q — C satisfying

1. K(-,w) € H for w € Q,
2. {f,K(,w)) = f(w) for feH, we
is called the reproducing kernel of H.

While this definition of a reproducing kernel strongly depends on the structure of a
corresponding functional Hilbert space H, it is also possible to give an intrinsic criterion
characterising functions K : 2 x 2 — C which are reproducing kernels of functional
Hilbert spaces on . The following result first appeared in in a paper of Aronszajn
(see [Aro50]) although he attributed it to earlier work of Moore (see [MB35]).

Theorem 2.22 (Moore-Aronsajn). Let Q be a set. A map K : Q@ x Q — C is the
reproducing kernel of a functional Hilbert space if and only if

3N eitiK(z,2) > 0 (2.3)

i=1 j=1

14



foralln e N* c1,...,¢, €C, 21,...,2, € Q.

In general, a function K : Q x Q — C satisfying (2.3) is called positive definite. We
will now collect some simple properties of positive definite functions, that will be of
use later on.

Proposition 2.23. Let § be a set and let K : Q x Q — C be an arbitrary map.
(a) K is positive definite if and only if for alln € N*, zq,..., 2z, € Q the matriz

(K (2i,2)))i =1 € M(n xn,C)

is positive semi-definite.
(b) If K is positive definite, then

K(w,z) = K(z,w) for all z,w € Q (2.4)
Proof. (a) For all n € N*  z1,...,2, € Q,¢1,...,¢, € C we have

n

n (&) C1
zzcz-cjmzﬁzi):<<K<zi,zj>>zj1 SN >
i=1 j=1 cn cn -

Thus the definition of a positive definite map is just a reformulation of the positivity
of all n x n-matrices (K(zi,2;));j—1-
(b) This is clear from the fact that, for all z,w € Q, the 2 x 2-matrix

(Ko wew )

is positive semi-definite, hence hermitian and so K (w, z) = K(z,w). O

Proposition 2.24. Let 2 be a set and let K : Q2 x Q — C be the reproducing kernel of
a functional Hilbert space H. Then Hy = LH(K (-, pu); p € Q) C H is a dense subspace.

Proof. Let f € H with L Hy. Then we obtain

f(”):<f7K(7p’)>:0 for allMGQ
Thus f =0 and so Hy = H. O

We now want to look at a special type of reproducing kernels which are fundamental
for the understanding of Cowen-Douglas operators. These kernels induce functional
Hilbert spaces of holomorphic functions.

Proposition 2.25. Let H be a Hilbert space and let v : Q@ — H be a holomorphic
function on an open set Q C C%. Then the function

K,:QxQ—=C, (z,w) = (y(2),v(w))

15



is the reproducing kernel of a Hilbert space of holomorphic functions in €.

Proof. We first show that K, is positive definite. For all n € N*, ¢,...,¢, € C,
Wi, ..., Wy € €, we have

Z Zci@Ky(wj7wi) = Z Z%@(W(%)W(M)) =

i=1 j=1

n

Fjv(wj>,Zav(wi)> > 0.

So by Theorem 2.22, K., is the reproducing kernel of a a functional Hilbert space V'
on C. It remains to show that V consists of holomorphic functions. By Proposition
2.13 we see that for all w € Q the function K,(,w) € V is holomorphic. So the
linear subspace Vo = LH({K,(-,w);w € Q}) C V consists of holomorphic functions.
By Proposition 2.24 we have that 1} is a dense subspace of V. Let now f € V be
arbitrary and let (f,,)nen be an approximating sequence in Vj. It suffices to show that
(fn)nen is a Cauchy sequence uniformly on all compact subsets of 2, or explicitly, that
for all C' C 2 compact, € > 0 there is N € N such that

| fro = fnlloo,c < € for all n,m > N.

This implies that (f,,)nen converges uniformly on all compact sets C' C € to a function
f and by the theorem of Weierstrass the function f is holomorphic. Since convergence
in V' implies pointwise convergence and the pointwise limit of (fy)nen is unique, we
have that f = f is holomorphic.

So let C' C Q be compact. Then for all z € C and n,m € N, we have

[fa(2) = fn ()P = [y Ky (-, 2)) = (Fin, K5 (-, 2)) 2
= {fn = fom, K5 (-, 2))?
< e = fmll " sup, [ (- w)

It remains to show that sup,cc || K5 (-, w)| is finite. But this follows from

sup [ K (-, w)||* = sup (K, (-, w), Ky (- w)) = sup K (w,w) = sup [[y(w)[* < oo,
weC weC wel weC
since 7y is holomorphic and hence continuous. Thus the proof is complete. O

Now, returning to the general theory, we will define a relation on the set of all
reproducing kernels on a given set ). This relation will be crucial for identifying
Cowen-Douglas operators, which are similar.

Definition 2.26. Let K1, K5 : 2 x Q — C reproducing kernels on am arbitrary set €.
Then we write K1 < Ko if there is a constant C' > 0 such that CKs — K7 is a positive
definite.

For Hilbert spaces Hy, Hy, Q C C% open and holomorphic maps v, : Q — Hy, 2 :
Q — Hy, we write y1 < v2 if Ky, < Ky, with K, defined as in Proposition 2.25.

16



Remark 2.27. From Proposition 2.23 it is clear that if we have a constant C > 0 as
in Definition 2.26, then for alln € N* and z1,...,z, € Q, we have

(Kl(zivzj))?,jzl < C(KQ(Z%Z]))?,]':I
as an inequality between complex n X n-matrices.

Definition 2.28. Let Q) be a set and let K1, Ky : Q x Q — C be reproducing kernels
on Q. Then we write K1 ~ Ko if K1 < Ko and Ky < K;.

For Hilbert spaces Hy, Hy, Q C C% open and holomorphic maps v, : Q — Hy, o :
Q — Hy we write y1 ~ 2 if 71 < 72 and v2 < 1.

Remark 2.29. [t is easy to show that < defines a reflexive, transitive relation on the
set of all reproducing kernels on a given set Q) and ~ defines an equivalence relation
on this set.

We will now prove a property of these relations which will be useful in the classifi-
cation of the similarity classes of Cowen-Douglas operators.

Proposition 2.30. Let H be a Hilbert space and let v : Q@ — H be a holomorphic
function on an open set @ C C. Let P € B(H) be a bounded positive operator on H.
Define

K :QxQ—=C, (z,w) = (y(2),v(w))
Ko : QxQ—C, (z,w) = (Py(2),v(w)).

Then K, Ky are reproducing kernels and Ko < K. If P is invertible, then Ky ~ Ks.

Proof. By Proposition 2.25 the function K is a reproducing kernel. To see that K5 is

also a reproducing kernel, let n € N*| ¢y,...,¢, € C and zq,..., 2, € Q. Then we see
n n n n
Z Z CiFjKQ(Zi, Zj) = <PZ ci’y(zi), Z Cj’}/(Zj)> Z 0.
i=1 j=1 i=1 j=1

So K is positive definite and hence a reproducing kernel by Theorem 2.22. To see
that Ky < K; we observe that the operator Q1 = ||P||I — P is positive because its
spectrum is contained in R&. Therefore the map K : Q x Q — C with

K(z,w) = [P K1(z,w) = Ks(z,w) = [|[Pl[(7(2), 7(w)) = (Py(2),7(w))
= (1P = P)y(2),v(w)) = (Q1v(2),7(w)) for z,w €

is a reproducing kernel as we have seen in the proof above. Thus we get Ko < Kj.

Assume now that P is also invertible. Then 0 € o(P)¢ and, as this set is open, there is
r > 0 such that D, (0) C o(P)¢. Then for C = 1 the operator Q2 = CP — I is positive
due to the spectral mapping theorem. This implies that the map K’ : Q x Q — C with

K'(z,w) = (Q27(2),7(w)) = CKa(z,w) — K1(z,w) for z,w € Q
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is a reproducing kernel. Therefore K; < K5 and hence K; ~ K. O

2.6 Multipliers

We now introduce the concept of multipliers and multiplication operators. The latter
are maps between functional Hilbert spaces on the same set {2, which are induced by
pointwise multiplication with a complex function on €:

Definition 2.31. Let Q be a set and let Hy, Ha C C be two functional Hilbert spaces.
For functions f,g : Q@ — C the product fg : Q — C is defined in the natural way:
(f9)(z) = f(2)g(2) for all z € Q. The elements of

M(H1,7‘[2) = {¢ 10— (C;(le C 7‘[2}

are called multipliers from Hy to Hs.

For ¢ € M(H1,H2), we call
M¢2'H1*>’H2, fl—>¢)f

the multiplication operator with symbol ¢.

Lemma 2.32. Let Q be a set and let Hi,Hy C C% be two functional Hilbert spaces
with reproducing kernels K1 and Ko, respectively. Then for ¢ € M(H1,Hs2), we have
(a) My : H1 — Ha is bounded and linear.

(b) M;Ks(-,w) = ¢p(w)Ki(-,w) for all we Q

Proof. (a) The linearity of My is clear. We show the continuity with the closed graph
theorem. Take a convergent sequence (fy,)neny — f in H1 with My f, — g in Ho. Then
because convergence in H; implies pointwise convergence:

(Myfn)(2) = ¢(2) fn(2) = ¢(2) f(2) = (Myf)(2) as n — oco.
On the other hand, we get
(Myfn)(2) — g(z) as n — oo.

As limits in C are unique, we have (Myf)(z) = g(z) for all z € Q. Thus My is
continuous by the closed graph theorem.
(b) Let f € Hi,w € Q be arbitrary. Then

(i MGEs (-, w)) = (Mo f, Ka (-, w)) = (Mg f)(w) = ¢(w) f(w)

= ¢(w)<fv Kl("w)> = <f7WK1(aw)>

Because f was arbitrary, we have proven that MjKs(-,w) = ¢(w)K1 (-, w). O

As with reproducing kernels, we can find a convenient criterion characterising the
functions which are multipliers.
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Theorem 2.33. Let Q be a set and let Hi,Ho C C be two functional Hilbert spaces
with reproducing kernels Ky, Ko. Then for ¢ : Q@ — C, the following are equivalent:
(i) ¢ € M(H1,Ha),

(i) There is a constant ¢ > 0 such that the map

Yo : Qx Q= C, (z,w) = EKa(z,w) — ¢(2) K1 (2, w)p(w)
is positive definite (or equivalently, ¢(z)K1(z,w)p(w) < Ko(z,w)).

Proof. (i) = (ii): Forn € N*,c1,...,¢, € C,z1,..., 2, € Qand ¢ > [|[ M| = || My],
we have by Lemma 2.32:

n o n
E E CC]’}/C Z]7ZZ

ZZ citi K (2, %) ZZC@W%‘)K&%’%)@
ZCQZZ @(Kz('vzi)aKz('aZj»—ZZCiFj¢(Zj)<K1('aZi)aKl('aZj»m
:CQ<Z Kz('azi)aZCsz(ij» - <Zcz¢ 2i) K1 (- Z 5 25))

= Zc,;KQ(., 2= 1Y cdlz) Kl z))°
i=1 i=1

n n
=Y Ko — 1My ek, z)|* > 0. (2.5)
= i=1

So 7. is positive definite for ¢ > || My]|.

(19) = (i): Let ¢ > 0 be a positive real number such that 7, is positive definite. Sup-
pose now we haven € N*, ¢1,...,¢, € C,z1,...,2, € Qsuch that >\, ¢;Ka(-, 2;) = 0.
Then (2.5) implies

n n
IS cdGIE (=) < 1Y eoka(z)])? =
i=1 i=1
Hence Corollary 2.5 shows that there is a unique linear map
To : LH({K2(:, 2); 2 € Q}) = LH({K1(+,2); 2 € Q})

with Ty K3(+, z) = ¢(2) K1 (-, 2). Inequality (2.5) also shows that Tj is bounded. There-
fore it can be extended to a bounded linear map T € B(Ha,H1). Then we find for
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fEHl,ZEQ:

(T*f)(z) = <T*f’ KQ("Z» = <f7 TKQ('7Z)> = <f7%K1(7Z)> = <¢(Z)f7 Kl('vz»
= ¢(2)f(2) = (6f)(2).

Thus ¢f =T*f € Hs for all f € Hy, so ¢ is a multiplier from H; to Ho. O

2.7 Vector bundles

In the study of Cowen-Douglas operators, complex vector bundles arise in a natural
way. In [Zhu00] Zhu uses a result from differential geometry to simplify the representa-
tion of Cowen-Douglas operators found in [CD78]. We will recall the basic definitions
(restricting ourselves to complex vector bundles) and present the result used by Zhu.
The following paragraph is mostly a translation of parts of Chapter 29 in [For77], but
adapted to our purposes.

Definition 2.34. Let n € N* and let m : E — X be a continuous map between
topological spaces E and X. Let every fiber E, := n=*({x}) for v € X be equipped
with the structure of an n-dimensional complex vector space. Then w : E — X (or
short: E) is called a vector bundle of rank n over X if the following condition is
satisfied:

For every a € X, there exist an open neighbourhood U C X and a homeomorphism h
from Eyy = 7= 1(U) to U x C™ (equipped with the product topology) satisfying:

1. pryoh=m,

2. for every x € U, the map h|g, is a vector space isomorphism from E, to {x} x
Cr~Cn.

In this case E is called the total space and X is called the base space of the vector
bundle. The map h: Ey — U x C" is called a linear chart of E over U.

If (U)ier is a family of open sets U; C X covering X and h; : Ey, — U; x C™ are
linear charts, then A = (h;);er is called an atlas of E.

Definition 2.35. A vector bundle of rank n is called trivial if (with notation as above)
there exists a global linear chart h: E — X x C™.

Definition 2.36. Let m; : E; — X, i = 1,2 be two vector bundles over the same base
space. A wvector bundle morphism from Ey to Es is a continuos map f : Fy — Fo such
that

1. T = T2 0 f
2. for every x € Xy, the map f|7r1_1({w}) s ({x)) — 7wy t({x)) s linear.

The vector bundles which we will use in the study of Cowen-Douglas operators will
have an additional structure. In order to define it, we cite the following theorem
from [For77] without proof.

20



Theorem 2.37. Let m : E — X a vector bundle of rank n and let (h;)icr be an
atlas consisting of functions h; : Ey, — U; x C™ for i € 1. Then there are uniquely
determined continuous maps

Gij : Ul n Uj — GL(TL, (C)
such that
(hio h;l)(x,t) = (x,gi;(x)t) forall (x,t) € (U;NU;) x C".

Definition 2.38. The functions g;; in Theorem 2.37 are called transition functions
for the atlas (h;)icr-

Now we can define the notion of holomorphic vector bundles. In [For77] the base
space of the vector bundle is a Riemann surface. We use an open subset of C? instead.

Definition 2.39. Let X C C? be an open set equipped with the relative topology of C?
and let m: E — X a vector bundle of rank n over X. Furthermore, let

A:(hi:EUi%UiX(Cn; iEI)

be an atlas of E. Then A is called holomorphic if the corresponding transition functions
gi; : UiNU; — GL(n,C) are holomorphic for all i,j € I with U; NU; # .

Two holomorphic atlases A, A" of E are called holomorphically equivalent, if AU A’ is
a holomorphic atlas of E. It is easy to prove that this defines an equivalence relation on
the set of all holomorphic atlases of E. The equivalence classes are called holomorphic
linear structures.

A holomorphic vector bundle is a vector bundle w : E — X together with a holomorphic
linear structure.

A holomorphic vector bundle m : E — X s called holomorphically (or analytically)
trivial if its holomorphic linear structure contains an atlas consisting of a single linear

chart h: E— X x C" .

Definition 2.40. Let 7; : E; — X be holomorphic vector bundles of rank n; € N*,
i1 =1,2. Then a map F : 4 — FEs is called a holomorphic bundle map if it is a vector
bundle morphism and if, for all linear charts h; : w[l(Ui) — U; x C™ contained in

atlases representing the holomorphic linear structure of E; fori = 1,2 with UyNUs # 0,
we have hg o F' o hl_1 (U NUz) x C™ — (U NUz) x C™ s a holomorphic map.

Definition 2.41. Let n € N*, m : E — X a vector bundle of rank n and U C X open.
Then a section (or cross-section) in E over U is a continuous function f : U — E
such that wo f =idy. If h; : Ey, — U; x C™ is a linear chart with U; N U # 0, then
the map f; : U;NU — C™ with f; = pryoh; o f is called the representation of f in the
chart h;.

Note that the above map f; is continuous and satisfies

hi(f(x)) = (z, fi(x)) VeeUnU.
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Definition 2.42. Let 7 : E — X be a holomorphic vector bundle of rank n and let
U C X be open. Let (h; : Ey, — U; x C*; i € I) be an atlas representing the
holomorphic linear structure of E. Then a section f : U — FE in E over U is called
holomorphic if its representation f; : U N U — C™ in the chart h; is a holomorphic
function for all i € I with U; NU # (.

Remark 2.43. It is easy to show that the above definition does not depend on the
choice of the atlas (h;;i € I) in the holomorphic linear structure of E.

Definition 2.44. Let n € N*, 7 : E — X a holomorphic vector bundle of rank n
and U C X open. Then holomorphic sections fi,...,fn : U — E are called a local
holomorphic frame in E over U if 7= (z) = LH({f1(x), ..., fu(z)}) with respect to the
vector space structure of () for allx € U. For U = X, sections with this property
f1,-- -y fn are called a global holomorphic frame.

Lemma 2.45. Let w; : E; — X be a holomorphic vector bundle of rank n; fori=1,2
and let f1 : U — E1 be a holomorphic section on an open set U C X. If F: By — FEy
is a holomorphic bundle map, then fo = F o f : U — FEy is a holomorphic section.

Proof. The function fy is continuous as the composition of continuous functions and
Mg o fo =m0 Fof; =mof; =idy as F is a vector bundle morphisms and f; a
section. Thus f; is a section.

Let now (h : EUij — U] x C™; i € I;) be atlases representing the holomorphic linear
structure of E; for j = 1,2. Let i € I such that U NU? # 0. We have to show
that the representation fi : U2 N U — C"2 of f, in the chart h? is holomorphic.
Let wo € U7 NU and j € I; be given such that wy € Uj. Then the representation
ff : Uj1 NU — C™ of f; in hJ1 is holomorphic and as F' is a holomorphic bundle map,
the function h7 o Fo(hj)~! : (U} NU?) x C™ — (Uj NU?) x C"* is holomorphic. Then
in the open neighbourhood U = UNU} NUZ of wy the function fi can be described as

Fi=prohlofy=pryohloFofy

= pry oh?oFo(h;)flo h;ofl
~— N - ~——
holomorphic holomorphic =idg X f{ :holomorphic
Thus f4 is holomorphic, which completes the proof. O

Definition 2.46. Let m : E — X be a holomorphic vector bundle with representing
atlas (h; : By, = U; x C"; ¢ € I). Then E is called a hermitian holomorphic vector
bundle if each fibre B, = 7= *({z}) (z € X) is equipped with a scalar product (-,")g, :
E, x E, — C in such a way that the unique matriz-valued functions m; : U; —
M(n x n,C) with

(R (z,¢), by M (2, d)) g, = (mi(x)e,d)cn  (x € Ujye,d € C™)

are C*°-functions for every i € I.
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Remark 2.47. (a) In the above setting the matrices m;(x) € M (n x n,C) are positive
and invertible.

(b) The definition does not depend on the choice of the representing atlas. More pre-
cisely, if h; : By, — U; x C" and h; : By, — U; x C" (i,7 € I) are two charts in a
representing atlas with U = U; NU; # 0 and if g;; : U — GL(n,C) is the associated
transition function, that is,

h; o h;l(m,c) = (z,gij(x)c) for (z,¢) € U x C,
then by definition
(mi(z)gij(x)e, gij(x)d)cn = (hi_l(xvgij(x)c)a hi_l(ﬂ%gz'j(l?)d))Em
= (h;H (@), by @, ) g, = (mj(@)e.d)en
forx € U, c,d € C". Therefore the relation
gij(x) mi(x)gs ;(x) = m;(x)

holds for all x € U. As the function g;; is holomorphic and thus C*°, the map m; is
C* on U if and only if the map m; is C*° on U.

Definition 2.48. Two hermitian holomorphic vector bundles m; : E; — X, i = 1,2
are called equivalent if there is a holomorphic bundle map F : By — Eo such that

Fle—t(eyp ™ ({2}) = w5 H({x})

defines a unitary map for all x € X.
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3 Uniqueness sets

In order to be able to prove the existence of spanning holomorphic cross-sections, we
need to construct uniqueness sets for Banach spaces of holomorphic functions. We
recall the definition of a uniqueness set.

Definition 3.1. Let Q be a set, X C C® a set of functions on Q. A subset A C ) is
called a uniqueness set for X if, for all f € X, we have that f|a = 0 already implies

f=o.

As a first step we will construct a uniqueness set for a special situation and then
conclude that we actually covered a very broad range of spaces.

Theorem 3.2. Let Q C C% be open and let v : Q — X' be a holomorphic function into
the topological dual of a Banach space X. Consider the set X, = {Z;x € X} where

Z:Q — C is defined by
Z(z) = (z,7(2)).

for x € X. Then there exists a countable subset A C Q such that
1. A has no accumulation point in €,
2. A is a uniqueness set for X, .

Proof. Let K C Q be compact. Then the function | : K — X’ is uniformly
continuous due to the Heine-Cantor theorem. Now consider an exhaustion by compact
sets (Kp)nen of Q, i.e., for all n € N the set K,, C Q is compact, K,, C Int(K,;) and
Unen Kn = Q. We formally define K3 = (). Then we choose a sequence (I,)nen in
N* and elements (a?,)i, in © as follows:

Let n € N, then K], = K,\Int(K,_1) is compact and thus there exists d,, > 0 such
that

1
lv(z1) — v(22)]] < - for all 21,29 € K], with |21 — 22| < Jp,. (3.1)

We have an open covering K|, C |J,c s Bs, (2) of the compact set K. So there exist
l, € N*,al ... al» € K/ such that K/ C Uéll Bs, (al) is a finite subcovering.

We claim that the set A = {a’;n € N, i € N;, } has the properties we required.

(1) Let z € Q be arbitrary. Then there exists n € N with z € K, C Int(K,).
Then for all m > n, i € N;, the point a!, € K,,\Int(K,,—1) C K;,\Int(K,,) does
not lie in Int(K,). So of all the elements of A at most the finitely many points
{ai;k € N,, i € Nj, } can belong to the open neighbourhood Int(K,,) of 2. Hence z is

not an accumulation point of A.
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(2) Assume we have f € X, with f(a) = 0 for all @ € A, but f # 0. Then there is
x € X, x#0, with f(2) = (x,v(z)) for all z € Q. We now show that

|f(2)] < @ forn e N*, z € K.

Let n € N*, 2z € K/, be given. Then there exists i € N;, such that |z — a},| < §,. By
(3.1) we obtain that ||v(z) — v(a},)|| < L. Then we conclude

()| =1f(2) — f(a;)| = |{x,v(2)) — <xa7(af1)>|
= {2 7(2) = (@) < 1) i)l - el < L.

Now by the version of the maximum principle formulated in Theorem 2.9, for n € N,
the continuous function |f| achieves its maximum on the compact set K, on the
boundary 0K, C K,\Int(XK,) C K,\Int(K,_1) = K. But this implies

lf(2)] < ”inH for z € K,,.

Let z € Q be arbitary. Then there exists n € N with z € K,,, for all m > n. But then
by the inequality above, |f(z)| must be arbitarily small, so f(z) = 0. Thus f =0, a
contradiction. O

Proposition 3.3. Let Q C C? be open and let X be a Banach space of holomorphic
functions on Q with continuous point evaluations

0,: X —>C, f— f(z)

for z € Q. Then the map
§:Q—= X', 24,

s analytic.

Proof. Let g € X be a function. Then g(z) = §,(g) for all z € Q. Thus §.(g) defines
a holomorphic function and so by Lemma 2.16 the function § is holomorphic. O

Corollary 3.4. Let Q C C? be open and let X be a Banach space of holomorphic
functions on Q with continuous point evaluations &, for z € Q. Then there ezists a
countable subset A C Q) such that

1. A has no accumulation point in Q and
2. A is a uniqueness set for X, .

Proof. By Proposition 3.3 the function § : Q@ — X', z — 4, is holomorphic. With
notation as in Theorem 3.2 we have with v = §:

~

f(z)={(f,6.)=f(z) for fe X ze.
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Therefore X5 = X as subsets of C*2. Now choose a uniqueness set A for X without
accumulation point in  as in Theorem 3.2. Let f € X with f(a) = 0 for all a € A.
Then fAE Xs and f(a) = f(a) =0 for all @ € A. But this implies f(z) = f(z) =0 for
all z € , so f =0. Thus A is also a uniqueness set for X and has no accumulation
point in  as required. O

The proof of the above corollary shows that every Banach space X of holomorphic
functions with continuous point evaluations can be identified with X5 as constructed
above. Lemma 3.6 below shows that also the converse is true, that is X, can be
equipped with the structure of a Banach space in a natural way.

We recall now a basic result which will be used in the proof.

Proposition 3.5. Let X be a complex Banach space and let M C X’ be a weak*-closed
subspace. Then foru € M, the functionu : X/*M — C, u([x]) = u(z) is well-defined,
linear and bounded and the map

M — (X/ M), w1
18 an isometric isomorphism between Banach spaces.

Lemma 3.6. Let Q C C? be open and let v : Q@ — X' be a holomorphic function into
the topological dual of a Banach space X. For every x € X, define a holomorphic
function 7 : Q — C by

Z(2) = (x,v(2)) VzeQ.

Then the set X, = {Z;2 € X} can be equipped with the structure of a Banach space
such that, for all K C £ compact, there exists C > 0 with

|Z(2)] < Clz|| forz € X and z € K.

Proof. The functions Z are holomorphic by Lemma 2.16. The set X, is a linear sub-
space of C* and the map ¢ : X — Xy, © — T, is linear, because

aZ + By = afz,7()) + Bly,7(")) = (az + By,7())) = az + Py for a, 8 € C,z,y,€ X.
By definition, ¢q is surjective. We determine the kernel of ¢q:

ker(¢g) = {z € X; (x,v(2)) = 0 for every z € Q}
= H{1(2)iz € Q) = "LH({n(2);2 € Q})

w*

So with the definition

Xy =LH{y(z)z €0 c X’
we see that ker(¢o) = +Xg. But then

b: Xo=X/"X; = X, [2] = do(x) =7

is an isomorphism of vector spaces. We now define a norm on X, by || = ||[z]| x,-
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As 1X§ C X is a closed subspace and X is a Banach space, also Xy and X, are
Banach spaces.
Let K C Q be compact. Then for all x € Xy, z € K we have that

—

#(2)| = (&, 7)) = Klzl, @) < v = 121,

where we have used Proposition 3.5. As v is holomorphic, it is continuous and so
[[7(2)|| is bounded on the compact set K. This completes the proof. O
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4 Vector bundles associated with
Cowen-Douglas operators

In the following section we will show that every Cowen-Douglas operator tuple in
B, () gives rise to a canonical hermitian holomorphic vector bundle of rank n over Q.
This was already shown in [CD78] for single Cowen-Douglas operators (i.e.  C C).

Proposition 4.1. Let Hy, Hy be Hilbert spaces, let T € B(Hy, Hs) be an operator
with closed range and let P € B(H1) be the orthogonal projection on kerT. Then there
exists an operator S € B(Hq, Hy) such that ST =1 — P.

Proof. The linear mapping
T : ker(T)* — Ran(T), z — Tz

is a bijection between Banach spaces and hence the inverse operator S : Ran(T') —
ker(T)* is continuous. Now choose any operator S € B(Hy, H;) extending S, for
instance by defining S|gan(ryr = 0. Then ST = I — P is the orthogonal projection on
ker(T)* O

Theorem 4.2. Let T = (T;)%, € B,(Q) C B(H)? be a Cowen-Douglas tuple with
notation as in Definition 2.1. Then for each wy € S, there exist an open neighbourhood
V C Q and holomorphic functions vy1,...,vn : V — H such that

d
LH{m (W), ., m(@)}) = kerT,, = (| ker(T; — w;) for w € V.

i=1

Proof. Without loss of generality we may assume wg = 0 (otherwise replace by
Q—woand T by T —wy = (T1 —wo.1,. .., Ty —wo,a)). Then for Ty € B(H, H%), choose
S € B(H?, H) as in Proposition 4.1 such that STy, = I — P, where P is the orthogonal
projection on kerTy = ﬂ?:l ker(T;). Now we decompose S in the following way: for
k € Ny we define

Sk - H — H, T — Sz’k(x),

where i;, : H — H? is the inclusion in the k-th component of H?. Then we have
S(yl,...,yd) =Sy +...+Sqya foryi,...,yq € H.

Now for M = dmax;—1, 4| Si||, we define R = M~! for M > 0 and R = oo for
M=0 and set V' = Pg(0) N Q. Then with the Neumann series, the operator B(w) =
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I —wiS1—...—wySq has a continuous inverse A(w) for w € V, because for M > 0 we
have

lw1S1 + ..+ waSall < |wi[|S1]l + - .. + |wall|Sal| < dM~* i:nrlladeSiH =1

and for M = 0 it follows that S; = ... = S3 = 0, hence the statement is trivial.
Consider the functions Q : V — B(H? H), P : V — B(H) defined by

Qw) = A(w)S,

Pw)=A(w)P

for w e V. As dim ker Ty = n and A(w) is an isomorphism, dim Ran(P(w)) = n. For
w €V, we show that Q(w)T,, = I — P(w): Let € H be arbitrary. Then

(I — Pw))r=Aw) (I —P) —wiS1 — ... —wagSy)z
= A(w)(STy) —w1S1 — ... —waSq)x
= Alw)(S(Tx,...,Tqx) —wi1S12 — ... — wgSqx)
= AWw)(S1(Th —wi)x 4+ ... + Sa(Tg — wa)x)
= AWw)S(Th —w1)z, ..., (Ty —wq)x)
=Qw)T,x.

Now we conclude that
kerT,, C ker(Q(w)T,,) = ker(I — P(w)) C RanP(w),
where we used that x = P(w)x € RanP(w) for all z € ker(I — P(w)). As
n = dim kerT,, = dim RanP(w),

we must have kerT,, = RanP(w). We define functions v1,...,7, : V= H by v;(w) =
P(w)e; € kerT,, for i = 1,...,n, where (e;)I"_; is a basis of kerTy. For each w € V,
the vectors v1(w), ..., v, (w) are linearly independent as A(w) is an isomorphism. It
remains to show that they are holomorphic functions. For this it suffices to show that
A(w) is holomorphic by Lemma 2.16. It is obvious that the map

B:V—>BH), w—I—wS —...—waSq

is continuous and partially holomorphic and thus holomorphic. By construction, B(w)
is invertible for all w € V with inverse A(w). Therefore by Theorem 2.19, A is holo-
morphic, which finishes the proof. O

Let T = (T;)%, € B,(Q) C B(H)¢ be a Cowen-Douglas operator tuple on an open
set Q € C?. We equip the set

Er ={(w,z) e Qx H;z € ker T,,}
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with the relative topology of the product toplology of 2 x H. Then the map
7 Er = Q, (w,2) = w.

is continuous. For w € €, the fiber 771 ({w}) = {w} x ker T, can be identified with
ker T, and thus becomes an n-dimensional complex vector space.

By Theorem 4.2, for every point wg € €2 we can choose an open neighbourhood V,,, C
2 of wy and holomorphic functions 7{°,...,v%° : V,, — H such that the vectors
O (w), ..., 79 (w) form a basis of ker T, for every point w € V,,;. Thus we can define
bijective maps hy,, : 71 (V) = Vi, X C" by setting

heo (W, ) = (w, ()14 1fx—Zaﬁl

Obviously the maps (hy,)w.eq depend on the choices of V,, and ~7°,..., 4%°. For
brevity of notation, we will suppress these additional parameters.

Theorem 4.3. Let T = (T;)%_, € B,(Q) C B(H)¢ be a Cowen-Douglas tuple on an
open set Q C C4. Then 7 : Ep — Q defines a vector bundle of rank n over Q. Any
family (hyy)woeq chosen as explained above is a holomorphic atlas of Er.

Proof. For every wy € 2, the map h,,, is a linear chart:
It is obvious that pry 0 hw, = 7|r-1(y,, ). For every w € V,,,, the map he, [(my),, defines
an isomorphism

7 ({w}) = {w} x ker T,,, — {w} x C"™.

So we have to show that h, is a homeomorphism. First, it is bijective with inverse
given by

hot i Vigy x C" — fl(vw(,)

(w (al 1= 1 ZO@L"}/

It is clear that this map is continuous as +;°,...,v¥° are continuous. Now we show

that hy, is continuous. Let (w,z) € 7= (V) Then we want to determine a(w,z) =
(az(w z)), € C™ with Y7 | a;(w, z)7;°(w) = z. For this we apply the linear forms
(,75°(w)) to both sides of this equation for j = 1,...,n. This yields the following
system of linear equations:

(7 (W), 77 (@) smralw, @) = ({2,957 (@)1

As 70 (w), ..., 7% (w) are linearly independent, the matrix

Aw) = (07 (@), 75 (@)=
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is invertible by Proposition 2.3. Thus the equation above determines a(w, z) uniquely:

alw,z) = A(w) ™ (2,77 (@)}

As the map A : V,,, — C"™" w — A(w), is continuous, Ran(A4) C GL(n,C) and
the map GL(n,C) — GL(n,C), M ~ M~!, is continuous by Cramer’s rule, the map
a: 1 V,) = C (w,z) — a(w,z), is continuous. But this implies that h,, is
continuous as hy, (w, ) = (w, a(w,)) for all (w,z) € 7~ 1(V,,).

Now we show that the family h = (hy,)w,eq is a holomorphic atlas of Ep. It is clear
that the h,, are linear charts on Ep by the above argument and that (V,,,)w,cq is an
open cover of Q. Thus h is an atlas of Ep. So let wy,ws € Q with V,,, NV, # 0. Then
we have to show that the transition function g : V,,, NV, — GL(n,C) with

(hu, 0 hip))(w, @) = (w,g(w)a) for w € V,, NV, a € C"

is holomorphic.
Let wo,w € V,,, N V,,, a € C" be arbitrary. Then we have

(hou © h;;)(w 0‘ = hw1 Zo‘z’Y (w,ﬁ(w, Oé)),

where B(w,a) € C™ is a vector such that >, 3;(w, )71 (w) =31 @i ?(w). Now
applying the linear forms (-,7;"(wo)), for j = 1,...,n, to this equation gives the
following system of linear equations for §(w, a).

(7 (W), 75 (wo))) =1 Blw, ) = ((72 (W), 75 (wo)) =1 - (4.1)
We consider the function
AV, NV, = € w i (7 (w), 75 (wo))) 7 i=1-

Again with Proposition 2.3, the matrix A(wg) is regular, so det(A(wg)) # 0. As
the function det(A(-)) is continuous, there is an open neighbourhood V' of wy with
V C V,, NV, such that A(w) is a regular matrix for all w € V. By Proposition
2.13 the function A|y is a holomorphic map, as all its components are holomorphic
functions, with A(V) C GL(n,C). Thus by Theorem 2.19 the map A(-)~! : V —
C ", w — A(w)™!, is holomorphic. So Equation 4.1 yields

Blw,a) = A(w) " (12 (W), 75 (wo))fimy @ for w e V.
g(w)

A function V' — C™*™ is holomorphic if and only if its components are holomorphic
functions. Thus by calculating the matrix multiplication above it is clear that the
components of g(w) are holomorphic as sums of products of holomorphic functions.
Thus g is holomorphic around wg and as wy € V,,, NV, was arbitrary, g is holomorphic
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on V,,, NV,,. This completes the proof. O

Remark 4.4. The final part of the proof above also shows that, if we choose different
sets f/wo and maps 350, ..., 420 for every wy € Q as described above Theorem 4.3,
the resulting holomorphic atlas (he,)wyeq is equivalent to (huw)wocq. Therefore the
following definition makes sense.

Definition 4.5. Let T = (T;)%_, € B,(Q2) C B(H)? be a Cowen-Douglas tuple on an
open set Q C C%. Then the holomorphic vector bundle w : Ep —  together with the
equivalence class of an atlas (hy,)woeq 8 called the vector bundle associated with T

Remark 4.6. Note that the the vector bundle associated with an operator T € B, ()
is also canonically a hermitian vector bundle. For w € Q, we define the scalar product
(,)w on {w} x kerT,, = kerT,, C H as the restriction of the scalar product on H.
To see that this turns Er into a hermitian holomorphic vector bundle, it suffices to
observe that, with the notation from the proof of Theorem 4.3, the identities

<h;gl(w>(ai)zn:1)7 wo( Bj j= 1 ZQZV?O(W%ZBJ‘V;)O(W»

= Z (w))aiBs = ({37 (@), 75 @)= (@i)izy, (B1)T=1)

i,7=1
hold.

The following Lemma shows that the holomorphic structure of the vector bundle Ep
is compatible with the notion of holomorphic maps into Banach spaces in Definition
2.10.

Lemma 4.7. Let T = (T;){_, € B,(Q) C B(H)¢ be a Cowen-Douglas tuple and let
w: Ep — Q be the vector bundle associated with T. Then for U C  open, a map
f:U — H with f(w) € kerT,, for all w € U induces a holomorphic section

f:U—>ET, w = (w, f(w))

in Er over U if and only if it is holomorphic in the sense of Definition 2.10.

Proof. First assume that f U — Er is a holomorphic section in Er over U and let
wo € U be arbitary. By definition the representation fwo Vo NU — C™ of f is
holomorphic and satisfies he, (f(w)) = (w, fu,(w)) for w € Vi, NU. Applying hot

we obtain that .
Z ’Lr}/z ))

Thus the function f satisfies
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and hence it is holomorphic by Proposition 2.12 and due to the fact that the compo-
nents of f,,, are holomorphic functions.

Now let f : U — H be holomorphic with f(w) € kerT, for all w € U. As f is
continuous, the function f it is obviously a section. Let (h,)w,cq be a holomorphic
atlas of Er as in the proof of Theorem 4.3. Fix a point wy €  with U NV, # 0.
Let hyy : 71 (Viyy) = Vi X C™ be a linear chart in the atlas chosen above such that
UNV,, #0. Choose w; € UNYV,,. Then as in the proof of Theorem 4.3 we see that
there is a neighbourhood V' C U N'V,,, of w; such that the representation fwo of f in
h, has the form

Foo (@) = (7 (@), 75 (@) ima] T (F @), 75 (@) s

for w € V. With the same arguments as above, this function is holomorphic in w,
which completes the proof. O

Definition 4.8. Let Q C C? be open and let v1,...7v, : Q — H be holomorphic
functions with values in a Hilbert space H. We say that v1,...,7v, span H if

H=TLH({y(2);k € N,,,z € Q}).

Definition 4.9. Let Q C C? be open and let T € B,(Q) C B(H)? be a Cowen-
Douglas tuple. Then a spanning holomorphic cross-section in Er is a holomorphic
function v : Q — H spanning H such that v(w) € ker(T,,) for allw € Q.

In our construction of spanning holomorphic cross-sections, we will use the existence
of a global holomorphic frame for the vector bundle Ep. The following definition
characterises the sets 0 C C? which assure this condition for operator tuples T €
B, ().

Definition 4.10. Let d € N*, then we call an open subset Q C C¢ admissible if every
holomorphic vector bundle over Q is analytically trivial.

Now we can use a result from complex geometry found by Grauert, which states that
a large class of open subsets of C? is admissible. The following results are Theorem 6
and 7 in [Grab8a] respectively.

Theorem 4.11. Let Q0 be a contractible, holomorphically complete complex space.
Then every holomorphic fibre bundle 7 : Ep — Q is holomorphically trival.

Theorem 4.12. Let 2 be a non-compact Riemann surface and w : Ep — € a holo-
morphic fibre bundle. If the structure group of Er is a connected, complex Lie-group
then E7 is holomorphically trival.

We now have to adapt these abstract theorems to our specific situation. In order to
do this in detail, it would be necessary to introduce many concepts from differential
and complex geometry. This would be out of place in this Bachelor thesis and therefore
we refer the interested reader to the classical literature on these subjects. All we need
to know at this point is that
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1. Holomorphic vector bundles of rank n € N* are holomorphic fibre bundles, where
the fibre is the vector space C™ and the structure group is the group GL(n,C) ;
the fibre bundle is analytically trivial if and only if it is analytically trivial as a
holomorphic vector bundle.

2. An open connected subset Q C C? is a holomorphically complete space if and
only if it is a domain of holomorphy (cf. [Gra58b], Section 2.1).

3. Every nonempty open subset 2 C C is a non-compact Riemann surface in a
canonical way.

4. The group GL(n,C) is a connected Lie-group.

Corollary 4.13. Let Q C C% open. Then for d =1 (i.e., Q C C) or Q a contractible
domain of holomorphy we have that ) is admissible.

Corollary 4.14. Let Q C C? be an admissible open set and let T € B,,(Q) C B(H)? be
a Cowen-Douglas tuple of degree n. Then there exist holomorphic functions 1, ..., vy :
Q — H such that ker(T,,) = LH({y1(w), ..., vn(w)}) for all w € Q.

Proof. By Theorem 4.11 the vector bundle Er is trival. Let h : Ep — Q x C" be
a linear chart in an atlas representing the holomorphic linear structure of Ep. For
i € N,,, we define

¥ :Q— Ep, ww h_l(w,ei),
vi:Q— H, —wrpryoy;.

The representation of ; in the chart A is obviously just the constant function e;, which
is holomorphic. Hence 7; is a holomorphic section and by Lemma 4.7 the map ~; is a
holomorphic function from Q to H for i € N,,. As (ey,...,e,) form a basis of C" and
h(w,-) is an isomorphism of vector spaces, the vectors (71 (w), ..., yn(w)) form a basis
of 771 ({w}) = ker(T,,) as required.

34



5 Spanning holomorphic cross-sections

Given a Hilbert space H spanned by holomorphic functions ~vq,...,v, : @ — H,
we now want to construct a holomorphic function v : Q@ — H spanning H with
v(z) € LH{71(2),...,7(2)}) for all z € Q. By applying this result to a global
holomorphic frame for the vector bundle associated with a Cowen-Douglas operator
tuple one obtains a spanning holomorphic cross-section. We will inductively reduce
the number of necessary functions to span H. Before we begin, we have to take care
of a technical detail, which will allow us to use the results about uniqueness sets found
in Section 3.

Proposition 5.1. Let Q C C¢ be open, and let v : Q — H be a holomorphic function
into a Hilbert space H. Then the function

Q= H 20 (- v(2))
is holomorphic.
Proof. By Lemma 2.16 it suffices to show that for all z € H the function
92 : " = C, 2 5(2)(z) = (2,7(2))
is holomorphic. By Proposition 2.13 the function

fo: Q=C, z—= (v(2),2)

is holomorphic and ¢,(z) = (z,v(Z)) = (v(Z),z) = fz(Z) for all z € Q. So by Proposi-
tion 2.8, the function g, is holomorphic. O

Lemma 5.2. Let Q C C? be a domain of holomorphy and A C Q a set without accu-
mulation point in 2. Then there exists a nonzero holomorphic function f € O(Q)\{0}
such that f vanishes on A.

Proof. In this proof we will use several notions and a result from complex geometry,
which can be found in [FG02]. Since we can define the function f seperately on all
connected components of €, it suffices to prove the statement for Q2 connected. As
is a domain of holomorphy, it is a Stein manifold. Choose an arbitrary point p € Q\ A
and define A’ = AU {p}. Then A’ C Q is an analytic set. Indeed, for z € , there
is a constant r > 0 such that the sets U = B,(z) N Q and A’\{z} have no common
points, because A’ still has no accumulation point in Q. For z ¢ A’| the set U N A’
is empty and thus the zero set of the constant function 1. For z € A’, we have that
UNA={z}={weUjw —2 =0,...,wqg — zg = 0} is the common zero set of d
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holomorphic functions on U.
Now consider the function

’ 0 z#p
fo: A= C, z»—>{1 sop

This function is holomorphic as it is locally constant. By Theorem V.1.9 in [FG02],
there exists a holomorphic function f € O(Q) with f|a = fo. But then clearly f # 0
and f|4 =0. O

We will try to define v as a sum v(2) = ¢1(2)71(2) + ... + ¢n(2)vn(2) with holo-
morphic functions ¢1, ..., ¢,. As we will need this in a later proof, we want to choose
the functions ¢; simultaneously for different Hilbert spaces H; spanned by %, ..., ~¢.

Lemma 5.3. Let Q C C? be a domain of holomorphy and let Hy, ..., H,, be Hilbert
spaces. If vi,v% : Q — H; are two holomorphic functions spanning H; fori € N,,, then
there exists a holomorphic function ¢ € O(Q) such that the functions v* = ¢ + 74
also span H; fori € Ny,

Proof. We will define ¢ as a product ¢ = []/", ¢, with ¢; € O(2) constructed as
follows:

Let i € N,,. If 44 = 0, we set ¢; = 1 and define the set A; = () C Q, which is the zero
set of ¢;. If 44 # 0, consider the space

defined as in Lemma 3.6. Here 74 : Q* — H’ is the holomorphic function associated
with 4 as described in Proposition 5.1. We recall that for x € H; we defined

T:0Q" = C, 2 (2,7(2)).

Then by Theorem 3.2, there exists a uniqueness set B; C Q* for (H;)5; without accu-
mulation point in 2*. We define the set A; = B} which in turn has no accumulation
point in Q. By Lemma 5.2, there exists a holomorphic function ¢; € O(Q2)\{0} such
that ¢; vanishes on A;.

We show that ¢ = ¢ -...- @, has the desired property. Let i € N,,, and x € H;, which
is orthogonal to v*(2) = ¢(2)7i(2) + 74(2) for all z € Q. Then we see

#(2) (M (2),2) + (73(2),2) =0 for z € Q.

If v4 = 0, we have P(z )(7i(2),z) = 0 for all z € Q. Otherwise for z € A; by definition
oz )f()andso< (2),x) = 0. This implies (z,74(2z)) =0 for all z € A} = B;. As B;
was a uniqueness set for (H;)s;, already (v4(2),z) = 0 for all z € Q. In any case, we
get the equation

¢(Z)<’71(Z),x> =0 forzeq.

This implies that the function h € O(Q) defined by h(z) = (yi(z),z) vanishes on
O\Z(¢), where Z(¢) is the zero set of ¢. But this set is dense in Q by the identity
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theorem. Hence h(z) = 0 for all z € Q and thus we conclude (v}(2),z) = 0 for
j€{1,2},2 € Q. As ~i,~4 span H;, we get x = 0 and so 7; spans H;. O

Theorem 5.4. Let Q C C? be a domain of holomorphy and let Hy, ..., H,, be Hilbert
spaces. Ifvi, ..., % : Q — H; are holomorphic functions spanning H; fori € N,,,, then
there exist holomorphic functions ¢1, ..., ¢, € O() such that v* = ¢17i + ... + dnY.,
also span H; for i € N,,. If for every i € N,,,, z € Q, the vectors vi(2),...,7. () are
linearly independent, it is possible to assure v'(z) # 0 for all z € Q.

Proof. The proof will be an induction on n. For n =1, choose ¢; =1 for j € N,,. The
condition 7} (z) linearly independent for all z €  means that v¢(z) = vi(z) # 0 for all
z € Q. Now let the statement be true for n > 1. Fori € Ny, let 44,...,vi,  : Q@ — H;
be holomorphic functions spanning H;. Define

Hj = LH({,(2); 2 € Q} U {7}, 11 (2); 2 € Q}).

By Lemma 5.3 there is a function h € O(€) such that hvy}, +7% | spans H] for i € N,,.
This implies that H; is spanned by the n functions

Y A Y

If ¥4 (2),...,7541(2) are linearly independent for all z € Q, so are 7{(2),...,74_1(2),
h(2)7i(2) + 7441 (2). By the induction hypothesis there exist holomorphic functions
Lo, @ € O(Q) such that the functions

V=@ v+ (Y )

also span H; for i € N,, and if Yi(2),--.,7441(2) are linearly independent, one can
achieve that v*(z) # 0 for all z € 2. Thus the holomorphic functions

¢1 = (blla cee an*l = d);z—h ¢Tl = ¢;zha ¢n+1 = Qﬁ;z
satisfy the conditions of the theorem. O

Corollary 5.5. Let H a Hilbert space, Q C C* an admissible domain of holomorphy
and T € B,(Q) € B(H)® Then there exists a spanning holomorphic cross-section
~v:Q — H in Er such that y(w) # 0 for all w € Q.

Proof. By Corollary 4.14 there exist holomorphic functions v1,...,7, : € — H such
that ker(7T,) = LH({y1(w),...,Tn(w)}) for all w € Q. As ker(T,,) is of dimension n
this implies that v; (w), ..., v, (w) are linearly independent for all w € Q2. By Condition
3 in the definition of Cowen-Douglas operator tuples the functions 7y, ...,v, span H.
Now by Theorem 5.4 we can choose holomorphic functions ¢1,...,¢, € O(f2) such
that v = ¢171 + ... + dnyn also spans H and such that vy(w) # 0 for all w € Q. The
function + is holomorphic by Lemma 2.12 and for all w € Q we have

Y(w) = 1 (w)y1 (W) + .- + (W) (w) € LHE Y1 (W), - -, Y (w)}) = ker(T,,).
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Thus v is a spanning holomorphic cross-section vanishing nowhere as desired. O
As a first consequence of the above result, we get the following corollary.

Corollary 5.6. Let Q C C? be an admissible domain of holomorphy and H o Hilbert
space. Then if B,(Q) C B(H)? is not empty, H must be a seperable Hilbert space of
infinite dimension.

Proof. Let T € B,(R2). It is clear that dim H = co because 77 has infinitely many
distinct eigenvalues. Now let v : @ — H be a spanning holomorphic cross-section in
Er. Choose a countable dense subset {zx;k € N} C Q and define a countable set
M C H by

N
U {Zak'y(zk); ar € Q4+ 1iQ for k=0,...,N}.
NeN k=0
Then M is dense in H because y spans H. O
Proposition 5.7. Let 2 C C? be open, H a Hilbert space, T = (Ty,...,Ty) € B(H)?
an element of B, (Q). If 0 # Qo C Q is open and for every connected component D of

Q we have DNQy # 0, then B, (Q) C Bn(Q). If v: Q — H is a spanning holomorphic
cross-section in Ep, then v|q, is a spanning holomorphic cross-section for Er|q,.

Proof. To show that T' € B, () it suffices to verify the third condition of Definition
2.1 for B,,(Q9): With V C H defined by

V =LH( ] ker(T.))

wep

we must show V = H. Let x € H be orthogonal to V, D a connected component of
Q, wg € DN Qg a point and let wy; € D be arbitrary. As D is open and connected, it
is also path-connected. Let p : [0,1] — D be a path from wy to wy, i.e., a continuous
map with p(0) = wg and p(1) = wy. Now for every ¢ € [0, 1] choose a connected open
set V; C D containing p(t) and holomorphic functions +4,...,~% : V; — H such that

LH({W% (W), e ”Yfl(w)}) = kerTw for w S ‘/t

according to Theorem 4.2. Then p([0,1]) € U,¢[,1 V¢ is an open cover of the compact
set p([0,1]). Thus there is a finite subcover p([0,1]) C %, V4, with ¢1,..., ¢, € [0,1].
We will now show that the elements of the following family of statements are correct:

S(i) = “x LkerT, Ywe V!, i=1,...,m.

Let k € N,;, such that wy = p(0) € V;,.. Then Q¢ N V;, 3 wp is a nonempty open set
and z L 4% (w),...,z L vt (w) for all w € Qo NV}, by assumption. This means that
the functions

f]t’C : Vi, — C, wr—>(’y§"’(w),z> (j=1,...,n), (5.1)
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which are holomorphic by 2.13, vanish on €y N V;, and thus identically. This implies
S(k) is true. Now consider I = {i € N,,,; S(4) is true}. We have k € I and claim that
I = N,,. Now assume that this is not the case. Then there must be I € N,,,\I with
Vi, NU,er Vi # 0, because otherwise we have the two disjoint open sets

o=UUv. P= U W

el 1€N,, \T

covering the connected set p([0,1]) and obviously p(tx) € O N p([0,1]), p(t,) € PN
p([0,1]) for any r € N,,\I. Thus there are | € N,,,\I, ¢ € I with V;, N V;, # 0. Then
the functions f]tﬁ', defined as in (5.1), vanish on Vi, N V;,, as S(i) is true, and thus
identically on V;,. So S(l) is true, a contradiction to [ ¢ I. Hence S(I) is true for all
I € N,,,. Now choose s € N, with w; = p(1) € V;,. Then as S(s) is true, we have
x L kerT,,, . Since D was an arbitrary connected component of 2 and wy € D was
arbitary, we see that x = 0 as LH({J ker(T,,)) C H is dense. But this implies
V = H as required.

Now if v : Q — H is a spanning holomorphic cross-section in Ep and « € H is a vector
with z L y(w) for all w € Qg, consider the function

w1 €N

f:Q—=C, w— (y(w),x),

which is holomorphic by Proposition 2.13. As f|q, = 0, we already have f = 0 because
) is open and every connected component of {2 has a nonempty intersection with €.
But then = 0 as 7 (defined on ) is a spanning holomorphic cross-section for 7.
This implies the desired statement. O

Remark 5.8. We note that the definition of Cowen-Douglas operators given in the
introduction is the special case of Definition 2.1 ford=1. Here T, =T —w € B(H)
for all w € Q. It only remains to show that the first conditions of both definitions
are equivalent in the case d = 1. But if T — w is surjective, it certainly has closed
range. On the other hand, assume T — w has closed range. By Proposition 5.7 we see
T € Bn(\{0}), thus V = LH(U, cq\ (o} ker(T' — w)) C H is a dense linear subspace.

But for w € Q\{0} and x € ker(T —w) we have T(Lz) = x and so x € Ran(T). Hence
V C Ran(T) and as Ran(T) is closed, we see that T is surjective.

Remark 5.9. For Q C C? open and connected and T € B, () C B(H)? in general it
is mot clear that there is a spanning holomorphic cross-section v :  — H. Howeuver,
with Qo C Q an admissible domain of holomorphy we can consider T as an element of
B, (Q0) by Proposition 5.7 and on Qo we have a spanning holomorphic cross-section.
In this way, many of the results in the following sections can be applied for general
open connected sets Q.

The following theorem gives us a representation for Cowen-Douglas tuples as mul-
tiplication operators on a functional Hilbert space of holomorphic functions.

Theorem 5.10. Let Q C C¢ be an admissible domain of holomorphy, H be a Hilbert
space and let T € B,(Q2) C B(H)? be a Cowen-Douglas tuple. Then there is a
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Junctional Hilbert space H of holomorphic functions on Q* and a unitary operator

U:H — H such that UT;U* = M}, fori=1,...,d, where
M. :H—H, frszf
s the multiplication by the i-th coordinate function on H.

Proof. Let v : 0 — H be a spanning holomorphic cross-section for the vector bundle
Er associated with T. We now consider again Lemma 3.6 together with its proof,
where we choose X = H, 7 : Q* — H' as in Proposition 5.1. With notation as in the
proof of Lemma 3.6 we have

Hg = LH({(2); 2 € @*}).

Let z € LtHg. Then (z,7(2)) = 0 for all z € Q and thus x = 0 as « spans H. As in
the cited proof we see that the space

H=Hy={%;z € H}
is isometrically isomorphic to Hy = H/*H = H via the map
U:H—H, U@)(z) = (#,() = 2(2),

if the norm on H is defined by ||Z|| = ||z for # € H. Then by Lemma 3.6, the space
H is a functional Hilbert space.

Now let ¢ € Ny, S; = UT;U*. We show that S} is the operator of multiplication with
zion H. For z € H,z € Q* we have
(SiUz)(2) = (UT7U Uz)(2) = (UT; z)(2)
= (T7'2,7(2)) = (z, Ti7 (%))
= (2,Z7(2)) = zi(z,7(2)) = 2:(Uz)(2).

Hence, the operator 7; is unitarily equivalent to the adjoint of the operator M, on "
via the unitary operator U. O

Remark 5.11. It is easy to see that in the setting of Theorem 5.10 the reproducing
kernel of the functional Hilbert space H is the map

K:Q"x Q"= H, (z,w) —~ (y(),v(z)).

Indeed we have K(-,w) = *y/(%) €H and, for all T € I;T, w € Q*, we see that

—

<§7K(’w)>f1 = <ZE\’7(@)>I§ = <‘T7’Y(E)>H = ’:z?(w)
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6 Unitary equivalence

In the following section we prove a generalization of a fundamental result shown
in [CD78]. This particular proof was given in the one-dimensional case by K. Zhu
in [Zhu00] and it is based on the existence of a spanning holomorphic cross-section.
The result characterises Cowen-Douglas operator tuples which are unitarily equivalent.
Recall that for Hilbert spaces Hy, Hy two operator tuples S € B(H;)?, T € B(H)?
are called unitarily equivalent if there exists a unitary map U : H; — Hs such that
US;, =T,U fori=1,....d.

Theorem 6.1. Let Q C C? be an admissible, connected domain of holomorphy, let
Hy, Hy be Hilbert spaces and let S € B(Hy)¢, T € B(Hy)? be two operator tuples in
B, (2). Then the following are equivalent:

1. S and T are unitarily equivalent.
2. The hermitian holomorphic bundles Eg and Er are equivalent.

3. There exist spanning holomorphic cross-sections vs in Eg and vpr in Ep such
that [|vs(2)|| = [lvr(2)|| for all z € Q.

Proof. (1) = (2): Let U : Hy — Hs be a unitary operator such that US; = T;U for
all i € Ng. For i € Ny, 2 € Q and = € ker(S,), we get

T;(Uzx) = U(S;z) = z;(Ux),

so Uz € ker(T,). This shows that the map f = (idq xU)|g, : Es — Er is well-defined
and it obviously defines a vector bundle morphism. For every z € 2, the function f
restricted to the fibre ker(S,) C Fg is just the map

idizy X Ulger(s,) : {2} X ker(S;) — {2} x ker(T%).

This map is isometric and hence surjective as the domain of definition and the tar-
get space have the same dimension (equipping both with the natural structure of
n-dimensional normed complex vector spaces), hence it is unitary.

We will now show that f is a holomorphic bundle map. For this let h, : 7= %(V,,) —
V., xC" be linear charts contained in atlases representing the holomorphic linear struc-
ture of Eg and Ep respectively for ¢ = 1,2 with V,, NV, # 0. Let 7, ..., 2 1V, —
H; be the corresponding local frame for h,,. Then the maps U~st,..., UyZ : V,, —
Hj are holomorphic by Proposition 2.11 and U~} (2) € ker(T;) for all z € V,, NV,
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j € N,,. Thus by Lemma 4.7 they induce holomorphic sections
9j * ‘/21 N VZZ - ETa zZ = (Z7 U’le (Z)) (.7 € Nn)a

and their representations gj ., = pry o h, o g; are holomorphic functions. We must
show that the map

hayo fohZl: (Ve NVey) x C" = (Vi N V) x C"

is holomorphic. But this follows from the following factorization
ol n n h n
Z z f z z
(z,0) =5 (2,3 a7 (2) = (2 ) U7 (2) == (2, ) g5,(2)).
Jj=1 j=1 j=1

Thus the hermitian holomorphic vector bundles Fs and Er are equivalent.

(2) = (3): Let Es and Er be equivalent as hermitian holomorphic vector bundles.
Then there exists a holomorphic bundle map f : Es — Er which maps {z} x ker(S,)
unitarily onto {z} x ker(T}) for all z € Q. We denote by F, the corresponding unitary
map

F, : ker(S,) — ker(Ty), = — pry(f(z,x)).

Now choose a global holomorphic frame of functions 71, ...,v, : Q@ = H; for Eg. Then
for z € Q, the vectors F,y1(2), ..., Foyn(2) form a basis of ker(T,). The functions

i Q— Hy, z+— Foy(z) (i=1,...,n)

induce holomorphic sections by Lemma 2.45 and thus are holomorphic by Lemma 4.7.
Hence they are a global holomorphic frame for Ep. Now choose functions ¢, ..., ¢, €
0O(9) according to Theorem 5.4 such that

v Q— Hla Z = ¢1(Z)71(Z) + .+ ¢n(z)7n(z)
'7 Q= H27 Z = d)l(Z)Fz’Yl(Z) +.o 4+ d)n(Z)Fz’Yn<Z)

are spanning holomorphic cross-sections for Eg and Er, respectively. But then for all
z € §, we have 3(z) = F,vy(z) as F, is linear. But F, is also unitary and therefore
¥ = lv(2)|l- So v and 4 are spanning holomorphic cross-sections as required in
Condition 3.

(3) = (1): Now assume that there exist spanning holomorphic cross-sections 7yg in
Eg and 7 in Ep such that ||ys(2)| = ||vr(2)]] for all z € Q. Then we define maps

Kg:QxQ—C, (va) = <75(Z)775(w)>a
Kr:QxQ—C, (z,w) = {(yr(2),yr(w)).

By Proposition 2.14 the functions Kg and Kp are holomorphic in the first argument
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and anti-holomorphic in the second argument. Moreover we have for z €

Ks(z,2) = |vs()* = llyr ()* = K (2, 2).

Then by applying a theorem from the theory of functions of several complex variables
(see [Kra82], Exercise 3 on page 326), we have Kg = Kp. It follows that, for n € N*|
C1,...,cp € Cand z1,...,2; € 2, we have

n
1> ervs(z)l)? <Z ks (2k), ZCZ'YS (2 >
i - =

n n
exCi{vs (k) vs(z1)) E E caKs(zr, 21)
k=1 I1=1

Il
b Il
i M: -
—
3 FM:
—

[
NE

ekaKr(ze,z) = ... = ch'YT 2k)

~
Il
-
Il
-

This implies that

n

ZCHS(ZIC) =0 = ick’YT(zk) =0

k=1 k=1

and so by Corollary 2.5 there is a unique linear map Uy : LH({vs(2); 2z € Q}) — H,
such that Upvs(z) = yr(z) for all z € Q. The above calculation also shows that Uy is
isometric. Obviously Ran(Uy) = LH({yr(2);2z € Q}) is dense in Hy. We now extend
Uy continuously on H; = LH({vs(2); 2z € Q}) and the resulting map U : Hy — Hs
is still isometric. Thus its image is closed and as Ran(Uy) C Ran(U), the map U is
surjective and hence unitary. Since «g spans H and since for all i € Ny and z € Q we
have

TiUvs(z) = Tinr(2) = zivr(2) = Uzivs(z) = USiys(2),
it follows that T;U = US; as required. This finishes the proof. O
As a refinement of the above result, we will derive a weaker condition for unitary

equivalence. This condition was shown for n = 1 in [CD78] (cf. Theorem 1.17, page
195). First we give a proposition needed for the proof.

Proposition 6.2. Let Q C C? be an open and connected set, H a Hilbert space,
T € B,(R) a Cowen-Douglas tuple and let v : @ — H be a spanning holomorphic
cross-section for Ep. If ¢ € O(Q) is a holomorphic function and ¢ # 0 then ¥ = ¢y
is also a spanning holomorphic cross-section for Er.

Proof. The function 4 is holomorphic by Proposition 2.12. Assume that we have
x € H with (¢(2)7(z),z) = 0 for all z € Q. The set Qg = ¢~*(C\{0}) C Q is open
and nonempty by assumption and the holomorphic function

f:Q-=C, z— (y(2),x)
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vanishes on y. Hence it vanishes identically on 2 and so £ = 0. Thus 7 spans H,
which concludes the proof. O

Theorem 6.3. Let n € N*, Q C C be a domain, Hy, Ho Hilbert spaces and let S €
B(H,), T € B(H3) be two operators in By, (S2). Then if there are spanning holomorphic
cross-sections vg : 0 — Hy and vy : Q — Hy which satisfy vs(z) # 0,vr(2) # 0 and

90log|lys(2)| = 90log ||y (2)|

for all z € Q, then S and T are unitarily equivalent.

Proof. First we observe that

90(log [|7s(2)ll —log [yr(2)]) = 0

implies that the function h : Q — R defined by

h(z) =log|lvs(2)| —log [l (2)]

is harmonic. Applying the exponential function, we get the equation

Ivs(2)ll = €@y (2)]| = 1" |y (2)]]- (6.1)

Let a € Q and r > 0 be such that D = D,.(a) C Q. Then as D is simply connected,
the function h = iL|D admits a harmonic conjugate *h : D — R and so f = h +
i*h € O(D). But [eM?)| = |2+ 1) = |ef(Z)| for z € D and the function ef(*) is
holomorphic on D. So with (6.1) we see:

sl = 1e?@Nllvr ()]l = e? @z ()]

Applying Proposition 5.7 we find that S, T € B, (D) and that vs|p,vr|p are spanning
holomorphic cross-sections. By Proposition 6.2 the function

Ar(2) : D — H, z+ ef(z)VT(z)

is also a spanning holomorphic cross-section for Er. Finally by Theorem 6.1, the
operators S and T are unitarily equivalent. O

Remark 6.4. It is clear from Corollary 5.5 that we can always find spanning holo-
morphic cross-sections vg : Q@ — Hy and yp : Q — Hs vanishing nowhere. In this case
the function K; : Q@ x Q — C defined by K;(z,w) = (v:(2),vi(w)) is holomorphic in z
and anti-holomorphic in w by Corollary 2.14. In particular, it is C*> considered as a
function R* D Q x Q — C = R2. Thus for z =z + iy € Q with z,y € R we have

o .90 .0
o 0,0 0. . .
(52 +19y)(9x Z?y) og K (z + iy, x + iy)

1

5810g lvi(2) || = 3

exists everywhere.
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Remark 6.5. For T' € B1(2) and v : Q — H a spanning holomorphic cross-section
for Er vanishing nowhere, the function —00log(|v(2)||?) is just the curvature of the
vector bundle Er (see [CD78], §2).
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7 Commutants

In this section we generalize a result from [Zhu00] which characterises the commutant
of an operator from a Cowen-Douglas class in terms of a spanning holomorphic cross-
section of this operator. We recall the basic definition.

Definition 7.1. Let H be a normed vector space and T € B(H). Then we define the
commutant (T)" of T by

(T) = {S € B(H);TS = ST}.

Theorem 7.2. Let Q C C? be open, let Hy, Hy be Hilbert spaces and let S € B(H;)?,
T € B(H3)? be two operator tuples in B, (). Moreover let ys : Q — Hy be a spanning
holomorphic cross-section in Es. Then an operator A € B(Hy, Hs) intertwines S; and
T;, i.e., AS; = T; A for all i € Ny, if and only if the function yp = Ayg : Q — Hs is a
holomorphic cross-section in Ep. In this case yr satisfies yp < vs.

On the other hand, for all holomorphic cross-sections yp in Ep with yp < ~g, there
exists a unique operator A € B(Hy, Hs) such that yr(z) = Avys(z) and AS; = T; A for
all i € Ny.

Proof. First suppose that there is A € B(H1, Hy) intertwining S; and 7; for all i € Ny.
By Proposition 2.11 the function yp = Ayg is holomorphic and for z € £ we have
T;(Avs(z)) = ASivs(z) = zi(Ays(z)). Thus yr(z) € ker(T) for all z € Q. This shows
that vy is a holomorphic cross-section in Ep. Furthermore, for z,w € €2, we have

{(vr(2), 77 (w)) = (A" Avs(2), 75 (w))

and A*A is positive. Thus by Proposition 2.30 we have v < vg.
Now let A € B(Hy, Hs) such that 47 = Avg is a holomorphic cross-section in Er.
Then for all z € Q, i € Ng, we have

ASivs(z) = 2iAvs(z) = zivr(2) = Tinr(2) = T;Avs(2).
As LH(v5(€Q)) C H; is dense, we have AS; = T; A.

Suppose now that vp :  — Hs is a holomorphic cross-section in Ep with yp < ~vg.
Then there exists C' > 0 such that

1Y~ exvr(z)ll < CID - ervs (2l (7.1)
k=1 k=1

for all m € N*) ¢1,...,¢pp € C, 21,...,2,, € Q. Then by Corollary 2.5 there is a
unique linear map Ay : LH(ys(2)) — Hy with Agys(z) = vr(2) for all z € Q. This
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operator is bounded by (7.1). Thus it extends continuously to a bounded linear map
A € B(Hi, H») still satisfying v = Avyg. Thus we are done by the first part of the
proof. O

Theorem 7.3. Let 2 C C? be open, let T € B, (Q) C B(H)? be an operator tuple on
a Hilbert space H and let g : Q — H be a spanning holomorphic cross-section in Er.
Then the set

Cr ={v: Q — H;~ holomorphic cross-section in Er, v < 7o}

is in canonical bijection to ﬂle(Ti)/ via the map

d
((T:) = Cr, A Ayo.
=1

Proof. Applying Theorem 7.2 to H; = Hy = H and S = T we see that an operator
A € B(H) satisfies AT; = T; A for all i € Ny if and only if the function Avyy: Q — H
is a holomorphic cross-section in Ep with Avyy < 9. Thus it suffices to show that all
v € Cr are of the form v = A7 with a suitable operator A € B(H). But this follows
from the second part of Theorem 7.2. O
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8 Similarity

In this section we want to characterise similar operators in the same Cowen-Douglas
class. First we recall the basic definitions.

Definition 8.1. Let Hy, Hy be Hilbert spaces and let S € B(H,)*, T € B(Hz)? be two
operator tuples.

Then S and T are called similar if there exists a bounded invertible operator A €
B(Hq, Hy) such that AS; = T; A fori=1,...,d.

S and T are called quasi-similar if there exist bounded linear operators A € B(Hq, H)
and B € B(Ha, Hy) which are injective with dense range such that AS; = T;A and
S;B =BT, fori=1,...,d.

Theorem 8.2. Let Q C C% be an admissible domain of holomorphy, let Hy, Hy be
Hilbert spaces and let S € B(Hy)¢, T € B(H3)? be two operator tuples in B, (). Then
S and T are similar if and only if there exist spanning holomorphic cross-sections ys
i FEg and vyp in Ep such that vg ~ .

Proof. First suppose that A € B(Hj, Hs) is invertible such that AS; = T;A for all
i € Ny. Let vg be a spanning holomorphic cross-section in Eg. Then vy = Avg is a
holomorphic cross-section in E7 by Theorem 7.2. Since A is onto, yr spans Hs:

LH(77(%) = LH(A75() > A TH(y5(Q2)) = AH, = H,.
Thus 7 is a spanning holomorphic cross-section for Er. Since

(vr(2),yr(w)) = (A" Ays(z),vs(w)) for z,w € Q

and since A*A is positive and invertible, we have vg ~ ~p by Proposition 2.30.

Now let 75 in EFg and 7 in Er be spanning holomorphic cross-sections such that vg ~
~r. Then applying Theorem 7.2 in both directions we find operators A € B(Hy, Hs),
B € B(Hs, Hy) with vy = Avs and v¢ = Byr and AS; = T; A for all i € N;. But as
~vs spans Hi, yr spans Hs and we have vp = ABvyp and g = BA~yrp, it is clear that
AB =1y, and BA = 1g,. Thus A is invertible as required. O

Theorem 8.3. Let Q C C¢ be an admissible domain of holomorphy, let Hy, Hy be
Hilbert spaces and S € B(Hy)?, T € B(Hz)? be two operator tuples in B, (Q). Then
there exists a bounded linear operator A € B(Hy,Hs) with dense range such that
AS; = T; A for alli € Ny if and only if there exist spanning holomorphic cross-sections
vs in Eg and vr in Ep such that yp < vs.

Proof. First suppose that A € B(Hy, Hy) has dense range such that AS; = T;A for
all i € Ng. Let «vg be a spanning holomorphic cross-section in Eg. Then vp = A~vg
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is a holomorphic cross-section in Ep satisfying vr < s by Theorem 7.2. Since A has
dense range, yr spans Hs:

LH(yr(Q)) = LH(Avs(Q)) D A LH(ys(2)) = AH, = Hs.

Thus 7 is a spanning holomorphic cross-section for Er.

Now let vg in Fs and 7 in Er be spanning holomorphic cross-sections such that
yr < vs. Then by Theorem 7.2 there exists a unique operator A € B(Hy, Hs) such
that Avyg = v which also satisfies AS; = T;A for all i € N;. Finally A has dense
range, since obviously LH(y7(Q)) C Ran(A). O

Theorem 8.4. Let Q C C? be an admissible domain of holomorphy, let Hy, Hy be
Hilbert spaces and S € B(Hy)?, T € B(Hz)? be two operator tuples in B, (Q). Then
there exist bounded linear operators A € B(Hy, Hs) and B € B(Ho, H1) with dense
range such that AS; = T;A and S;B = BT; for all i € Ny if and only if there exist
spanning holomorphic cross-sections vs, s in Es and yr, vy in Ep such that vs < yp
and v < vs.

Proof. The theorem clearly follows by applying Theorem 8.3 in both directions. O

Remark 8.5. In [Zhu00] it is stated that in the situation of Theorem 8.4 for d =1,
we already have that S and T are quasi-similar. For this we would have to show that
we can choose A and B to be injective. Unfortunately the author of this thesis was not
able to verify this claim.
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Conventions

N={0,1,2,3,...}, the natural numbers

N* ={1,2,3,4,...}, the natural numbers without zero

N, ={1,2,3,...n}, the first n positive natural numbers

AB = {f: B — A}, the set of functions from B to A for sets A, B

pr; : A1 X Ay x ... A, — Ai, (a1,...,a,) — a;, the projection on the i-th component
M(n x m, R), the ring of n X m-matrices with entries in the ring R

GL(n, k), the ring of invertible n x n-matrices with entries in the field k

Q C C is called a domain if 2 # ) is open and connected.

D,(a) = {z € C;|z — a| < r}, the open disc of radius r € [0, oc] around a € C

B.(a) = {z € (Cd;zsl:l |2zi —a;|* < r?}, the open ball of radius r € [0, 0] around
a€eC?

P.(a) = {z € C% |z — a;| < r Vi € Ny}, the polydisc of polyradius r € [0, cc] around
a€C?

For w = (w1, ...,wq) € C? we define @ = (g, . ..,w03).

For Q C C? we define Q* = {w; w € Q}.

Let V, W be two normed vector spaces over C.

B(V,W)={T:V — W;T bounded linear}, the bounded linear operators from V" to
w

B(V) = B(V,V), the bounded linear operators on V

V' = B(V,C), the bounded linear forms on V

(x,u) =u(z) forz e V,ueV’

O(Q) = {f : Q@ — C; f holomorphic}, the space of holomorphic functions on an open
set Q c C?
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