UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Jörg Eschmeier Dipl.-Math. Kevin Everard

Übungen zur Vorlesung Banachräume analytischer Funktionen

Sommersemester 2012

Blatt 2

Abgabetermin: Montag, 21.05.2012, vor der Vorlesung

Aufgabe 6 (3 Punkte)

Geben Sie einen isometrischen Isomorphismus zwischen h^2 und $\ell^2(\mathbb{Z})$ an.

Aufgabe 7 (2+2=4 Punkte)

Sei $u \in h_{\mathbb{R}}^2 = \{ f \in h^2; \ f(\mathbb{D}) \subset \mathbb{R} \}$ und sei $z^{(n)} = z^n$ für $n \geq 0, \ z^{(n)} = \overline{z}^{|n|}$ für n < 0. Zeigen Sie:

(a) Es gibt eine Folge $(a_n)_{n\in\mathbb{Z}}$ in $\ell^2(\mathbb{Z})$ mit

$$u(z) = \sum_{n = -\infty}^{\infty} a_n z^{(n)} \qquad (z \in \mathbb{D})$$

und

$$\tilde{u}(z) = \sum_{n=-\infty}^{\infty} -i \operatorname{sgn}(n) a_n z^{(n)} \qquad (z \in \mathbb{D}).$$

(Hinweis: Nach Aufgabe 11 (Funktionentheorie IIb) gilt $P(z,\xi) = \sum_{n=-\infty}^{\infty} z^{(n)} \overline{\xi}^n$ für $z \in \mathbb{D}$ und $\xi \in \mathbb{T}$.)

(b) Es gilt $\|\tilde{u}\|_2 \le \|u\|_2$.

Aufgabe 8 (1+3=4 Punkte)

Zeigen Sie:

- (a) Es gibt keine Konstante A>0 derart, dass $\|\tilde{u}\|_{\infty} \leq A\|u\|_{\infty}$ für alle harmonischen Funktionen $u:\mathbb{D}\to\mathbb{R}$ gilt.
- (b) Es gibt keine Konstante B>0 derart, dass $\|\tilde{u}\|_1 \leq B\|u\|_1$ für alle harmonischen Funktionen $u:\mathbb{D}\to\mathbb{R}$ gilt. (Hinweis: Führen Sie Teil (b) auf Teil (a) zurück wie im letzten Teil des Beweises von Satz 13.4. Benutzen Sie dabei, dass

$$\Phi: L^{\infty}(\mathbb{T}, \mathbb{R}) \to L^{1}(\mathbb{T}, \mathbb{R})', \quad \Phi(g)(u) = \int_{\mathbb{T}} ug \, d\lambda$$

ein isometrischer Isomorphismus ist.)

Aufgabe 9

(1+3=4 Punkte)

Sei $1 \le p < \infty$. Für $f \in H^p \setminus \{0\}$ sei

$$\delta(f) = \exp\Big(\log|f(0)| - \int_{\mathbb{T}} \log|f^*| \, d\lambda\Big).$$

Zeigen Sie:

- (a) $\delta(f) \in [0, 1]$.
- (b) Es ist $H^p = \bigvee_{n \in \mathbb{N}} z^n f$ genau dann, wenn $\delta(f) = 1$.

Aufgabe 10*

 $(4\times2*=8* Punkte)$

Zeigen Sie:

- (a) Es ist $\overline{\mathrm{LH}\{P(z,\cdot);\ z\in\mathbb{D}\}}^{L^1(\mathbb{T})}=L^1(\mathbb{T})$. (Hinweis: Benutzen Sie den Satz von Hahn-Banach und die L^1 - L^∞ -Dualität.)
- (b) Ist $(f_n)_n$ eine beschränkte Folge in H^{∞} und konvergiert $(f_n)_n$ punktweise auf \mathbb{D} gegen eine Funktion $f \in H^{\infty}$, so gilt

$$w^*$$
- $\lim_{n\to\infty} f_n^* = f^*$ in $L^\infty(\mathbb{T}) = L^1(\mathbb{T})'$.

- (c) Ist $M \subset H^2$ ein abgeschlossener Teilraum mit $zM \subset M$, so gilt auch $fM \subset M$ für alle $f \in H^{\infty}$. (Hinweis: Wenden Sie Teil (b) an auf eine Folge der Form $f_n = f_{r_n}$.)
- (d) Jede Funktion $f \in H^2$ mit Re f > 0 auf $\mathbb D$ ist eine äußere Funktion. (Hinweis: Für $n \to \infty$ gilt $\bigvee_{k \in \mathbb N} z^k f \ni \frac{f}{\frac{1}{n} + f} \to 1$ bzgl. τ_{w^*} .)

Die Übungsblätter finden Sie auch auf unserer Homepage:

http://www.math.uni-sb.de/ag/eschmeier/lehre